Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy
My Activity

Figure 1Loading Img
    Article

    Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
    * To whom correspondence should be addressed. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2009, 113, 11, 4277–4285
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp8082425
    Published February 24, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We present a method for the evaluation of the average size of gold nanoparticles based on the fitting of their UV−vis spectra by the Mie model for spheres. The method gives good results using a calibration of the dumping frequency of the surface plasmon resonance and accounting for the presence of nonspherical AuNP in solution by the Gans model for spheroids. It has been successfully applied to free and functionalized gold nanoparticles in various solvents with diameters in the 4−25 nm range. Despite the differences among samples, we found an accuracy of about 6% on the nanoparticles average size with respect to sizes measured by transmission electron microscopy (TEM). Moreover, the fitting model provides other information not available from TEM like the concentration of AuNP in the sample and the fraction of nonspherical nanoparticles, which is particularly useful for measuring aggregation processes. The fitting procedure and models are thoroughly discussed in the text, and the fitting programs are freely accessible on the web.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Mie model simulations; fittings of AuNP solutions; spectra of functionalized AuNP; particles and gold atoms distributions of the polydispersed AuNP sample; sketch of the LNMG fitting procedure; zip file (SPRFit.zip) containing the fitting programs MG Fit 1.0 and LNMG Fit 1.0 (running under Wolfram Mathematica 4.0 or later versions) and bulk gold dielectric constants can be download freely at http://www.chimica.unipd.it/vincenzo.amendola. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 518 publications.

    1. Frida Bilén, Pernilla Ekborg-Tanner, Antoine Balzano, Michaël Ughetto, Robson Rosa da Silva, Hannes Schomaker, Paul Erhart, Kasper Moth-Poulsen, Romain Bordes. Machine Learning-Based Interpretation of Optical Properties of Colloidal Gold with Convolutional Neural Networks. The Journal of Physical Chemistry C 2024, 128 (33) , 13909-13916. https://doi.org/10.1021/acs.jpcc.4c02971
    2. Pavel Savchenko, Din Zelikovich, Hadassah Elgavi Sinai, Roi Baer, Daniel Mandler. The Effect of the Capping Agents of Nanoparticles on Their Redox Potential. Journal of the American Chemical Society 2024, 146 (32) , 22208-22219. https://doi.org/10.1021/jacs.4c02524
    3. Tomas Klinavičius, Nadzeya Khinevich, Asta Tamulevičienė, Loïc Vidal, Sigitas Tamulevičius, Tomas Tamulevičius. Deep Learning Methods for Colloidal Silver Nanoparticle Concentration and Size Distribution Determination from UV–Vis Extinction Spectra. The Journal of Physical Chemistry C 2024, 128 (23) , 9662-9675. https://doi.org/10.1021/acs.jpcc.4c02459
    4. Jiamei Chen, Bingwu Liu, Huan Cheng, Moxia Li, Xuguang Sun, Xidong Duan, Jiawen Hu. Salt-Assisted, In Situ Current Nanowelding of an Interfacial Au Nanoparticle Film for a High-Performance Electrocatalyst. Langmuir 2024, 40 (23) , 11959-11965. https://doi.org/10.1021/acs.langmuir.4c00345
    5. Diego Lourençoni Ferreira, Christiane F. J. Pereira, Marcelo Gonçalves Vivas. Unveiling Step-by-Step the Bottom-Up Kinetics and Growth Mechanism of Laser-Induced Colloidal Gold Nanoparticles. The Journal of Physical Chemistry C 2023, 127 (37) , 18533-18546. https://doi.org/10.1021/acs.jpcc.3c04676
    6. Cansu Umran Tunc, Gizem Kursunluoglu, Munevver Akdeniz, Aybuke Ulku Kutlu, Muhammed Ihsan Han, Mukerrem Betul Yerer, Omer Aydin. Investigation of Gold Nanoparticle Naproxen-Derived Conjugations in Ovarian Cancer. ACS Materials Au 2023, 3 (5) , 483-491. https://doi.org/10.1021/acsmaterialsau.3c00033
    7. Jordan C. Potts, Akhil Jain, David B. Amabilino, Frankie J. Rawson, Lluïsa Pérez-García. Molecular Surface Quantification of Multifunctionalized Gold Nanoparticles Using UV–Visible Absorption Spectroscopy Deconvolution. Analytical Chemistry 2023, 95 (35) , 12998-13002. https://doi.org/10.1021/acs.analchem.3c01649
    8. Din Zelikovich, Pavel Savchenko, Daniel Mandler. High Recognition of Isomer-Stabilized Gold Nanoparticles through Matrix Imprinting. ACS Applied Materials & Interfaces 2023, 15 (27) , 32687-32696. https://doi.org/10.1021/acsami.3c04311
    9. Biljana Pejova, Simona Premcheska, Emel Sherif Miftar. From Self-Affine Ag to Mounded Ag@Ag2O Core–Shell Nanoplasmonic Surfaces By Sonochemistry. The Journal of Physical Chemistry C 2023, 127 (23) , 11204-11217. https://doi.org/10.1021/acs.jpcc.3c01267
    10. Josefina Ventre, Agustina L. Renna, Francisco J. Ibañez. How to Characterize 4–90 nm Size Gold Nanospheres with Experimental and Simulated UV–Vis and a Single SEM Image. Journal of Chemical Education 2023, 100 (4) , 1589-1596. https://doi.org/10.1021/acs.jchemed.2c00927
    11. Jidapa Chantaramethakul, Nicha Choophun, Chayanaphat Chokradjaroen, Anyarat Watthanaphanit, Nagahiro Saito, Gasidit Panomsuwan. Morphological Evolution of Gold Nanoparticles Synthesized via Solution Plasma Sputtering: Effect of Sodium Chloride Concentration and Storage Time. The Journal of Physical Chemistry C 2023, 127 (6) , 3184-3193. https://doi.org/10.1021/acs.jpcc.2c06474
    12. Toyoko Imae, Astrid Rahmawati, Andergachew Mekonnen Berhe, Mekuriaw Assefa Kebede. Au Quantum Clusters and Plasmonic Quantum Nanoparticles Synthesized under Femtosecond-Pulse Laser Irradiation in Aqueous Solution and in ZIF-8 for Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials 2022, 5 (11) , 16842-16852. https://doi.org/10.1021/acsanm.2c03793
    13. Julia Fernández-Vidal, Ana M. Gómez-Marín, Leanne A. H. Jones, Chih-Han Yen, Tim D. Veal, Vinod R. Dhanak, Chi-Chang Hu, Laurence J. Hardwick. Long-Life and pH-Stable SnO2-Coated Au Nanoparticles for SHINERS. The Journal of Physical Chemistry C 2022, 126 (29) , 12074-12081. https://doi.org/10.1021/acs.jpcc.2c02432
    14. Igor V. Zhigaltsev, Yuen Yi C. Tam, Jayesh A. Kulkarni, Pieter R. Cullis. Synthesis and Characterization of Hybrid Lipid Nanoparticles Containing Gold Nanoparticles and a Weak Base Drug. Langmuir 2022, 38 (25) , 7858-7866. https://doi.org/10.1021/acs.langmuir.2c01221
    15. Davide Revignas, Vincenzo Amendola. Artificial Neural Networks Applied to Colorimetric Nanosensors: An Undergraduate Experience Tailorable from Gold Nanoparticles Synthesis to Optical Spectroscopy and Machine Learning. Journal of Chemical Education 2022, 99 (5) , 2112-2120. https://doi.org/10.1021/acs.jchemed.1c01288
    16. Daniel J. Oliver, Victor V. Volkov, Carole C. Perry. ZnO Nanogold Doping: A Bioinorganic Paradigm for Sensing and Optical Security Applications. ACS Applied Nano Materials 2021, 4 (12) , 14241-14248. https://doi.org/10.1021/acsanm.1c03805
    17. Joe Brindle, Michael M. Nigra. Compensation Effect Exhibited by Gold Bimetallic Nanoparticles during CO Oxidation. ACS Omega 2021, 6 (37) , 24269-24279. https://doi.org/10.1021/acsomega.1c04236
    18. Calvin J. Brett, Wiebke Ohm, Björn Fricke, Alexandros E. Alexakis, Tim Laarmann, Volker Körstgens, Peter Müller-Buschbaum, L. Daniel Söderberg, Stephan V. Roth. Nanocellulose-Assisted Thermally Induced Growth of Silver Nanoparticles for Optical Applications. ACS Applied Materials & Interfaces 2021, 13 (23) , 27696-27704. https://doi.org/10.1021/acsami.1c07544
    19. D. M. Pashkov, A. A. Guda, M. V. Kirichkov, S. A. Guda, A. Martini, S. A. Soldatov, A. V. Soldatov. Quantitative Analysis of the UV–Vis Spectra for Gold Nanoparticles Powered by Supervised Machine Learning. The Journal of Physical Chemistry C 2021, 125 (16) , 8656-8666. https://doi.org/10.1021/acs.jpcc.0c10680
    20. Grzegorz Sobczak, Iwona Misztalewska-Turkowicz, Volodymyr Sashuk. Photoswitching, Colloidal Stability, and Reversible Self-Assembly of Gold Nanoparticles Covered with Thiolated Donor–Acceptor Stenhouse Adducts. The Journal of Physical Chemistry C 2021, 125 (9) , 5306-5314. https://doi.org/10.1021/acs.jpcc.0c10595
    21. Ahmed Medhat, Dina Salah, Nazarii Boichuk, Ibrahim Hassan, Svetlana Vitusevich, Amal Kasry. Graphene Nanoplatelet–Au Nanoparticle Hybrid as a Capacitive-Metal–Oxide–Semiconductor pH Sensor. ACS Applied Electronic Materials 2021, 3 (1) , 430-436. https://doi.org/10.1021/acsaelm.0c00968
    22. Rebeca S. Rodriguez, Tana L. O’Keefe, Clarice Froehlich, Riley E. Lewis, Trever R. Sheldon, Christy L. Haynes. Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Analytical Chemistry 2021, 93 (1) , 23-40. https://doi.org/10.1021/acs.analchem.0c04357
    23. Aleksa Djorović, Steven J. Oldenburg, Johan Grand, Eric C. Le Ru. Extinction-to-Absorption Ratio for Sensitive Determination of the Size and Dielectric Function of Gold Nanoparticles. ACS Nano 2020, 14 (12) , 17597-17605. https://doi.org/10.1021/acsnano.0c08431
    24. Luca Panariello, Anand N. P. Radhakrishnan, Ioannis Papakonstantinou, Ivan P. Parkin, Asterios Gavriilidis. Particle Size Evolution during the Synthesis of Gold Nanoparticles Using In Situ Time-Resolved UV–Vis Spectroscopy: An Experimental and Theoretical Study Unravelling the Effect of Adsorbed Gold Precursor Species. The Journal of Physical Chemistry C 2020, 124 (50) , 27662-27672. https://doi.org/10.1021/acs.jpcc.0c07405
    25. Hyunsub Kim, Pilarisetty Tarakeshwar, Nancy M. Fujikado, Kelsea Evraets, Anne K. Jones, Moreno Meneghetti, Peter R. Buseck, Scott G. Sayres. Pseudocarbynes: Linear Carbon Chains Stabilized by Metal Clusters. The Journal of Physical Chemistry C 2020, 124 (35) , 19355-19361. https://doi.org/10.1021/acs.jpcc.0c05014
    26. Lumin Zhang, Xiaojia Si, Frank Rominger, A. Stephen K. Hashmi. Visible-Light-Induced Radical Carbo-Cyclization/gem-Diborylation through Triplet Energy Transfer between a Gold Catalyst and Aryl Iodides. Journal of the American Chemical Society 2020, 142 (23) , 10485-10493. https://doi.org/10.1021/jacs.0c03197
    27. Roger M. Pallares, Korey P. Carter, Steven E. Zeltmann, Toni Tratnjek, Andrew M. Minor, Rebecca J. Abergel. Selective Lanthanide Sensing with Gold Nanoparticles and Hydroxypyridinone Chelators. Inorganic Chemistry 2020, 59 (3) , 2030-2036. https://doi.org/10.1021/acs.inorgchem.9b03393
    28. Rituraj Borah, Sammy W. Verbruggen. Coupled Plasmon Modes in 2D Gold Nanoparticle Clusters and Their Effect on Local Temperature Control. The Journal of Physical Chemistry C 2019, 123 (50) , 30594-30603. https://doi.org/10.1021/acs.jpcc.9b09048
    29. M. Reza Andalibi, Alexander Wokaun, Paul Bowen, Andrea Testino. Kinetics and Mechanism of Metal Nanoparticle Growth via Optical Extinction Spectroscopy and Computational Modeling: The Curious Case of Colloidal Gold. ACS Nano 2019, 13 (10) , 11510-11521. https://doi.org/10.1021/acsnano.9b04981
    30. Takuya Okamoto, Takahiro Nakamura, Kenji Sakota, Tomoyuki Yatsuhashi. Synthesis of Single-Nanometer-Sized Gold Nanoparticles in Liquid–Liquid Dispersion System by Femtosecond Laser Irradiation. Langmuir 2019, 35 (37) , 12123-12129. https://doi.org/10.1021/acs.langmuir.9b01854
    31. Amid Vahedi, Amir M. Farnoud. Novel Experimental Modules To Introduce Students to Nanoparticle Characterization in a Chemical Engineering Course. Journal of Chemical Education 2019, 96 (9) , 2029-2035. https://doi.org/10.1021/acs.jchemed.9b00423
    32. Brisa Peña, Marcos Maldonado, Andrew J. Bonham, Brian A. Aguado, Antonio Dominguez-Alfaro, Melissa Laughter, Teisha J. Rowland, James Bardill, Nikki L. Farnsworth, Nuria Alegret Ramon, Matthew R. G. Taylor, Kristi S. Anseth, Maurizio Prato, Robin Shandas, Timothy A. McKinsey, Daewon Park, Luisa Mestroni. Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Applied Materials & Interfaces 2019, 11 (20) , 18671-18680. https://doi.org/10.1021/acsami.9b00666
    33. Alexander M. Cryer, Cheuk Chan, Anastasia Eftychidou, Christy Maksoudian, Mohan Mahesh, Teresa D. Tetley, Alan C. Spivey, Andrew J. Thorley. Tyrosine Kinase Inhibitor Gold Nanoconjugates for the Treatment of Non-Small Cell Lung Cancer. ACS Applied Materials & Interfaces 2019, 11 (18) , 16336-16346. https://doi.org/10.1021/acsami.9b02986
    34. Diego Coglitore, Nicoletta Giamblanco, Agné Kizalaité, Pierre Eugene Coulon, Benoit Charlot, Jean-Marc Janot, Sébastien Balme. Unexpected Hard Protein Behavior of BSA on Gold Nanoparticle Caused by Resveratrol. Langmuir 2018, 34 (30) , 8866-8874. https://doi.org/10.1021/acs.langmuir.8b01365
    35. Tianyu Du, Hang Zhang, Jun Ruan, Hui Jiang, Hong-Yuan Chen, Xuemei Wang. Adjusting the Linear Range of Au-MOF Fluorescent Probes for Real-Time Analyzing Intracellular GSH in Living Cells. ACS Applied Materials & Interfaces 2018, 10 (15) , 12417-12423. https://doi.org/10.1021/acsami.7b19356
    36. S. M. H. Abtahi, Nathan D. Burrows, Fred A. Idesis, Catherine J. Murphy, Navid B. Saleh, and Peter J. Vikesland . Sulfate-Mediated End-to-End Assembly of Gold Nanorods. Langmuir 2017, 33 (6) , 1486-1495. https://doi.org/10.1021/acs.langmuir.6b04114
    37. Camillo Sartorio, Stefano Scaramuzza, Sebastiano Cataldo, Valeria Vetri, Michelangelo Scopelliti, Maurizio Leone, Vincenzo Amendola, and Bruno Pignataro . Donor–Acceptor Interfaces by Engineered Nanoparticles Assemblies for Enhanced Efficiency in Plastic Planar Heterojunction Solar Cells. The Journal of Physical Chemistry C 2016, 120 (47) , 26588-26599. https://doi.org/10.1021/acs.jpcc.6b07302
    38. Stefano Scaramuzza, Mirco Zerbetto, and Vincenzo Amendola . Synthesis of Gold Nanoparticles in Liquid Environment by Laser Ablation with Geometrically Confined Configurations: Insights To Improve Size Control and Productivity. The Journal of Physical Chemistry C 2016, 120 (17) , 9453-9463. https://doi.org/10.1021/acs.jpcc.6b00161
    39. Georges Siddiqi, Victor Mougel, and Christophe Copéret . Highly Active Subnanometer Au Particles Supported on TiO2 for Photocatalytic Hydrogen Evolution from a Well-Defined Organogold Precursor, [Au5(mesityl)5]. Inorganic Chemistry 2016, 55 (8) , 4026-4033. https://doi.org/10.1021/acs.inorgchem.6b00341
    40. Eleonora Tenori, Andrea Colusso, Zois Syrgiannis, Aurelio Bonasera, Silvio Osella, Adrian Ostric, Roberto Lazzaroni, Moreno Meneghetti, and Maurizio Prato . Perylene Derivatives As Useful SERRS Reporters, Including Multiplexing Analysis. ACS Applied Materials & Interfaces 2015, 7 (51) , 28042-28048. https://doi.org/10.1021/acsami.5b03586
    41. Feng Liang and Qimin Quan . Detecting Single Gold Nanoparticles (1.8 nm) with Ultrahigh-Q Air-Mode Photonic Crystal Nanobeam Cavities. ACS Photonics 2015, 2 (12) , 1692-1697. https://doi.org/10.1021/acsphotonics.5b00602
    42. Julien Romann, Jingjing Wei, and Marie-Paule Pileni . Computational Matching of Surface Plasmon Resonance: Interactions between Silver Nanoparticles and Ligands. The Journal of Physical Chemistry C 2015, 119 (20) , 11094-11099. https://doi.org/10.1021/jp511859p
    43. Keishi Suga, Tomohiro Yoshida, Haruyuki Ishii, Yukihiro Okamoto, Daisuke Nagao, Mikio Konno, and Hiroshi Umakoshi . Membrane Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Molecular Behavior of Lipid Assemblies. Analytical Chemistry 2015, 87 (9) , 4772-4780. https://doi.org/10.1021/ac5048532
    44. Irini Papagiannouli, Panagiotis Aloukos, David Rioux, Michel Meunier, and Stelios Couris . Effect of the Composition on the Nonlinear Optical Response of AuxAg1–x Nano-Alloys. The Journal of Physical Chemistry C 2015, 119 (12) , 6861-6872. https://doi.org/10.1021/jp512404a
    45. Ahson J. Shaikh, Faiz Rabbani, Tauqir A. Sherazi, Zafar Iqbal, Sadullah Mir, and Sohail A. Shahzad . Binding Strength of Porphyrin−Gold Nanoparticle Hybrids Based on Number and Type of Linker Moieties and a Simple Method To Calculate Inner Filter Effects of Gold Nanoparticles Using Fluorescence Spectroscopy. The Journal of Physical Chemistry A 2015, 119 (7) , 1108-1116. https://doi.org/10.1021/jp510924n
    46. Cédric Mongin, Isabelle Pianet, Gediminas Jonusauskas, Dario M. Bassani, and Brigitte Bibal . Supramolecular Photocatalyst for the Reduction of Au(III) to Au(I) and High-Turnover Generation of Gold Nanocrystals. ACS Catalysis 2015, 5 (1) , 380-387. https://doi.org/10.1021/cs5016063
    47. Ilaria Fortunati, Verena Weber, Emilia Giorgetti, and Camilla Ferrante . Two-Photon Fluorescence Correlation Spectroscopy of Gold Nanoparticles under Stationary and Flow Conditions. The Journal of Physical Chemistry C 2014, 118 (41) , 24081-24090. https://doi.org/10.1021/jp506408j
    48. Fabrizio Bertorelle, Martina Ceccarello, Marcella Pinto, Giulio Fracasso, Denis Badocco, Vincenzo Amendola, Paolo Pastore, Marco Colombatti, and Moreno Meneghetti . Efficient AuFeOx Nanoclusters of Laser-Ablated Nanoparticles in Water for Cells Guiding and Surface-Enhanced Resonance Raman Scattering Imaging. The Journal of Physical Chemistry C 2014, 118 (26) , 14534-14541. https://doi.org/10.1021/jp503725w
    49. Paz Sevilla, Santiago Sánchez-Cortés, José V. García-Ramos, and Alessandro Feis . Concentration-Controlled Formation of Myoglobin/Gold Nanosphere Aggregates. The Journal of Physical Chemistry B 2014, 118 (19) , 5082-5092. https://doi.org/10.1021/jp502008a
    50. Xia Zhang, Cristian A. Marocico, Manuela Lunz, Valerie A. Gerard, Yurii K. Gun’ko, Vladimir Lesnyak, Nikolai Gaponik, Andrei S. Susha, Andrey L. Rogach, and A. Louise Bradley . Experimental and Theoretical Investigation of the Distance Dependence of Localized Surface Plasmon Coupled Förster Resonance Energy Transfer. ACS Nano 2014, 8 (2) , 1273-1283. https://doi.org/10.1021/nn406530m
    51. Vincenzo Amendola, Lucio Litti, and Moreno Meneghetti . LDI-MS Assisted by Chemical-Free Gold Nanoparticles: Enhanced Sensitivity and Reduced Background in the Low-Mass Region. Analytical Chemistry 2013, 85 (24) , 11747-11754. https://doi.org/10.1021/ac401662r
    52. Yuen-Yan Fong, Jason R. Gascooke, Bradley R. Visser, Hugh H. Harris, Bruce C. C. Cowie, Lars Thomsen, Gregory F. Metha, and Mark A. Buntine . Influence of Cationic Surfactants on the Formation and Surface Oxidation States of Gold Nanoparticles Produced via Laser Ablation. Langmuir 2013, 29 (40) , 12452-12462. https://doi.org/10.1021/la402234k
    53. Thomas Nesakumar Jebakumar Immanuel Edison and Mathur Gopalakrishnan Sethuraman . Electrocatalytic Reduction of Benzyl Chloride by Green Synthesized Silver Nanoparticles Using Pod Extract of Acacia nilotica. ACS Sustainable Chemistry & Engineering 2013, 1 (10) , 1326-1332. https://doi.org/10.1021/sc4001725
    54. Pranav S. Vengsarkar and Christopher B. Roberts . Effect of Ligand and Solvent Structure on Size-Selective Nanoparticle Dispersibility and Fractionation in Gas-Expanded Liquid (GXL) Systems. The Journal of Physical Chemistry C 2013, 117 (27) , 14362-14373. https://doi.org/10.1021/jp403670w
    55. Francesco Bonaccorso, Mirco Zerbetto, Andrea C. Ferrari, and Vincenzo Amendola . Sorting Nanoparticles by Centrifugal Fields in Clean Media. The Journal of Physical Chemistry C 2013, 117 (25) , 13217-13229. https://doi.org/10.1021/jp400599g
    56. Manuela Lunz, Xia Zhang, Valerie A. Gerard, Yurii K. Gun’ko, Vladimir Lesnyak, Nikolai Gaponik, Andrei S. Susha, Andrey L. Rogach, and A. Louise Bradley . Effect of Metal Nanoparticle Concentration on Localized Surface Plasmon Mediated Förster Resonant Energy Transfer. The Journal of Physical Chemistry C 2012, 116 (50) , 26529-26534. https://doi.org/10.1021/jp309660s
    57. Xia Zhang, Cristian A. Marocico, Manuela Lunz, Valerie A. Gerard, Yurii K. Gun’ko, Vladimir Lesnyak, Nikolai Gaponik, Andrei S. Susha, Andrey L. Rogach, and A. Louise Bradley . Wavelength, Concentration, and Distance Dependence of Nonradiative Energy Transfer to a Plane of Gold Nanoparticles. ACS Nano 2012, 6 (10) , 9283-9290. https://doi.org/10.1021/nn303756a
    58. Chih H. Yu, Christopher P. J. Schubert, Chris Welch, Bai J. Tang, M.-Gabriela Tamba, and Georg H. Mehl . Design, Synthesis, and Characterization of Mesogenic Amine-Capped Nematic Gold Nanoparticles with Surface-Enhanced Plasmonic Resonances. Journal of the American Chemical Society 2012, 134 (11) , 5076-5079. https://doi.org/10.1021/ja300492d
    59. Suraj Kumar Tripathy, Ju Yeon Woo, and Chang-Soo Han . Highly Selective Colorimetric Detection of Hydrochloric Acid Using Unlabeled Gold Nanoparticles and an Oxidizing Agent. Analytical Chemistry 2011, 83 (24) , 9206-9212. https://doi.org/10.1021/ac202500m
    60. Kim E. Sapsford, Katherine M. Tyner, Benita J. Dair, Jeffrey R. Deschamps, and Igor L. Medintz . Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Analytical Chemistry 2011, 83 (12) , 4453-4488. https://doi.org/10.1021/ac200853a
    61. E. Messina, E. Cavallaro, A. Cacciola, R. Saija, F. Borghese, P. Denti, B. Fazio, C. D’Andrea, P. G. Gucciardi, M. A. Iatì, M. Meneghetti, G. Compagnini, V. Amendola, and O. M. Maragò . Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids. The Journal of Physical Chemistry C 2011, 115 (12) , 5115-5122. https://doi.org/10.1021/jp109405j
    62. Elena Messina, Emanuele Cavallaro, Adriano Cacciola, Maria Antonia Iatì, Pietro G. Gucciardi, Ferdinando Borghese, Paolo Denti, Rosalba Saija, Giuseppe Compagnini, Moreno Meneghetti, Vincenzo Amendola, and Onofrio M. Maragò . Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties. ACS Nano 2011, 5 (2) , 905-913. https://doi.org/10.1021/nn102101a
    63. Man Chin Paau, Chung Keung Lo, Xiupei Yang, and Martin M. F. Choi. Synthesis of 1.4 nm α-Cyclodextrin-Protected Gold Nanoparticles for Luminescence Sensing of Mercury(II) with Picomolar Detection Limit. The Journal of Physical Chemistry C 2010, 114 (38) , 15995-16003. https://doi.org/10.1021/jp101571k
    64. Yuen-Yan Fong, Jason R. Gascooke, Bradley R. Visser, Gregory F. Metha, and Mark A. Buntine . Laser-Based Formation and Properties of Gold Nanoparticles in Aqueous Solution: Formation Kinetics and Surfactant-Modified Particle Size Distributions. The Journal of Physical Chemistry C 2010, 114 (38) , 15931-15940. https://doi.org/10.1021/jp9118315
    65. Darya Radziuk, Dmitry Grigoriev, Wei Zhang, Dangsheng Su, Helmuth Möhwald and Dmitry Shchukin . Ultrasound-Assisted Fusion of Preformed Gold Nanoparticles. The Journal of Physical Chemistry C 2010, 114 (4) , 1835-1843. https://doi.org/10.1021/jp910374s
    66. Jixin Zhu, Ting Sun, Huey Hoon Hng, Jan Ma, Freddy Yin Chiang Boey, Xiongwen Lou, Hua Zhang, Can Xue, Hongyu Chen and Qingyu Yan . Fabrication of Core−Shell Structure of M@C (M=Se, Au, Ag2Se) and Transformation to Yolk−Shell Structure by Electron Beam Irradiation or Vacuum Annealing. Chemistry of Materials 2009, 21 (16) , 3848-3852. https://doi.org/10.1021/cm9013943
    67. Neelima Chacko, Menachem Motiei, Jadhav Suchita Suryakant, Michael Firer, Rinat Ankri. Au nanodyes as enhanced contrast agents in wide field near infrared fluorescence lifetime imaging. Discover Nano 2024, 19 (1) https://doi.org/10.1186/s11671-024-03958-1
    68. Chao Wang, Youxun Xu, Lunqiao Xiong, Xiyi Li, Enqi Chen, Tina Jingyan Miao, Tianyu Zhang, Yang Lan, Junwang Tang. Selective oxidation of methane to C2+ products over Au-CeO2 by photon-phonon co-driven catalysis. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-51690-2
    69. Soheil Sahamifar, David Naylor, Jacob Friedman. An interferometric method to visualize and quantify nanofluid stability. International Journal of Heat and Mass Transfer 2024, 235 , 126197. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126197
    70. Farzaneh Barati, Fakhrisadat Hosseini, Parinaz Ghadam, Seyed Shahriar Arab. Optimizing CuO nanoparticle synthesis via walnut green husk extract utilizing response surface methodology. Journal of Molecular Structure 2024, 1316 , 139077. https://doi.org/10.1016/j.molstruc.2024.139077
    71. Yetria Rilda, Eka Satria Putra, Syukri Arief, Anthoni Agustien, Hilfi Pardi, Nofrijon Sofyan. Mucor sp. (Fungal Philospheric ) of Gambir ( Uncaria ) Leaf surface as a biosynthetic Mg doped ZnO Nanorods media for antibacterial applications. Journal of Dispersion Science and Technology 2024, 45 (12) , 2291-2301. https://doi.org/10.1080/01932691.2023.2263544
    72. Karen C. Ribeiro, Rozane F. Turchiello, Sergio L. Gómez. Influence of excitation light wavelength and irradiation time on photothermal properties of photochemically synthesized colloidal gold. Journal of Optics 2024, 2 https://doi.org/10.1007/s12596-024-02169-2
    73. Roxana Gutiérrez‐Sánchez, Gustavo A. Molina, J. Luis López‐Miranda, Angelina Rodríguez‐Torres, Miriam Estévez, Rodrigo Esparza. One‐Step DES‐Mediated Synthesis of Au Nanoparticles Using Eysenhardtia polystachya Extract and Evaluation of Their Proapoptotic and Anti‐Inflammatory Activities. ChemistrySelect 2024, 9 (34) https://doi.org/10.1002/slct.202402447
    74. Ban V. Bui, Tien Dai Nguyen, Le Van Cong Hau, Thi Bich Vu, Hoang V. Le, Thi Hong Phong Le, Nguyen Duy Thien, Tien-Thanh Nguyen. Au–decorated TiO 2 nanoparticle photoanode: synthesis, structural, optical properties and photoelectrochemical water splitting performance. Physica Scripta 2024, 99 (9) , 095955. https://doi.org/10.1088/1402-4896/ad6c8b
    75. Cristhian A. Visbal, Wilkendry Ramos Cervantes, Lorena Marín, John Betancourt, Angélica Pérez, Jesús E. Diosa, Luis Alfredo Rodríguez, Edgar Mosquera-Vargas. The Fabrication of Gold Nanostructures as SERS Substrates for the Detection of Contaminants in Water. Nanomaterials 2024, 14 (18) , 1525. https://doi.org/10.3390/nano14181525
    76. Afshan Afreen, Hajra Hameed, Muhammad Tariq, Muhammad Shakeeb Sharif, Rashid Ahmed, Abdul Waheed, Momina Bint Kousar, Zeeshan Akram. Shining insights: Deciphering the biogenic synthesis of Ajuga bracteosa ‐mediated gold nanoparticles with advanced microscopy techniques. Microscopy Research and Technique 2024, 87 (8) , 1984-1996. https://doi.org/10.1002/jemt.24571
    77. Quang Truong Pham, Gia Long Ngo, Chi Thanh Nguyen, Isabelle Ledoux-Rak, Ngoc Diep Lai. Unraveling the Dominant Size Effect in Polydisperse Solutions and Maximal Electric Field Enhancement of Gold Nanoparticles. Photonics 2024, 11 (8) , 691. https://doi.org/10.3390/photonics11080691
    78. Abdullah Arsalan, Syeda Fauzia Farheen Zofair, Masood Alam Khan, Syed Mohammad Zakariya, Rizwan Hasan Khan, Hina Younus. Modulation of Alkaline Phosphatase Based ELISA in the Presence of Ions and Citrate Stabilized Nanoparticles. Catalysis Letters 2024, 154 (7) , 3839-3857. https://doi.org/10.1007/s10562-024-04599-w
    79. Masoud Amiri, Farhad Golmohammadi, Meysam Safari, Tariq Waece Sadeq. Electrochemical synthesis of polypyrrole composite with modified gold nanoparticles for electrochemical detection of ascorbic acid, dopamine and acetaminophen in different pharmaceutical samples. Polymer Bulletin 2024, 81 (11) , 9775-9793. https://doi.org/10.1007/s00289-024-05169-1
    80. Huey-Shan Hung, Chiung-Chyi Shen, Jyun-Ting Wu, Chun-Yu Yueh, Meng-Yin Yang, Yi-Chin Yang, Wen-Yu Cheng. Assessment of the Biocompatibility Ability and Differentiation Capacity of Mesenchymal Stem Cells on Biopolymer/Gold Nanocomposites. International Journal of Molecular Sciences 2024, 25 (13) , 7241. https://doi.org/10.3390/ijms25137241
    81. László Égerházi, Tamás Szörényi. The Potential of Wire Explosion in Nanoparticle Production in Terms of Reproducibility. Materials 2024, 17 (14) , 3450. https://doi.org/10.3390/ma17143450
    82. Tatiana HABIB, José Mauricio A. CAIUT, Bruno CAILLIER. Fast synthesis of gold nanoparticles by cold atmospheric pressure plasma jet in the presence of Au + ions and a capping agent. Plasma Science and Technology 2024, 26 (7) , 075505. https://doi.org/10.1088/2058-6272/ad3499
    83. Jihyeun Jung, Junyoung Park, Jong Kwon Choe, Yongju Choi. Perfluoroalkyl functionalized-Au Nanoparticle Sensor: Employing Rate of Spectrum Shifting for Highly Selective and Sensitive Detection of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Environments. Water Research X 2024, 10 , 100239. https://doi.org/10.1016/j.wroa.2024.100239
    84. Roberta Cillari, Sergio Scirè, Gennara Cavallaro, Nicolò Mauro. Ultrasmall Glucose-Functionalized Au-Carbon Nanohybrids: Exploiting the Warburg Effect to Image Tumors by Multimodal CT/Fluorescence Imaging. C 2024, 10 (2) , 35. https://doi.org/10.3390/c10020035
    85. Aman Patra, Kanchan Kumari, Abhishek Barua, Swastik Pradhan. Advancing Visible Spectroscopy through Integrated Machine Learning and Image Processing Techniques. Applied Sciences 2024, 14 (11) , 4527. https://doi.org/10.3390/app14114527
    86. Shalvi S, Varsha Gautam, Suman Nagpal, Kanak Lata Verma, Vinod Kumar Jain, Avshish Kumar. Development of SiNWs based electrochemical sensor for trace level detection of arsenic. Materials Science and Technology 2024, 2015 https://doi.org/10.1177/02670836241253174
    87. F. Barbon, F. Tajoli, F. Spolaore, S. Gross. Further Sustainable and/or Unconventional Low-temperature Wet-chemical Synthetic Methods. 2024, 315-429. https://doi.org/10.1039/9781839165757-00315
    88. Drishya Prakashan, Pratik Kolhe, Sonu Gandhi. Design and fabrication of a competitive lateral flow assay using gold nanoparticle as capture probe for the rapid and on-site detection of penicillin antibiotic in food samples. Food Chemistry 2024, 439 , 138120. https://doi.org/10.1016/j.foodchem.2023.138120
    89. Teflah K. Alshammari, S.K. Ghoshal, H. Bakhtiar, A.A. Salim, S.S. Alias. Elucidating the structural and spectroscopic attributes of titania-iron oxide (TiO2-( α -Fe2O3)) nanocomposites: Showcasing a pulsed laser ablation in liquid approach. Materials Chemistry and Physics 2024, 318 , 129235. https://doi.org/10.1016/j.matchemphys.2024.129235
    90. Kimaya Meher, Harshad Paithankar, Ramakrishna V Hosur, Manu Lopus. Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells. Biomedical Materials 2024, 19 (3) , 035039. https://doi.org/10.1088/1748-605X/ad3ff9
    91. Bawoke Mekuye, Rainer Höfer, Gedefaw Mebratie, . Computational Study of the Effect of the Size-Dependent Dielectric Functions of Gold Nanomaterials on Optical Properties. Advances in Condensed Matter Physics 2024, 2024 , 1-14. https://doi.org/10.1155/2024/8846112
    92. Yakubu Adekunle Alli, Onome Ejeromedoghene, Peter Olusakin Oladoye, Abayomi Bamisaye, Fatai Oladipupo Oladoyinbo, Sheriff Adewuyi, Hazleen Anuar, Sabu Thomas. Hydrogen-assisted green synthesis of trimethyl chitosan gold nanoparticles. Kuwait Journal of Science 2024, 51 (2) , 100162. https://doi.org/10.1016/j.kjs.2023.12.002
    93. A'liyatur Rosyidah, Debora C. Purbani, Riyona D. Pratiwi, Sjaikhurrizal E. Muttaqien, Nawarat Nantapong, Mega F. Warsito, Muhammad N. Fikri, Feliadewi Ruth, Nunik Gustini, Gita Syahputra, Mohamad Padri, Diah R. Noerdjito, Arif Nurkanto, Hikmah Afani. Eco-friendly synthesis of gold nanoparticles by marine microalgae Synechococcus moorigangae: Characterization, antimicrobial, and antioxidant properties. Kuwait Journal of Science 2024, 51 (2) , 100194. https://doi.org/10.1016/j.kjs.2024.100194
    94. , T.O. Malakhovska, A.I. Pogodin, , M.J. Filep, , , R. Mariychuk, , M.M. Pop, , Ya.I. Studenyak, , V.V. Vakulchak, , V. Komanicky, , S. Vorobiov, , M.Yu. Sabov, . Structure and optical characterization of chitosan-chitin/Ag nanocomposite thin films. Semiconductor Physics, Quantum Electronics and Optoelectronics 2024, 27 (01) , 040-053. https://doi.org/10.15407/spqeo27.01.040
    95. Lorraine M. Bhebhe, Jungyeon Kim, Luke M. Jones, Elana H. Super, Samuel T. Jones. Antiviral mechanism change of poly(styrene sulfonate) through gold nanoparticle coating. Polymer Chemistry 2024, 15 (10) , 945-951. https://doi.org/10.1039/D3PY01217D
    96. Chiara Negri, Riccardo Colombo, Mauro Bracconi, Cesare Atzori, Alessandro Donazzi, Andrea Lucotti, Matteo Tommasini, Matteo Maestri. Operando UV-vis spectroscopy for real-time monitoring of nanoparticle size in reaction conditions: a case study on r WGS over Au nanoparticles. Catalysis Science & Technology 2024, 14 (5) , 1318-1327. https://doi.org/10.1039/D3CY01392H
    97. Cedric Lansangan, Menka Khoobchandani, Ruchit Jain, Serge Rudensky, Christopher C. Perry, Rameshwar Patil. Designing Gold Nanoparticles for Precise Glioma Treatment: Challenges and Alternatives. Materials 2024, 17 (5) , 1153. https://doi.org/10.3390/ma17051153
    98. Siddiqa Ismail, W. Ahmed, Muhammad Farooq, N. U. Rehman. Plasma-assisted synthesis of gold-silver core-shell nanoparticles and their enhanced catalytic dye degradation and surface enhanced Raman spectroscopy performance. Journal of Vacuum Science & Technology B 2024, 42 (2) https://doi.org/10.1116/6.0003245
    99. Kento Inoue, Arinori Inagawa, Sachio Yoshihara, Nobuo Uehara. Novel chromatic reaction based on the redox reaction between tertiary aromatic amines and gold(Ⅲ) or cerium(Ⅳ). Bulletin of the Chemical Society of Japan 2024, 97 (3) https://doi.org/10.1093/bulcsj/uoae021
    100. Janvi Shirsul, Ambuj Tripathi, Dambarudhar Mohanta, Balaprasad Ankamwar. Monstera deliciosa mediated single step biosynthesis of gold nanoparticles by bottom-up approach and its non-antimicrobial properties. 3 Biotech 2024, 14 (2) https://doi.org/10.1007/s13205-023-03898-0
    Load more citations

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2009, 113, 11, 4277–4285
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp8082425
    Published February 24, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    33k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.