ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Unexpected Hydrogen Bond Dynamics in Imidazolium-Based Ionic Liquids

View Author Information
Wilhelm-Ostwald Institute of Physical and Theoretical Chemistry, University of Leipzig, Linnéstr. 2, D-04103 Leipzig, Germany, and IMPMC, CNRS & Université Pierre et Marie Curie, 4 place Jussieu, case 115, F-75252 Paris, France
* To whom correspondence should be addressed. E-mail: [email protected]
†University of Leipzig.
‡CNRS & Université Pierre et Marie Curie.
Cite this: J. Phys. Chem. B 2009, 113, 46, 15129–15132
Publication Date (Web):October 23, 2009
https://doi.org/10.1021/jp908110j
Copyright © 2009 American Chemical Society

    Article Views

    2212

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Employing first-principles molecular dynamics simulations, we characterize the structural and dynamical hydrogen bonding in the ionic liquid [C2C1im][SCN]. The geometric picture indicates a superior role for the most acidic hydrogen bond (at H2) as compared to the two other hydrogen atoms at the rear. Despite the structural picture, the hydrogen bond dynamics at H2 is found to decay faster than the according dynamics at the H4 and H5 proton. Neglecting the directionality provides a dynamics which reflects the geometrical analysis. Two movements are identified. First, a fast (<0.3 ps) hopping of the anion above and below the imidazolium ring and second translational motion of the anion away from the cation in-plane of the imidazolium ring (5−10 ps).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 110 publications.

    1. Kun Yue, Orlando Acevedo. Uncovering the Critical Factors that Enable Extractive Desulfurization of Fuels in Ionic Liquids and Deep Eutectic Solvents from Simulations. The Journal of Physical Chemistry B 2023, 127 (28) , 6354-6373. https://doi.org/10.1021/acs.jpcb.3c02652
    2. Samrat Dutta . Demystifying Imidazolium-Based Ionic Liquids on a Molecular Level with a C-D Infrared Probe. , 107-123. https://doi.org/10.1021/bk-2022-1429.ch007
    3. Aritri Biswas, Bhabani S. Mallik. Ionic Dynamics and Vibrational Spectral Diffusion of a Protic Alkylammonium Ionic Salt through Intrinsic Cationic N–H Vibrational Probe from FPMD Simulations. The Journal of Physical Chemistry A 2022, 126 (31) , 5134-5147. https://doi.org/10.1021/acs.jpca.2c03387
    4. Yue Wang, Yifei Sun, Yubin Dong, Guocai Tian. Characterization of the Interface Structure of 1-Ethyl-2,3-alkylimidazolium Bis(trifluoromethylsulfonyl)imide on a Au(111) Surface with Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2021, 125 (14) , 3677-3689. https://doi.org/10.1021/acs.jpcb.0c09994
    5. Tsun-Mei Chang, Stephanie E. Billeck. Structure, Molecular Interactions, and Dynamics of Aqueous [BMIM][BF4] Mixtures: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2021, 125 (4) , 1227-1240. https://doi.org/10.1021/acs.jpcb.0c09731
    6. Aritri Biswas, Sathish Dasari, Bhabani S. Mallik. Cohesiveness and Nondiffusive Rotational Jump Dynamics of Protic Ionic Liquid from Dispersion-Corrected FPMD Simulations. The Journal of Physical Chemistry B 2020, 124 (47) , 10752-10765. https://doi.org/10.1021/acs.jpcb.0c05866
    7. Sascha Gehrke, Barbara Kirchner. Robustness of the Hydrogen Bond and Ion Pair Dynamics in Ionic Liquids to Different Parameters from the Reactive Flux Method. Journal of Chemical & Engineering Data 2020, 65 (3) , 1146-1158. https://doi.org/10.1021/acs.jced.9b00529
    8. Isis Marie Williams, Layla N. Qasim, Ly Tran, Asia Scott, Kevin Riley, Samrat Dutta. C–D Vibration at C2 Position of Imidazolium Cation as a Probe of the Ionic Liquid Microenvironment. The Journal of Physical Chemistry A 2019, 123 (29) , 6342-6349. https://doi.org/10.1021/acs.jpca.9b02387
    9. Nikhil V. S. Avula, Anirban Mondal, Sundaram Balasubramanian. Charge Environment and Hydrogen Bond Dynamics in Binary Ionic Liquid Mixtures: A Computational Study. The Journal of Physical Chemistry Letters 2018, 9 (12) , 3511-3516. https://doi.org/10.1021/acs.jpclett.8b01481
    10. Brian Doherty, Xiang Zhong, Orlando Acevedo. Virtual Site OPLS Force Field for Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B 2018, 122 (11) , 2962-2974. https://doi.org/10.1021/acs.jpcb.7b11996
    11. Brian Doherty, Xiang Zhong, Symon Gathiaka, Bin Li, Orlando Acevedo. Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations. Journal of Chemical Theory and Computation 2017, 13 (12) , 6131-6145. https://doi.org/10.1021/acs.jctc.7b00520
    12. Ekaterina I. Izgorodina, Zoe L. Seeger, David L. A. Scarborough, and Samuel Y. S. Tan . Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chemical Reviews 2017, 117 (10) , 6696-6754. https://doi.org/10.1021/acs.chemrev.6b00528
    13. Kun Dong, Xiaomin Liu, Haifeng Dong, Xiangping Zhang, and Suojiang Zhang . Multiscale Studies on Ionic Liquids. Chemical Reviews 2017, 117 (10) , 6636-6695. https://doi.org/10.1021/acs.chemrev.6b00776
    14. Jon A. L. Willcox and Hyung J. Kim . Molecular Dynamics Study of Water Flow across Multiple Layers of Pristine, Oxidized, and Mixed Regions of Graphene Oxide. ACS Nano 2017, 11 (2) , 2187-2193. https://doi.org/10.1021/acsnano.6b08538
    15. Utkarsh Kapoor and Jindal K. Shah . Preferential Ionic Interactions and Microscopic Structural Changes Drive Nonideality in Binary Ionic Liquid Mixtures as Revealed from Molecular Simulations. Industrial & Engineering Chemistry Research 2016, 55 (51) , 13132-13146. https://doi.org/10.1021/acs.iecr.6b03314
    16. Jing Fu, Y. Isaac Yang, Jun Zhang, Qingde Chen, Xinghai Shen, and Yi Qin Gao . Structural Characteristics of Homogeneous Hydrophobic Ionic Liquid–HNO3–H2O Ternary System: Experimental Studies and Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2016, 120 (23) , 5194-5202. https://doi.org/10.1021/acs.jpcb.6b01214
    17. Henry Weber and Barbara Kirchner . Complex Structural and Dynamical Interplay of Cyano-Based Ionic Liquids. The Journal of Physical Chemistry B 2016, 120 (9) , 2471-2483. https://doi.org/10.1021/acs.jpcb.6b00098
    18. Sean A. Fischer, Tyler W. Ueltschi, Patrick Z. El-Khoury, Amanda L. Mifflin, Wayne P. Hess, Hong-Fei Wang, Christopher J. Cramer, and Niranjan Govind . Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C–H Region of DMSO as a Case Study. The Journal of Physical Chemistry B 2016, 120 (8) , 1429-1436. https://doi.org/10.1021/acs.jpcb.5b03323
    19. Henry Weber, Mathieu Salanne, and Barbara Kirchner . Toward an Accurate Modeling of Ionic Liquid–TiO2 Interfaces. The Journal of Physical Chemistry C 2015, 119 (45) , 25260-25267. https://doi.org/10.1021/acs.jpcc.5b08538
    20. Luiz F. O. Faria and Mauro C. C. Ribeiro . Phase Transitions of Triflate-Based Ionic Liquids under High Pressure. The Journal of Physical Chemistry B 2015, 119 (44) , 14315-14322. https://doi.org/10.1021/acs.jpcb.5b08242
    21. Henry Weber, Thomas Bredow, and Barbara Kirchner . Adsorption Behavior of the 1,3-Dimethylimidazolium Thiocyanate and Tetracyanoborate Ionic Liquids at Anatase (101) Surface. The Journal of Physical Chemistry C 2015, 119 (27) , 15137-15149. https://doi.org/10.1021/acs.jpcc.5b02347
    22. Robert Hayes, Gregory G. Warr, and Rob Atkin . Structure and Nanostructure in Ionic Liquids. Chemical Reviews 2015, 115 (13) , 6357-6426. https://doi.org/10.1021/cr500411q
    23. Yingfei Wei, Ana Petronilho, Helge Mueller-Bunz, and Martin Albrecht . Mesoionic Triazolylidene Nickel Complexes: Synthesis, Ligand Lability, and Catalytic C–C Bond Formation Activity. Organometallics 2014, 33 (20) , 5834-5844. https://doi.org/10.1021/om500593s
    24. Zhe Ren, Anna S. Ivanova, Duane Couchot-Vore, and Sean Garrett-Roe . Ultrafast Structure and Dynamics in Ionic Liquids: 2D-IR Spectroscopy Probes the Molecular Origin of Viscosity. The Journal of Physical Chemistry Letters 2014, 5 (9) , 1541-1546. https://doi.org/10.1021/jz500372f
    25. Anirban Mondal and Sundaram Balasubramanian . Quantitative Prediction of Physical Properties of Imidazolium Based Room Temperature Ionic Liquids through Determination of Condensed Phase Site Charges: A Refined Force Field. The Journal of Physical Chemistry B 2014, 118 (12) , 3409-3422. https://doi.org/10.1021/jp500296x
    26. Zheng Jian Chen and Jong-Min Lee . Free Volume Model for the Unexpected Effect of C2-Methylation on the Properties of Imidazolium Ionic Liquids. The Journal of Physical Chemistry B 2014, 118 (10) , 2712-2718. https://doi.org/10.1021/jp411904w
    27. Jianfeng Shi and Xinghai Shen . Construction of Supramolecular Self-Assemblies Based on the Biamphiphilic Ionic Liquid−β-Cyclodextrin System. The Journal of Physical Chemistry B 2014, 118 (6) , 1685-1695. https://doi.org/10.1021/jp4113188
    28. Tuanan C. Lourenço, Mariny F. C. Coelho, Teodorico C. Ramalho, David van der Spoel, and Luciano T. Costa . Insights on the Solubility of CO2 in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide from the Microscopic Point of View. Environmental Science & Technology 2013, 47 (13) , 7421-7429. https://doi.org/10.1021/es4020986
    29. Yong Zhang and Edward J. Maginn . A Simple AIMD Approach to Derive Atomic Charges for Condensed Phase Simulation of Ionic Liquids. The Journal of Physical Chemistry B 2012, 116 (33) , 10036-10048. https://doi.org/10.1021/jp3037999
    30. Katharina Wendler, Martin Brehm, Friedrich Malberg, Barbara Kirchner, and Luigi Delle Site . Short Time Dynamics of Ionic Liquids in AIMD-Based Power Spectra. Journal of Chemical Theory and Computation 2012, 8 (5) , 1570-1579. https://doi.org/10.1021/ct300152t
    31. Ioannis Skarmoutsos, Dimitris Dellis, Richard P. Matthews, Tom Welton, and Patricia A. Hunt . Hydrogen Bonding in 1-Butyl- and 1-Ethyl-3-methylimidazolium Chloride Ionic Liquids. The Journal of Physical Chemistry B 2012, 116 (16) , 4921-4933. https://doi.org/10.1021/jp209485y
    32. Miriam Kohagen, Martin Brehm, Yves Lingscheid, Ralf Giernoth, Joshua Sangoro, Friedrich Kremer, Sergej Naumov, Ciprian Iacob, Jörg Kärger, Rustem Valiullin, and Barbara Kirchner . How Hydrogen Bonds Influence the Mobility of Imidazolium-Based Ionic Liquids. A Combined Theoretical and Experimental Study of 1-n-Butyl-3-methylimidazolium Bromide. The Journal of Physical Chemistry B 2011, 115 (51) , 15280-15288. https://doi.org/10.1021/jp206974h
    33. Katharina Wendler, Stefan Zahn, Florian Dommert, Robert Berger, Christian Holm, Barbara Kirchner, and Luigi Delle Site . Locality and Fluctuations: Trends in Imidazolium-Based Ionic Liquids and Beyond. Journal of Chemical Theory and Computation 2011, 7 (10) , 3040-3044. https://doi.org/10.1021/ct200375v
    34. Martin Brehm and Barbara Kirchner . TRAVIS - A Free Analyzer and Visualizer for Monte Carlo and Molecular Dynamics Trajectories. Journal of Chemical Information and Modeling 2011, 51 (8) , 2007-2023. https://doi.org/10.1021/ci200217w
    35. Evanthia Monogioudi, Perttu Permi, Ilari Filpponen, Michael Lienemann, Bin Li, Dimitris Argyropoulos, Johanna Buchert, and Maija-Liisa Mattinen . Protein Analysis by 31P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links. Journal of Agricultural and Food Chemistry 2011, 59 (4) , 1352-1362. https://doi.org/10.1021/jf102973d
    36. Miriam Kohagen, Martin Brehm, Jens Thar, Wei Zhao, Florian Müller-Plathe, and Barbara Kirchner. Performance of Quantum Chemically Derived Charges and Persistence of Ion Cages in Ionic Liquids. A Molecular Dynamics Simulations Study of 1-n-Butyl-3-methylimidazolium Bromide. The Journal of Physical Chemistry B 2011, 115 (4) , 693-702. https://doi.org/10.1021/jp109612k
    37. Enrico Bodo, Lorenzo Gontrani, Ruggero Caminiti, Natalia V. Plechkova, Kenneth R. Seddon, and Alessandro Triolo. Structural Properties of 1-Alkyl-3-methylimidazolium Bis{(trifluoromethyl)sulfonyl}amide Ionic Liquids: X-ray Diffraction Data and Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2010, 114 (49) , 16398-16407. https://doi.org/10.1021/jp1093299
    38. Kotni Santhosh and Anunay Samanta. Modulation of the Excited State Intramolecular Electron Transfer Reaction and Dual Fluorescence of Crystal Violet Lactone in Room Temperature Ionic Liquids. The Journal of Physical Chemistry B 2010, 114 (28) , 9195-9200. https://doi.org/10.1021/jp1039805
    39. Tianying Yan, Yanting Wang and Craig Knox . On the Structure of Ionic Liquids: Comparisons between Electronically Polarizable and Nonpolarizable Models I. The Journal of Physical Chemistry B 2010, 114 (20) , 6905-6921. https://doi.org/10.1021/jp9089112
    40. Tom Frömbgen, Jan Blasius, Leonard Dick, Katrin Drysch, Vahideh Alizadeh, Luke Wylie, Barbara Kirchner. Reducing Uncertainties in and Analysis of Ionic Liquid Trajectories. 2024, 692-722. https://doi.org/10.1016/B978-0-12-821978-2.00097-0
    41. Zahra Ostadsharif Memar, Majid Moosavi. Assessing OPLS-based force fields for investigating the characteristics of imidazolium-based dicationic ionic liquids: A comparative study with AIMD simulations and experimental findings. The Journal of Chemical Physics 2023, 159 (24) https://doi.org/10.1063/5.0180900
    42. Zahra Ostadsharif Memar, Majid Moosavi. A combined QTAIM, DFT and molecular dynamics study on the nanoscale dynamical and structural organization of imidazolium-based dicationic ionic liquids. Journal of Molecular Liquids 2022, 365 , 120186. https://doi.org/10.1016/j.molliq.2022.120186
    43. Yunita Anggraini, Akhmad Yusuf, Surjani Wonorahardjo, Daniel Kurnia, Sparisoma Viridi, Inge Magdalena Sutjahja. Role of C2 methylation and anion type on the physicochemical and thermal properties of imidazolium-based ionic liquids. Arabian Journal of Chemistry 2022, 15 (8) , 103963. https://doi.org/10.1016/j.arabjc.2022.103963
    44. Aruna K. Mora, Prabhat K. Singh, Sukhendu Nath. Dynamics in tris(pentafluoroethyl)trifluorophosphate (FAP) anion based ionic liquids: A 2D-IR study with tungsten hexacarbonyl. Journal of Molecular Liquids 2022, 358 , 119189. https://doi.org/10.1016/j.molliq.2022.119189
    45. Carlos F.P. Miranda, Ana I.M.C. Lobo Ferreira, Luís M.N.B.F. Santos. C2 methylation effect on the cohesive interaction of trifluoromethanesulfonate alkylimidazolium ionic liquidC2 methylation effect on the cohesive interaction of trifluoromethanesulfonate alkylimidazolium ionic liquids. Journal of Molecular Liquids 2022, 353 , 118772. https://doi.org/10.1016/j.molliq.2022.118772
    46. Behzad Khalili, Mehdi Moradpour. Fluorination effects on the physicochemical properties of the nanostructured tunable ionic liquids: [5F-PhMeTAZ]+ or [5H-PhMeTAZ]+ which one is the better choice?. Journal of Fluorine Chemistry 2022, 257-258 , 109970. https://doi.org/10.1016/j.jfluchem.2022.109970
    47. Johannes Ingenmey, Oldamur Hollóczki, Barbara Kirchner. Ion Pairing in Ionic Liquids. 2022, 522-535. https://doi.org/10.1007/978-981-33-4221-7_63
    48. Eliane Roos, Martin Brehm. A force field for bio-polymers in ionic liquids (BILFF) – part 1: [EMIm][OAc]/water mixtures. Physical Chemistry Chemical Physics 2021, 23 (2) , 1242-1253. https://doi.org/10.1039/D0CP04537C
    49. Johannes Ingenmey, Oldamur Hollóczki, Barbara Kirchner. Ion Pairing in Ionic Liquids. 2021, 1-14. https://doi.org/10.1007/978-981-10-6739-6_63-1
    50. Sanchari Bhattacharjee, Devargya Chakraborty, Sandip Khan. Wetting behavior of aqueous 1-alkyl-3-methylimidazolium tetrafluoroborate {[Cn MIM][BF4] (n = 2, 4, 6)} on graphite surface. Chemical Engineering Science 2021, 229 , 116078. https://doi.org/10.1016/j.ces.2020.116078
    51. Szilvia Vavra, Neus Vilà, Antiope Lotsari, Alain Walcarius, Anna Martinelli. An imidazolium ionic liquid as effective structure-directing agent for the fabrication of silica thin films with vertically aligned nanochannels. Microporous and Mesoporous Materials 2020, , 110407. https://doi.org/10.1016/j.micromeso.2020.110407
    52. Arun K. Sinha, Richa Singh, Rajesh Kumar. Towards an Understanding of the “ Ambiphilic ” Character of Ionic Liquids for Green Synthesis of Chemically Diverse Architectures. Asian Journal of Organic Chemistry 2020, 9 (5) , 706-720. https://doi.org/10.1002/ajoc.202000065
    53. M. Brehm, M. Thomas, S. Gehrke, B. Kirchner. TRAVIS—A free analyzer for trajectories from molecular simulation. The Journal of Chemical Physics 2020, 152 (16) https://doi.org/10.1063/5.0005078
    54. Erik Antonio Vázquez-Montelongo, José Enrique Vázquez-Cervantes, G. Andrés Cisneros. Current Status of AMOEBA–IL: A Multipolar/Polarizable Force Field for Ionic Liquids. International Journal of Molecular Sciences 2020, 21 (3) , 697. https://doi.org/10.3390/ijms21030697
    55. Ejike J. Dick, Adam E. A. Fouda, Nicholas A. Besley, Peter Licence. Probing the electronic structure of ether functionalised ionic liquids using X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics 2020, 22 (3) , 1624-1631. https://doi.org/10.1039/C9CP01297D
    56. Roya Salehi, Hossein Roohi. Tuning the physicochemical properties of the single-walled boron nitride nanotube by covalent grafting of triazolium-based [MTZ][X1–3] (X1–3= NTf2−, TfO− and BF4−) ionic liquids in the gas phase and solvent media: A quantum chemical approach. Journal of Molecular Liquids 2019, 277 , 726-737. https://doi.org/10.1016/j.molliq.2018.12.154
    57. Soraya Ebrahimi, Mohammad H. Kowsari. Fine probing the effect of replacing [PF 6 ] − with [PF 3 (C 2 F 5 ) 3 ] − on the local structure and nanoscale organization of [bmim] + -based ionic liquids using MD simulation. Physical Chemistry Chemical Physics 2019, 21 (6) , 3195-3210. https://doi.org/10.1039/C8CP07829G
    58. Martin Brehm, Daniel Sebastiani. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate. The Journal of Chemical Physics 2018, 148 (19) https://doi.org/10.1063/1.5010342
    59. Chip J. Smith, Sascha Gehrke, Oldamur Hollóczki, Durgesh V. Wagle, Mark P. Heitz, Gary A. Baker. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels. The Journal of Chemical Physics 2018, 148 (19) https://doi.org/10.1063/1.5016337
    60. Sascha Gehrke, Michael von Domaros, Ryan Clark, Oldamur Hollóczki, Martin Brehm, Tom Welton, Alenka Luzar, Barbara Kirchner. Structure and lifetimes in ionic liquids and their mixtures. Faraday Discussions 2018, 206 , 219-245. https://doi.org/10.1039/C7FD00166E
    61. Cong-Xiao Cao, Jiayin Yuan, Jin-Pei Cheng, Bao-Hang Han. Synthesis of porous polymer/tissue paper hybrid membranes for switchable oil/water separation. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-03265-z
    62. E.G. Blanco-Díaz, E.O. Castrejón-González, J.F. Javier Alvarado, A. Estrada-Baltazar, F. Castillo-Borja. Rheological behavior of ionic liquids: Analysis of the H-bond formation by molecular dynamics. Journal of Molecular Liquids 2017, 242 , 265-271. https://doi.org/10.1016/j.molliq.2017.06.128
    63. Patricia A. Hunt. Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids. Topics in Current Chemistry 2017, 375 (3) https://doi.org/10.1007/s41061-017-0142-7
    64. Olga Russina, Alessandro Triolo. Ionic Liquids and Neutron Scattering. 2017, 213-278. https://doi.org/10.1016/B978-0-12-805324-9.00004-2
    65. Stefan Zahn. Deep eutectic solvents: similia similibus solvuntur?. Physical Chemistry Chemical Physics 2017, 19 (5) , 4041-4047. https://doi.org/10.1039/C6CP08017K
    66. Kamal B. Dhungana, Luiz F. O. Faria, Boning Wu, Min Liang, Mauro C. C. Ribeiro, Claudio J. Margulis, Edward W. Castner. Structure of cyano-anion ionic liquids: X-ray scattering and simulations. The Journal of Chemical Physics 2016, 145 (2) https://doi.org/10.1063/1.4955186
    67. Chao Zhang, Hongliang Kang, Pingping Li, Zhijing Liu, Yijin Zhang, Ruigang Liu, Jun-feng Xiang, Yong Huang. Dual effects of dimethylsulfoxide on cellulose solvating ability of 1-allyl-3-methylimidazolium chloride. Cellulose 2016, 23 (2) , 1165-1175. https://doi.org/10.1007/s10570-016-0876-3
    68. Jon A. L. Willcox, Hyunjin Kim, Hyung J. Kim. A molecular dynamics study of the ionic liquid, choline acetate. Physical Chemistry Chemical Physics 2016, 18 (22) , 14850-14858. https://doi.org/10.1039/C6CP01031H
    69. Kaixin Li, Yibo Yan, Jun Zhao, Junxi Lei, Xinli Jia, Samir H. Mushrif, Yanhui Yang. Understanding the role of hydrogen bonding in Brønsted acidic ionic liquid-catalyzed transesterification: a combined theoretical and experimental investigation. Physical Chemistry Chemical Physics 2016, 18 (48) , 32723-32734. https://doi.org/10.1039/C6CP06502C
    70. Barbara Kirchner, Friedrich Malberg, Dzmitry S Firaha, Oldamur Hollóczki. Ion pairing in ionic liquids. Journal of Physics: Condensed Matter 2015, 27 (46) , 463002. https://doi.org/10.1088/0953-8984/27/46/463002
    71. Tatiana C. Penna, Luiz F.O. Faria, Mauro C.C. Ribeiro. Raman band shape analysis of cyanate-anion ionic liquids. Journal of Molecular Liquids 2015, 209 , 676-682. https://doi.org/10.1016/j.molliq.2015.06.038
    72. Dzmitry S. Firaha, Mikhail Kavalchuk, Barbara Kirchner. SO2 Solvation in the 1-Ethyl-3-Methylimidazolium Thiocyanate Ionic Liquid by Incorporation into the Extended Cation–Anion Network. Journal of Solution Chemistry 2015, 44 (3-4) , 838-849. https://doi.org/10.1007/s10953-015-0321-5
    73. Kun Dong, Suojiang Zhang, Qian Wang. A new class of ion-ion interaction: Z-bond. Science China Chemistry 2015, 58 (3) , 495-500. https://doi.org/10.1007/s11426-014-5147-2
    74. Barbara Kirchner, Oldamur Hollóczki, José Nuno Canongia Lopes, Agílio A. H. Pádua. Multiresolution calculation of ionic liquids. WIREs Computational Molecular Science 2015, 5 (2) , 202-214. https://doi.org/10.1002/wcms.1212
    75. Stefan Zahn, Martin Brehm, Marc Brüssel, Oldamur Hollóczki, Miriam Kohagen, Sebastian Lehmann, Friedrich Malberg, Alfonso Sanmartin Pensado, Matthias Schöppke, Henry Weber, Barbara Kirchner. Understanding ionic liquids from theoretical methods. Journal of Molecular Liquids 2014, 192 , 71-76. https://doi.org/10.1016/j.molliq.2013.08.015
    76. Florian Dommert, Katharina Wendler, Baofu Qiao, Luigi Delle Site, Christian Holm. Generic force fields for ionic liquids. Journal of Molecular Liquids 2014, 192 , 32-37. https://doi.org/10.1016/j.molliq.2013.09.001
    77. Henry Weber, Oldamur Hollóczki, Alfonso S. Pensado, Barbara Kirchner. Side chain fluorination and anion effect on the structure of 1-butyl-3-methylimidazolium ionic liquids. The Journal of Chemical Physics 2013, 139 (8) https://doi.org/10.1063/1.4818540
    78. Natalya Dolya, Oscar Rojas, Sabine Kosmella, Brigitte Tiersch, Joachim Koetz, Sarkyt Kudaibergenov. “One‐Pot” In Situ Formation of Gold Nanoparticles within Poly(acrylamide) Hydrogels. Macromolecular Chemistry and Physics 2013, 214 (10) , 1114-1121. https://doi.org/10.1002/macp.201200727
    79. Tamisra Pal, Ranjit Biswas. Rank-dependent orientational relaxation in an ionic liquid: an all-atom simulation study. Theoretical Chemistry Accounts 2013, 132 (4) https://doi.org/10.1007/s00214-013-1348-6
    80. Martin Brehm, Henry Weber, Alfonso S. Pensado, Annegret Stark, Barbara Kirchner. Liquid Structure and Cluster Formation in Ionic Liquid/Water Mixtures – An Extensive ab initio Molecular Dynamics Study on 1-Ethyl-3-Methylimidazolium Acetate/Water Mixtures – Part. Zeitschrift für Physikalische Chemie 2013, 227 (2-3) , 177-204. https://doi.org/10.1524/zpch.2012.0327
    81. Florian Dommert, Christian Holm. Refining classical force fields for ionic liquids: theory and application to [MMIM][Cl]. Phys. Chem. Chem. Phys. 2013, 15 (6) , 2037-2049. https://doi.org/10.1039/C2CP43698A
    82. Yang Yang, Lei Yu. Theoretical investigations of ferrocene/ferrocenium solvation in imidazolium-based room-temperature ionic liquids. Physical Chemistry Chemical Physics 2013, 15 (8) , 2669. https://doi.org/10.1039/c2cp42876h
    83. Martin Thomas, Martin Brehm, Reinhold Fligg, Peter Vöhringer, Barbara Kirchner. Computing vibrational spectra from ab initio molecular dynamics. Physical Chemistry Chemical Physics 2013, 15 (18) , 6608. https://doi.org/10.1039/c3cp44302g
    84. Haiying Li, Yunxiang Lu, Weihong Wu, Yingtao Liu, Changjun Peng, Honglai Liu, Weiliang Zhu. Noncovalent interactions in halogenated ionic liquids: theoretical study and crystallographic implications. Physical Chemistry Chemical Physics 2013, 15 (12) , 4405. https://doi.org/10.1039/c3cp44649b
    85. Stefan Zahn, Douglas R. MacFarlane, Ekaterina I. Izgorodina. Assessment of Kohn–Sham density functional theory and Møller–Plesset perturbation theory for ionic liquids. Physical Chemistry Chemical Physics 2013, 15 (32) , 13664. https://doi.org/10.1039/c3cp51682b
    86. Till Cremer. Pure Ionic Liquid Systems. 2013, 27-67. https://doi.org/10.1007/978-3-319-00380-1_3
    87. Annegret Stark, Martin Brehm, Marc Brüssel, Sebastian B. C. Lehmann, Alfonso S. Pensado, Matthias Schöppke, Barbara Kirchner. A Theoretical and Experimental Chemist’s Joint View on Hydrogen Bonding in Ionic Liquids and Their Binary Mixtures. 2013, 149-187. https://doi.org/10.1007/128_2013_485
    88. Ekaterina I. Izgorodina. Theoretical Approaches to Ionic Liquids: From Past History to Future Directions. 2012, 181-230. https://doi.org/10.1002/9781118434987.ch6
    89. Philip J. Griffin, Alexander L. Agapov, Alexei P. Sokolov. Translation-rotation decoupling and nonexponentiality in room temperature ionic liquids. Physical Review E 2012, 86 (2) https://doi.org/10.1103/PhysRevE.86.021508
    90. Amit Verma, Rajani Giridhar, Pratik Modh, Mange Ram Yadav. A facile IL–DMSO assisted synthesis of 5-, 6-, and 7-membered benzo-annelated cyclic guanidines. Tetrahedron Letters 2012, 53 (24) , 2954-2958. https://doi.org/10.1016/j.tetlet.2012.03.060
    91. Florian Dommert, Katharina Wendler, Robert Berger, Luigi Delle Site, Christian Holm. Force Fields for Studying the Structure and Dynamics of Ionic Liquids: A Critical Review of Recent Developments. ChemPhysChem 2012, 13 (7) , 1625-1637. https://doi.org/10.1002/cphc.201100997
    92. Alfonso S. Pensado, Martin Brehm, Jens Thar, Ari P. Seitsonen, Barbara Kirchner. Effect of Dispersion on the Structure and Dynamics of the Ionic Liquid 1‐Ethyl‐3‐methylimidazolium Thiocyanate. ChemPhysChem 2012, 13 (7) , 1845-1853. https://doi.org/10.1002/cphc.201100917
    93. Kun Dong, Suojiang Zhang. Hydrogen Bonds: A Structural Insight into Ionic Liquids. Chemistry – A European Journal 2012, 18 (10) , 2748-2761. https://doi.org/10.1002/chem.201101645
    94. Yuling Zhao, Kun Dong, Xiaomin Liu, Suojiang Zhang, Jianjun Zhu, Jianji Wang. Structure of ionic liquids under external electric field: a molecular dynamics simulation. Molecular Simulation 2012, 38 (3) , 172-178. https://doi.org/10.1080/08927022.2011.610894
    95. Katharina Wendler, Florian Dommert, Yuan Yuan Zhao, Robert Berger, Christian Holm, Luigi Delle Site. Ionic liquids studied across different scales: A computational perspective. Faraday Discuss. 2012, 154 , 111-132. https://doi.org/10.1039/C1FD00051A
    96. Martin Brehm, Henry Weber, Alfonso S. Pensado, Annegret Stark, Barbara Kirchner. Proton transfer and polarity changes in ionic liquid–water mixtures: a perspective on hydrogen bonds from ab initio molecular dynamics at the example of 1-ethyl-3-methylimidazolium acetate–water mixtures—Part 1. Physical Chemistry Chemical Physics 2012, 14 (15) , 5030. https://doi.org/10.1039/c2cp23983c
    97. Hans-Peter Steinrück. Recent developments in the study of ionic liquid interfaces using X-ray photoelectron spectroscopy and potential future directions. Physical Chemistry Chemical Physics 2012, 14 (15) , 5010. https://doi.org/10.1039/c2cp24087d
    98. Stefan Grimme, Waldemar Hujo, Barbara Kirchner. Performance of dispersion-corrected density functional theory for the interactions in ionic liquids. Physical Chemistry Chemical Physics 2012, 14 (14) , 4875. https://doi.org/10.1039/c2cp24096c
    99. Friedrich Malberg, Alfonso S. Pensado, Barbara Kirchner. The bulk and the gas phase of 1-ethyl-3-methylimidazolium ethylsulfate: dispersion interaction makes the difference. Physical Chemistry Chemical Physics 2012, 14 (35) , 12079. https://doi.org/10.1039/c2cp41878a
    100. Marc Brüssel, Martin Brehm, Alfonso S. Pensado, Friedrich Malberg, Muhammad Ramzan, Annegret Stark, Barbara Kirchner. On the ideality of binary mixtures of ionic liquids. Physical Chemistry Chemical Physics 2012, 14 (38) , 13204. https://doi.org/10.1039/c2cp41926b
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect