Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Optical Antenna Properties of Scanning Probe Tips:  Plasmonic Light Scattering, Tip−Sample Coupling, and Near-Field Enhancement

View Author Information
Department of Chemistry, University of Washington, Seattle, Washington 98195
Cite this: J. Phys. Chem. C 2008, 112, 10, 3766–3773
Publication Date (Web):February 16, 2008
https://doi.org/10.1021/jp7098009
Copyright © 2008 American Chemical Society

    Article Views

    1907

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The optical near-field distribution and enhancement near the apex of model scanning probe tips are calculated within the quasistatic approximation. The optical tip−sample coupling sensitively depends on both the tip and sample material. This, in addition to the tip−sample distance and apex geometry, is found to affect the spatial resolution that can be obtained in scattering near-field microscopy (s-SNOM). A pronounced structural plasmon resonant behavior is found for gold tips, which redshifts upon tip−sample approach on the length scale given by the tip radius. This near-field tip−sample coupling also allows for surface plasmon excitation in the sample. With the critical dimensions of the tip apex in the range of 10 to several 10s of nanometers, the results are found to be in good agreement with experiment and more rigorous theoretical treatments.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Present address:  Max-Planck-Institut for Gravitational Physics, D-14476 Golm, Germany.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 84 publications.

    1. Hannes Böckmann, Shuyi Liu, Melanie Müller, Adnan Hammud, Martin Wolf, Takashi Kumagai. Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips. Nano Letters 2019, 19 (6) , 3597-3602. https://doi.org/10.1021/acs.nanolett.9b00558
    2. Mario Miscuglio, Nicholas J. Borys, Davide Spirito, Beatriz Martín-García, Remo Proietti Zaccaria, Alexander Weber-Bargioni, P. James Schuck, Roman Krahne. Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning. ACS Nano 2019, 13 (5) , 5646-5654. https://doi.org/10.1021/acsnano.9b00821
    3. Hannes Böckmann, Melanie Müller, Adnan Hammud, Marc-Georg Willinger, Maria Pszona, Jacek Waluk, Martin Wolf, Takashi Kumagai. Near-Field Spectral Response of Optically Excited Scanning Tunneling Microscope Junctions Probed by Single-Molecule Action Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10 (9) , 2068-2074. https://doi.org/10.1021/acs.jpclett.9b00822
    4. Hannes Böckmann, Sylwester Gawinkowski, Jacek Waluk, Markus B. Raschke, Martin Wolf, and Takashi Kumagai . Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction. Nano Letters 2018, 18 (1) , 152-157. https://doi.org/10.1021/acs.nanolett.7b03720
    5. Sandro Mignuzzi, Fumin Huang, Debdulal Roy, and David Richards . Near-Field Raman Enhancement of Single Molecules and Point Scatterers. The Journal of Physical Chemistry C 2017, 121 (34) , 18800-18806. https://doi.org/10.1021/acs.jpcc.7b03965
    6. Franz Fuchs, Florent Caffy, Renaud Demadrille, Thierry Mélin, and Benjamin Grévin . High-Resolution Kelvin Probe Force Microscopy Imaging of Interface Dipoles and Photogenerated Charges in Organic Donor–Acceptor Photovoltaic Blends. ACS Nano 2016, 10 (1) , 739-746. https://doi.org/10.1021/acsnano.5b05810
    7. Andrew C. Jones and Markus B. Raschke . Thermal Infrared Near-Field Spectroscopy. Nano Letters 2012, 12 (3) , 1475-1481. https://doi.org/10.1021/nl204201g
    8. Ali M. Angulo, Cecilia Noguez, and George C. Schatz . Electromagnetic Field Enhancement for Wedge-Shaped Metal Nanostructures. The Journal of Physical Chemistry Letters 2011, 2 (16) , 1978-1983. https://doi.org/10.1021/jz200825g
    9. A. Dolocan, D. P. Acharya, P. Zahl, P. Sutter, and N. Camillone, III . Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy. The Journal of Physical Chemistry C 2011, 115 (20) , 10033-10043. https://doi.org/10.1021/jp111875f
    10. Monika Fleischer, Alexander Weber-Bargioni, M. Virginia P. Altoe, Adam M. Schwartzberg, P. James Schuck, Stefano Cabrini, and Dieter P. Kern . Gold Nanocone Near-Field Scanning Optical Microscopy Probes. ACS Nano 2011, 5 (4) , 2570-2579. https://doi.org/10.1021/nn102199u
    11. Samuel Berweger, Joanna M. Atkin, Robert L. Olmon, and Markus B. Raschke . Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy. The Journal of Physical Chemistry Letters 2010, 1 (24) , 3427-3432. https://doi.org/10.1021/jz101289z
    12. Damien Riedel, Roger Delattre, Andrey G. Borisov, and Tatiana V. Teperik . A Scanning Tunneling Microscope as a Tunable Nanoantenna for Atomic Scale Control of Optical-Field Enhancement. Nano Letters 2010, 10 (10) , 3857-3862. https://doi.org/10.1021/nl101246z
    13. Alexandria Anderson, Kseniya S. Deryckx, Xiaoji G. Xu, Günter Steinmeyer and Markus B. Raschke . Few-Femtosecond Plasmon Dephasing of a Single Metallic Nanostructure from Optical Response Function Reconstruction by Interferometric Frequency Resolved Optical Gating. Nano Letters 2010, 10 (7) , 2519-2524. https://doi.org/10.1021/nl101090s
    14. Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini and P. J. Schuck . Manipulating Nanoscale Light Fields with the Asymmetric Bowtie Nano-Colorsorter. Nano Letters 2009, 9 (12) , 4505-4509. https://doi.org/10.1021/nl902850f
    15. Kaili Kuang, Qiao Wang, Fangjin Chang, Yutong Yang, Wei Peng. Highly Sensitive Surface Plasmon Sensor With an Ultra-Narrow Linewidth. IEEE Photonics Technology Letters 2024, 36 (14) , 873-876. https://doi.org/10.1109/LPT.2024.3406537
    16. Jonathan M. Larson, Andrew Dopilka, Robert Kostecki. Infrared nanoimaging and nanospectroscopy of electrochemical energy storage materials and interfaces. Current Opinion in Electrochemistry 2024, 36 , 101548. https://doi.org/10.1016/j.coelec.2024.101548
    17. Melanie Müller. Imaging surfaces at the space–time limit: New perspectives of time-resolved scanning tunneling microscopy for ultrafast surface science. Progress in Surface Science 2024, 99 (1) , 100727. https://doi.org/10.1016/j.progsurf.2023.100727
    18. Mahfujur Rahaman, Gwangwoo Kim, Kyung Yeol Ma, Seunguk Song, Hyeon Suk Shin, Deep Jariwala. Tailoring exciton dynamics in TMDC heterobilayers in the ultranarrow gap-plasmon regime. npj 2D Materials and Applications 2023, 7 (1) https://doi.org/10.1038/s41699-023-00428-7
    19. Nora Slekiene, Valentinas Snitka. Nanocomposite Au/Si Cantilevers for Tip-Enhanced Raman Scattering (TERS) Sensors. Chemosensors 2023, 11 (4) , 218. https://doi.org/10.3390/chemosensors11040218
    20. Natalia Piergies, Jérémie Mathurin, Alexandre Dazzi, Ariane Deniset-Besseau, Magdalena Oćwieja, Czesława Paluszkiewicz, Wojciech M. Kwiatek. IR nanospectroscopy to decipher drug/metal nanoparticle interactions: Towards a better understanding of the spectral signal enhancement and its distribution. Applied Surface Science 2023, 609 , 155217. https://doi.org/10.1016/j.apsusc.2022.155217
    21. Fei Pan, Chia-Chen Wu, Yu-Lin Chen, Po-Yen Kung, Yen-Hsun Su. Machine learning ensures rapid and precise selection of gold sea-urchin-like nanoparticles for desired light-to-plasmon resonance. Nanoscale 2022, 14 (37) , 13532-13541. https://doi.org/10.1039/D2NR03727K
    22. Felipe Herrera, Marina Litinskaya. Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials. The Journal of Chemical Physics 2022, 156 (11) https://doi.org/10.1063/5.0080063
    23. Lars Mester, Alexander A. Govyadinov, Rainer Hillenbrand. High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics. Nanophotonics 2022, 11 (2) , 377-390. https://doi.org/10.1515/nanoph-2021-0565
    24. Matthias M. Wiecha, Rohit Kapoor, Hartmut G. Roskos. Terahertz scattering-type near-field microscopy quantitatively determines the conductivity and charge carrier density of optically doped and impurity-doped silicon. APL Photonics 2021, 6 (12) https://doi.org/10.1063/5.0070608
    25. Jeremy F. Schultz, Sayantan Mahapatra, Linfei Li, Nan Jiang. The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy. Applied Spectroscopy 2020, 74 (11) , 1313-1340. https://doi.org/10.1177/0003702820932229
    26. Joonhee Lee, Nicholas Tallarida, Laura Rios, V. Ara Apkarian. The Raman Spectrum of a Single Molecule on an Electrochemically Etched Silver Tip. Applied Spectroscopy 2020, 74 (11) , 1414-1422. https://doi.org/10.1177/0003702820949274
    27. Hyeongwoo Lee, Dong Yun Lee, Min Gu Kang, Yeonjeong Koo, Taehyun Kim, Kyoung-Duck Park. Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging. Nanophotonics 2020, 9 (10) , 3089-3110. https://doi.org/10.1515/nanoph-2020-0079
    28. Péter Dombi, Zsuzsanna Pápa, Jan Vogelsang, Sergey V. Yalunin, Murat Sivis, Georg Herink, Sascha Schäfer, Petra Groß, Claus Ropers, Christoph Lienau. Strong-field nano-optics. Reviews of Modern Physics 2020, 92 (2) https://doi.org/10.1103/RevModPhys.92.025003
    29. Pushkar Singh, Tanja Deckert-Gaudig, Zhenglong Zhang, Volker Deckert. Plasmon induced deprotonation of 2-mercaptopyridine. The Analyst 2020, 145 (6) , 2106-2110. https://doi.org/10.1039/C9AN01970G
    30. Xiao You, Clayton B. Casper, Emily E. Lentz, Dorothy A. Erie, Joanna M. Atkin. Fabrication of a Biocompatible Mica/Gold Surface for Tip‐Enhanced Raman Spectroscopy. ChemPhysChem 2020, 21 (3) , 188-193. https://doi.org/10.1002/cphc.201901002
    31. Molly A. May, David Fialkow, Tong Wu, Kyoung‐Duck Park, Haixu Leng, Jaron A. Kropp, Theodosia Gougousi, Philippe Lalanne, Matthew Pelton, Markus B. Raschke. Nano‐Cavity QED with Tunable Nano‐Tip Interaction. Advanced Quantum Technologies 2020, 3 (2) https://doi.org/10.1002/qute.201900087
    32. E. Sheremet, L. Kim, D. Stepanichsheva, V. Kolchuzhin, A. Milekhin, D.R.T. Zahn, R.D. Rodriguez. Localized surface curvature artifacts in tip-enhanced nanospectroscopy imaging. Ultramicroscopy 2019, 206 , 112811. https://doi.org/10.1016/j.ultramic.2019.112811
    33. B. H. Son, D. J. Park, Y. H. Ahn. Electronic control of ultrafast field emission in carbon nanotube gaps. Applied Physics Letters 2019, 115 (16) https://doi.org/10.1063/1.5097724
    34. Kirsty F. Gibson, Sergei G. Kazarian, Sergey S. Kharintsev. Tip‐Enhanced R aman Spectroscopy. 2019, 1-33. https://doi.org/10.1002/9780470027318.a9278.pub2
    35. Mahfujur Rahaman, Alexander G. Milekhin, Ashutosh Mukherjee, Ekaterina E. Rodyakina, Alexander V. Latyshev, Volodymyr M. Dzhagan, Dietrich R. T. Zahn. The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering. Faraday Discussions 2019, 214 , 309-323. https://doi.org/10.1039/C8FD00142A
    36. Yixin Chen, Yanru Xu, Danmei Xie, Jin Jiang, Yanan Yue. Simulation on tip-assisted focusing of laser energy for sub-surface photon heating. Applied Thermal Engineering 2019, 148 , 129-135. https://doi.org/10.1016/j.applthermaleng.2018.11.050
    37. Yao Zhang, Rui Zhang, Song Jiang, Yang Zhang, Zhen‐Chao Dong. Probing Adsorption Configurations of Small Molecules on Surfaces by Single‐Molecule Tip‐Enhanced Raman Spectroscopy. ChemPhysChem 2019, 20 (1) , 37-41. https://doi.org/10.1002/cphc.201800861
    38. Kaifeng Zhang, Shin-ichi Taniguchi, Takehiro Tachizaki. Generation of broadband near-field optical spots using a thin-film silicon waveguide with gradually changing thickness. Optics Letters 2018, 43 (24) , 5937. https://doi.org/10.1364/OL.43.005937
    39. L. Ramanauskaite, Huizhong Xu, E. Griskonis, D. Batiuskaite, V. Snitka. Comparison and Evaluation of Silver Probe Preparation Techniques for Tip-Enhanced Raman Spectroscopy. Plasmonics 2018, 13 (6) , 1907-1919. https://doi.org/10.1007/s11468-018-0705-7
    40. Richard J. Hermann, Michael J. Gordon. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations. Optics Express 2018, 26 (21) , 27668. https://doi.org/10.1364/OE.26.027668
    41. Taka-aki Yano, Masahiko Hara. Tip-Enhanced Raman Scattering Microscopy: A Step toward Nanoscale Control of Intrinsic Molecular Properties. Journal of the Physical Society of Japan 2018, 87 (6) , 061012. https://doi.org/10.7566/JPSJ.87.061012
    42. Chahinez Dab, Gitanjali Kolhatkar, Julien Plathier, Reji Thomas, Andreas Ruediger. Dependence of Apertureless Scanning Near-Field Spectroscopy on Nanoscale Refractive Index Changes. Plasmonics 2018, 13 (1) , 99-106. https://doi.org/10.1007/s11468-016-0488-7
    43. J. Schötz, S. Mitra, H. Fuest, M. Neuhaus, W. A. Okell, M. Förster, T. Paschen, M. F. Ciappina, H. Yanagisawa, P. Wnuk, P. Hommelhoff, M. F. Kling. Nonadiabatic ponderomotive effects in photoemission from nanotips in intense midinfrared laser fields. Physical Review A 2018, 97 (1) https://doi.org/10.1103/PhysRevA.97.013413
    44. J. Plathier, A. Merlen, A. Pignolet, A. Ruediger. Relation between plasmonic tip emission and electromagnetic enhancement evidenced in tip‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy 2017, 48 (12) , 1863-1870. https://doi.org/10.1002/jrs.5260
    45. Xiang Meng, Wencan Jin, Hao Yang, Jerry I. Dadap, Richard M. Osgood, Andrei Dolocan, Peter Sutter, Nicholas Camillone. Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission. Optics Letters 2017, 42 (13) , 2651. https://doi.org/10.1364/OL.42.002651
    46. Arianna Lucia, Onofrio Antonino Cacioppo, Enrico Iulianella, Luca Latessa, Giuseppe Moccia, Daniele Passeri, Marco Rossi. Capability of tip-enhanced Raman spectroscopy about nanoscale analysis of strained silicon for semiconductor devices production. Applied Physics Letters 2017, 110 (10) https://doi.org/10.1063/1.4978261
    47. Stephan Handschuh-Wang, Tao Wang, Xuechang Zhou. Recent advances in hybrid measurement methods based on atomic force microscopy and surface sensitive measurement techniques. RSC Adv. 2017, 7 (75) , 47464-47499. https://doi.org/10.1039/C7RA08515J
    48. S. B. Choi, D. J. Park. Theory of dispersion of an ultrafast electron wavepacket generated by a femtosecond laser pulse in a nanostructure. Journal of the Korean Physical Society 2016, 69 (7) , 1182-1186. https://doi.org/10.3938/jkps.69.1182
    49. Yasuhiko Fujita, Peter Walke, Steven De Feyter, Hiroshi Uji-i. Tip-enhanced Raman scattering microscopy: Recent advance in tip production. Japanese Journal of Applied Physics 2016, 55 (8S1) , 08NA02. https://doi.org/10.7567/JJAP.55.08NA02
    50. Eric Le Moal, Sylvie Marguet, Damien Canneson, Benoît Rogez, Elizabeth Boer-Duchemin, Gérald Dujardin, Tatiana V. Teperik, Dana-Codruta Marinica, Andrey G. Borisov. Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle. Physical Review B 2016, 93 (3) https://doi.org/10.1103/PhysRevB.93.035418
    51. D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. M. Tofail, G. A. Stanciu. High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep11876
    52. Qiang Wang, Jelmer J. Renema, Andreas Engel, Martin P. van Exter, Michiel J. A. de Dood. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope. Optics Express 2015, 23 (19) , 24873. https://doi.org/10.1364/OE.23.024873
    53. Sebastian Thomas, Georg Wachter, Christoph Lemell, Joachim Burgdörfer, Peter Hommelhoff. Large optical field enhancement for nanotips with large opening angles. New Journal of Physics 2015, 17 (6) , 063010. https://doi.org/10.1088/1367-2630/17/6/063010
    54. , , , Qiang Wang, Michiel J. A. de Dood. Near-field single photon detection in a scattering SNOM. 2015, 950403. https://doi.org/10.1117/12.2178902
    55. Aysegul Cumurcu, Jordi Diaz, Ian D. Lindsay, Sissi de Beer, Joost Duvigneau, Peter Schön, G. Julius Vancso. Optical imaging beyond the diffraction limit by SNEM: Effects of AFM tip modifications with thiol monolayers on imaging quality. Ultramicroscopy 2015, 150 , 79-87. https://doi.org/10.1016/j.ultramic.2014.12.001
    56. Stefan Mastel, Alexander A. Govyadinov, Thales V. A. G. de Oliveira, Iban Amenabar, Rainer Hillenbrand. Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references. Applied Physics Letters 2015, 106 (2) https://doi.org/10.1063/1.4905507
    57. Max Gulde. Aspects of Ultrafast LEED. 2015, 27-46. https://doi.org/10.1007/978-3-319-18561-3_3
    58. Mark I. Stockman. Nanoplasmonics: Fundamentals and Applications. 2015, 3-102. https://doi.org/10.1007/978-94-017-9133-5_1
    59. A. Merlen, J. Plathier, A. Ruediger. A near field optical image of a gold surface: a luminescence study. Physical Chemistry Chemical Physics 2015, 17 (33) , 21176-21181. https://doi.org/10.1039/C4CP05000B
    60. A.F. SCARPETTINI, A.V. BRAGAS. Harmonic demodulation and minimum enhancement factors in field‐enhanced near‐field optical microscopy. Journal of Microscopy 2015, 257 (1) , 54-64. https://doi.org/10.1111/jmi.12185
    61. G Herink, L Wimmer, C Ropers. Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics. New Journal of Physics 2014, 16 (12) , 123005. https://doi.org/10.1088/1367-2630/16/12/123005
    62. Kirsty F. Gibson, Sergei G. Kazarian. Tip‐enhanced R aman Spectroscopy. 2014, 1-30. https://doi.org/10.1002/9780470027318.a9278
    63. Alexander S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, Gerardo Dominguez, Mark H. Thiemens, Michael M. Fogler, D. N. Basov. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Physical Review B 2014, 90 (8) https://doi.org/10.1103/PhysRevB.90.085136
    64. Limei Chen, Tianrui Zhai, Xinping Zhang, Claudia Unger, Jürgen Koch, Boris N Chichkov, Peter J Klar. Polarization-dependent SERS effects of laser-generated sub-100 nm antenna structures. Nanotechnology 2014, 25 (26) , 265302. https://doi.org/10.1088/0957-4484/25/26/265302
    65. Taka‐aki Yano, Satoshi Kawata. Tip‐Enhanced Raman Spectroscopy (TERS) for Nanoscale Imaging and Analysis. 2014, 139-161. https://doi.org/10.1002/9781118703601.ch7
    66. Naresh Kumar, Alasdair Rae, Debdulal Roy. Accurate measurement of enhancement factor in tip-enhanced Raman spectroscopy through elimination of far-field artefacts. Applied Physics Letters 2014, 104 (12) https://doi.org/10.1063/1.4869184
    67. Christoph Huber, Andreas Trügler, Ulrich Hohenester, Yehiam Prior, Wolfgang Kautek. Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation. Phys. Chem. Chem. Phys. 2014, 16 (6) , 2289-2296. https://doi.org/10.1039/C3CP51730F
    68. Andrew C. Jones, Brian T. O’Callahan, Honghua U. Yang, Markus B. Raschke. The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces. Progress in Surface Science 2013, 88 (4) , 349-392. https://doi.org/10.1016/j.progsurf.2013.07.001
    69. Doo Jae Park, Björn Piglosiewicz, Slawa Schmidt, Heiko Kollmann, Manfred Mascheck, Petra Groß, Christoph Lienau. Characterizing the optical near‐field in the vicinity of a sharp metallic nanoprobe by angle‐resolved electron kinetic energy spectroscopy. Annalen der Physik 2013, 525 (1-2) , 135-142. https://doi.org/10.1002/andp.201200216
    70. Mark I. Stockman. Nanoplasmonics: From Present into Future. 2013, 1-101. https://doi.org/10.1007/978-94-007-7805-4_1
    71. Martin Esmann, Simon F Becker, Bernard B da Cunha, Jens H Brauer, Ralf Vogelgesang, Petra Groß, Christoph Lienau. k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy. Beilstein Journal of Nanotechnology 2013, 4 , 603-610. https://doi.org/10.3762/bjnano.4.67
    72. Joanna M. Atkin, Samuel Berweger, Andrew C. Jones, Markus B. Raschke. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Advances in Physics 2012, 61 (6) , 745-842. https://doi.org/10.1080/00018732.2012.737982
    73. Doo Jae Park, Bjoern Piglosiewicz, Slawa Schmidt, Heiko Kollmann, Manfred Mascheck, Christoph Lienau. Strong Field Acceleration and Steering of Ultrafast Electron Pulses from a Sharp Metallic Nanotip. Physical Review Letters 2012, 109 (24) https://doi.org/10.1103/PhysRevLett.109.244803
    74. Junxi Zhang, Lide Zhang. Nanostructures for surface plasmons. Advances in Optics and Photonics 2012, 4 (2) , 157. https://doi.org/10.1364/AOP.4.000157
    75. Benedikt Hauer, Andreas P. Engelhardt, Thomas Taubner. Quasi-analytical model for scattering infrared near-field microscopy on layered systems. Optics Express 2012, 20 (12) , 13173. https://doi.org/10.1364/OE.20.013173
    76. Marcel Lucas, Elisa Riedo. Invited Review Article: Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science. Review of Scientific Instruments 2012, 83 (6) https://doi.org/10.1063/1.4720102
    77. R. Ramos, M. J. Gordon. Near-field artifacts in tip-enhanced Raman spectroscopy. Applied Physics Letters 2012, 100 (21) https://doi.org/10.1063/1.4722805
    78. Mark I. Stockman. Nanoplasmonics: past, present, and glimpse into future. Optics Express 2011, 19 (22) , 22029. https://doi.org/10.1364/OE.19.022029
    79. Joonhee Lee, Shawn M. Perdue, Desiré Whitmore, V. Ara Apkarian. Laser-induced scanning tunneling microscopy: Linear excitation of the junction plasmon. The Journal of Chemical Physics 2010, 133 (10) https://doi.org/10.1063/1.3490398
    80. W.-B. Ewe, H.-S. Chu, E.-P. Li, B. S. Luk’yanchuk. Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide. Applied Physics A 2010, 100 (2) , 315-319. https://doi.org/10.1007/s00339-010-5858-y
    81. Samuel Berweger, Markus B. Raschke. Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique. Analytical and Bioanalytical Chemistry 2010, 396 (1) , 115-123. https://doi.org/10.1007/s00216-009-3085-1
    82. Samuel Berweger, Markus B. Raschke. Polar phonon mode selection rules in tip‐enhanced Raman scattering. Journal of Raman Spectroscopy 2009, 40 (10) , 1413-1419. https://doi.org/10.1002/jrs.2407
    83. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, A. J. Meixner. Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope. Applied Physics Letters 2008, 93 (11) https://doi.org/10.1063/1.2987485
    84. Catalin C. Neacsu, Samuel Berweger, Markus B. Raschke. Tip-Enhanced Raman Imaging and Nanospectroscopy: Sensitivity, Symmetry, and Selection Rules. NanoBiotechnology 2007, 3 (3-4) , 172-196. https://doi.org/10.1007/s12030-008-9015-z