ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Carbon Nanotube Effect on Polyaniline Morphology in Water Dispersible Composites

View Author Information
Instituto de Carboquímica (CSIC), Department of Nanotechnology, C/ Miguel Luesma Castán 4, 50018 Zaragoza, Spain
* Corresponding authors. E-mail: [email protected]; [email protected]
Cite this: J. Phys. Chem. B 2010, 114, 4, 1579–1585
Publication Date (Web):January 8, 2010
https://doi.org/10.1021/jp909093e
Copyright © 2010 American Chemical Society

    Article Views

    1589

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A straightforward, template-free chemical oxidative polymerization of aniline was used to prepare nanofibrillar polyaniline (nf-PANI) and a set of corresponding composites with multiwall carbon nanotubes (MWNTs). All the products showed remarkable water dispersibility since they are formed by hydrophilic particles of nanometric size. A comparative study performed on composites in a wide range of MWNT loadings has led to two main conclusions: on one hand, the presence of MWNTs affects neither the chemical structure nor the crystallinity of polyaniline. On the other hand, even small amounts of MWNTs have a significant effect on the morphology of polyaniline in composites. This effect is noticeable not only in electron microscopy images but also in the UV−vis absorbance of water dispersions and electrical conductivity behavior in the solid state. Competition between nucleation sites during polymerization is proposed as an explanation for these phenomena.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Derivation of eq 1 and description of the procedure employed to calculate the parameters listed in Table 3. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 62 publications.

    1. Renwei Liu, Suna Fan, Dongdong Xiao, Jin Zhang, Mengzhou Liao, Shansheng Yu, Fanling Meng, Baoli Liu, Lin Gu, Sheng Meng, Guangyu Zhang, Weitao Zheng, Shuxin Hu, and Ming Li . Free-Standing Single-Molecule Thick Crystals Consisting of Linear Long-Chain Polymers. Nano Letters 2017, 17 (3) , 1655-1659. https://doi.org/10.1021/acs.nanolett.6b04896
    2. Hyemin Kwon, Dajung Hong, Ilhwan Ryu, and Sanggyu Yim . Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO2 Nanoparticles. ACS Applied Materials & Interfaces 2017, 9 (8) , 7412-7423. https://doi.org/10.1021/acsami.6b14331
    3. Isaac A. Ramphal and Michael E. Hagerman . Water-Processable Laponite/Polyaniline/Graphene Oxide Nanocomposites for Energy Applications. Langmuir 2015, 31 (4) , 1505-1515. https://doi.org/10.1021/la5046783
    4. Zhi-Wei He, Li-Hong He, Jun Yang, and Qiu-Feng Lü . Removal and Recovery of Au(III) from Aqueous Solution Using a Low-Cost Lignin-Based Biosorbent. Industrial & Engineering Chemistry Research 2013, 52 (11) , 4103-4108. https://doi.org/10.1021/ie303410g
    5. Guiheng Xu, Nan Wang, Junyi Wei, Leilei Lv, Jianan Zhang, Zhimin Chen, and Qun Xu . Preparation of Graphene Oxide/Polyaniline Nanocomposite with Assistance of Supercritical Carbon Dioxide for Supercapacitor Electrodes. Industrial & Engineering Chemistry Research 2012, 51 (44) , 14390-14398. https://doi.org/10.1021/ie301734f
    6. Yaozu Liao, Chen Zhang, Xia Wang, Xin-Gui Li, Samuel J. Ippolito, Kourosh Kalantar-zadeh, and Richard B. Kaner . Carrier Mobility of Single-Walled Carbon Nanotube-Reinforced Polyaniline Nanofibers. The Journal of Physical Chemistry C 2011, 115 (32) , 16187-16192. https://doi.org/10.1021/jp2053585
    7. Cristina Vallés, Pablo Jiménez, Edgar Muñoz, Ana M. Benito, and Wolfgang K. Maser . Simultaneous Reduction of Graphene Oxide and Polyaniline: Doping-Assisted Formation of a Solid-State Charge-Transfer Complex. The Journal of Physical Chemistry C 2011, 115 (21) , 10468-10474. https://doi.org/10.1021/jp201791h
    8. Yingzhi Li, Xin Zhao, Qian Xu, Qinghua Zhang, and Dajun Chen . Facile Preparation and Enhanced Capacitance of the Polyaniline/Sodium Alginate Nanofiber Network for Supercapacitors. Langmuir 2011, 27 (10) , 6458-6463. https://doi.org/10.1021/la2003063
    9. Yaozu Liao, Chen Zhang, Ya Zhang, Veronica Strong, Jianshi Tang, Xin-Gui Li, Kourosh Kalantar-zadeh, Eric M. V. Hoek, Kang L. Wang, and Richard B. Kaner . Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Letters 2011, 11 (3) , 954-959. https://doi.org/10.1021/nl103322b
    10. Zhaonan Sun, Fanghui Wang, Linghan Kong. Investigation of microwave-absorbing properties of aligned polyaniline/multi-walled carbon nanotubes nanocomposites. Fullerenes, Nanotubes and Carbon Nanostructures 2024, 32 (2) , 141-145. https://doi.org/10.1080/1536383X.2023.2264994
    11. Kiran Donthula, Usha Rani Malothu, Ramya Araga, Ramsagar Vooradi, Venkata Suresh Patnaikuni, M. V. Reddy, Manohar Kakunuri. Flexible polyaniline/ MXene / CNF composite nanofibrous mats as high‐performance supercapacitor electrodes. Polymer Composites 2023, https://doi.org/10.1002/pc.27646
    12. Mohamed A. Deyab, Mohsen Mohammed Al-Qhatani. The use of FCNT/PANI nanocomposites to extend the life of lithium-ion batteries. Zeitschrift für Physikalische Chemie 2022, 236 (1) , 67-77. https://doi.org/10.1515/zpch-2021-3050
    13. M. A. Deyab, Q. Mohsen. Controlling the corrosion and hydrogen gas liberation inside lead-acid battery via PANI/Cu-Pp/CNTs nanocomposite coating. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-88972-4
    14. Shubha L.N., ChandraBabu Putta. High‐frequency measurement of dielectric permittivity and antimicrobial properties of polyaniline and graphite oxide nanocomposites. IET Nanodielectrics 2021, 4 (3) , 155-161. https://doi.org/10.1049/nde2.12025
    15. Tengfei Lin, Haojie Yu, Li Wang, Qinghua Ma, Haiyu Huang, Li Wang, Md Alim Uddin, Fazal Haq, Dmitry A. Lemenovskiy. A study on the fabrication and microwave shielding properties of PANI / C 60 heterostructures. Polymer Composites 2021, 42 (4) , 1961-1976. https://doi.org/10.1002/pc.25948
    16. R.M. Rudenko, O.O. Voitsihovska, V.M. Poroshin, M.V. Petrychuk, S.P. Pavlyuk, A.S. Nikolenko, N.A. Ogurtsov, YuV. Noskov, D.O. Sydorov, A.A. Pud. Specific interactions and charge transport in ternary PVDF/polyaniline/MWCNT nanocomposite films. Composites Science and Technology 2020, 198 , 108284. https://doi.org/10.1016/j.compscitech.2020.108284
    17. Yuancheng Wang, Shanxin Xiong, Xiaoqin Wang, Jia Chu, Runlan Zhang, Ming Gong, Bohua Wu, Mengnan Qu, Zhen Li, Zhenming Chen. Covalently bonded polyaniline-reduced graphene oxide/single-walled carbon nanotubes nanocomposites: influence of various dimensional carbon nanostructures on the electrochromic behavior of PANI. Polymer Journal 2020, 52 (7) , 783-792. https://doi.org/10.1038/s41428-020-0320-2
    18. Yen-Sheng Li, Alex Fang, Gang-Juan Lee, Jerry J. Wu, Yu-Cheng Chang, Chien-Yie Tsay, Jing-Heng Chen, Tzyy-Leng Horng, Chin-Yi Chen. Preparation and Photocatalytic Properties of Heterostructured Ceria/Polyaniline Nanoparticles. Catalysts 2020, 10 (7) , 732. https://doi.org/10.3390/catal10070732
    19. Yunyan Zhang, Rengui Xiao, Xia Liao, Zhiming Ma, Yu Huang, Qianqian Li. Polyaniline/Copper Composite Anode Current Collectors Prepared through Electrochemical Polymerization for Lithium‐Ion Batteries. ChemElectroChem 2020, 7 (13) , 2896-2904. https://doi.org/10.1002/celc.202000692
    20. Gang Wei, Shuishui Gong, Jun Tang, Shanyi Guang, Hongyao Xu. Preparation by pulsed current electrochemical polymerisation and properties of ordered comb-shaped polyaniline/carbon fibres composites for flexible supercapacitor electrodes. Transactions of the IMF 2020, 98 (2) , 98-104. https://doi.org/10.1080/00202967.2020.1728051
    21. Hamid Reza Moshayedi, Mohammad Rabiee, Navid Rabiee. A Novel Graphene-Based Nanosensor for Detection of Ethanol Gas. Iranian Journal of Science and Technology, Transactions A: Science 2019, 43 (5) , 2227-2237. https://doi.org/10.1007/s40995-019-00711-7
    22. Lei Guo, Lien Zhu, Lei Ma, Jian Zhang, QiuYu Meng, Zheng Jin, Meihua Liu, Kai Zhao. Bead chain structure RFC/ACF by electrospinning for supercapacitors. Pigment & Resin Technology 2019, 48 (5) , 439-448. https://doi.org/10.1108/PRT-08-2018-0074
    23. Vadim I. Irzhak, Gulzhian I. Dzhardimalieva, Igor E. Uflyand. Structure and properties of epoxy polymer nanocomposites reinforced with carbon nanotubes. Journal of Polymer Research 2019, 26 (9) https://doi.org/10.1007/s10965-019-1896-0
    24. Xiangxiang Du, Fubin Luo, Yuyue Guo, Qingqing Zhu, Fei Xiao, Kun Wu, Mangeng Lu. Fabrication of graphene/single wall carbon nanotubes/polyaniline composite gels as binder-free electrode materials. Journal of Applied Polymer Science 2019, 136 (3) , 46948. https://doi.org/10.1002/app.46948
    25. . Functional Electronic Inks. 2018, 11-52. https://doi.org/10.1002/9783527691685.ch2
    26. Ran Li, Chengen He, Xiaoyan Han, Yingkui Yang. Carbon-Based Polyaniline Nanocomposites for Supercapacitors. 2018, 489-535. https://doi.org/10.1016/B978-0-12-813574-7.00020-4
    27. Rui Yu, Rui Liu, Jie Deng, Maofei Ran, Ning Wang, Wei Chu, Zhiwei He, Zheng Du, Chengfa Jiang, Wenjing Sun. Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the Heck reaction: coating thickness as the key factor influencing the efficiency and stability of the catalyst. Catalysis Science & Technology 2018, 8 (5) , 1423-1434. https://doi.org/10.1039/C7CY02588B
    28. Oxana Vasilievna Kharissova, Boris Ildusovich Kharisov. Chemical Methods. 2017, 33-148. https://doi.org/10.1007/978-3-319-62950-6_3
    29. S. Komathi, A. I. Gopalan, N. Muthuchamy, K. P. Lee. Polyaniline nanoflowers grafted onto nanodiamonds via a soft template-guided secondary nucleation process for high-performance glucose sensing. RSC Advances 2017, 7 (25) , 15342-15351. https://doi.org/10.1039/C6RA24760A
    30. Qiang Zhao, Junhua Chen, Fubin Luo, Lu Shen, Ying Wang, Kun Wu, Mangeng Lu. Assembly of ordered polyaniline-graphene hybrid nanomaterials based on poly(2-methoxyaniline-5-sulfonic acid) functionalized graphene nanosheets. Synthetic Metals 2016, 221 , 103-113. https://doi.org/10.1016/j.synthmet.2016.08.010
    31. Qiguan Wang, Rongna Zhao, Sumin Wang, Hao Guo, Jinhua Li, Hongwei Zhou, Xinhai Wang, Xinming Wu, Yan Wang, Weixing Chen, Wenzhi Zhang. A highly selective electrochemical sensor for nifedipine based on layer‐by‐layer assembly films from polyaniline and multiwalled carbon nanotube. Journal of Applied Polymer Science 2016, 133 (21) https://doi.org/10.1002/app.43452
    32. Lei Wang, Ying Huang, Chao Li, Junjiao Chen, Xu Sun. Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance. Composites Science and Technology 2015, 108 , 1-8. https://doi.org/10.1016/j.compscitech.2014.12.011
    33. Mohd. Khalid, Milton A. Tumelero, Andre A. Pasa. Asymmetric and symmetric solid-state supercapacitors based on 3D interconnected polyaniline–carbon nanotube framework. RSC Advances 2015, 5 (76) , 62033-62039. https://doi.org/10.1039/C5RA11256G
    34. Nabasmita Maity, Atanu Kuila, Sandip Das, Debasish Mandal, Arnab Shit, Arun K. Nandi. Optoelectronic and photovoltaic properties of graphene quantum dot–polyaniline nanostructures. Journal of Materials Chemistry A 2015, 3 (41) , 20736-20748. https://doi.org/10.1039/C5TA06576C
    35. Jaroslav Stejskal, Irina Sapurina, Miroslava Trchová, Ivana Šeděnková, Jana Kovářová, Jitka Kopecká, Jan Prokeš. Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation. Chemical Papers 2015, 69 (10) https://doi.org/10.1515/chempap-2015-0152
    36. Ramendra Sundar Dey. Development of Biosensors from Polymer Graphene Composites. 2015, 277-305. https://doi.org/10.1007/978-3-319-13875-6_11
    37. Wenling Wu, Yanfeng Li, Liuqing Yang, Yingxia Ma, Xu Yan. Preparation and characterization of coaxial multiwalled carbon nanotubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate. Synthetic Metals 2014, 193 , 48-57. https://doi.org/10.1016/j.synthmet.2014.03.029
    38. Qiguan Wang, Wei Zhou, Sumin Wang, Jianping Li, Wenzhi Zhang, Xiaomin Wang. Free‐standing aniline oligomer functionalized multiwalled carbon nanotube films from a filtration method. Journal of Applied Polymer Science 2014, 131 (10) https://doi.org/10.1002/app.40259
    39. Cynthia Oueiny, Sophie Berlioz, François-Xavier Perrin. Carbon nanotube–polyaniline composites. Progress in Polymer Science 2014, 39 (4) , 707-748. https://doi.org/10.1016/j.progpolymsci.2013.08.009
    40. Zhong-shu Yin, Tian-hang Hu, Jian-long Wang, Cheng Wang, Zhi-xiang Liu, Jian-wei Guo. Preparation of highly active and stable polyaniline-cobalt-carbon nanotube electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. Electrochimica Acta 2014, 119 , 144-154. https://doi.org/10.1016/j.electacta.2013.12.072
    41. Mohd. Khalid, Milton A. Tumelero, Iuri. S. Brandt, Vinicius C. Zoldan, Jose J. S. Acuña, Andre A. Pasa. Electrical Conductivity Studies of Polyaniline Nanotubes Doped with Different Sulfonic Acids. Indian Journal of Materials Science 2013, 2013 , 1-7. https://doi.org/10.1155/2013/718304
    42. Chao Yang, Xue Wang, Pengcheng Du, Peng Liu. Polyaniline/carbon nanotube multi-layered hollow microspheres with sandwich structure and their electrochemical performance. Synthetic Metals 2013, 179 , 34-41. https://doi.org/10.1016/j.synthmet.2013.07.014
    43. Chao Yang, Peng Liu, Pengcheng Du, Xue Wang. Stabilization of carbon nanotubes-based hollow cages for energy storage: From collapsed morphology to free-standing structure. Electrochimica Acta 2013, 105 , 53-61. https://doi.org/10.1016/j.electacta.2013.04.149
    44. Ana López Cabezas, Yi Feng, Li-Rong Zheng, Zhi-Bin Zhang. Thermal ageing of electrical conductivity in carbon nanotube/polyaniline composite films. Carbon 2013, 59 , 270-277. https://doi.org/10.1016/j.carbon.2013.03.018
    45. Pierluigi Cossari, Valter Bavastrello, Claudio Nicolini. Influence of multi-walled carbon nanotubes concentration on the properties of nanocomposites with poly(o-ethoxyaniline). Synthetic Metals 2013, 176 , 1-10. https://doi.org/10.1016/j.synthmet.2013.04.022
    46. Gordana Ćirić-Marjanović. Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synthetic Metals 2013, 170 , 31-56. https://doi.org/10.1016/j.synthmet.2013.02.028
    47. David Sebastián, Andrés G. Ruiz, Isabel Suelves, Rafael Moliner, María J. Lázaro. On the importance of the structure in the electrical conductivity of fishbone carbon nanofibers. Journal of Materials Science 2013, 48 (4) , 1423-1435. https://doi.org/10.1007/s10853-012-6893-1
    48. Haosen Fan, Ning Zhao, Hao Wang, Xiaofeng Li, Jian Xu. Preparation of carpenterworm-like polyaniline/carbon nanotubes nanocomposites with enhanced electrochemical property. Materials Letters 2013, 92 , 157-160. https://doi.org/10.1016/j.matlet.2012.10.048
    49. Oxana V. Kharissova, Boris I. Kharisov, Edgar Gerardo de Casas Ortiz. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Advances 2013, 3 (47) , 24812. https://doi.org/10.1039/c3ra43852j
    50. Xusheng Du, Hong-Yuan Liu, Guipeng Cai, Yiu-Wing Mai, Avinash Baji. Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance. Nanoscale Research Letters 2012, 7 (1) https://doi.org/10.1186/1556-276X-7-111
    51. María H. Lissarrague, Melisa E. Lamanna, Norma B. D’Accorso, Silvia Goyanes. Effects of different nucleating particles on aniline polymerization. Synthetic Metals 2012, 162 (11-12) , 1052-1058. https://doi.org/10.1016/j.synthmet.2011.12.018
    52. Wei Luo, Fei Wang, Xue Ao Zhang, Zheng Zheng Shao, Jing Yue Fang, Sheng Li Chang, Shi Qiao Qin. Size Controlled Synthesis of 2-6 nm Gold Nanoparticles via Controlling Concentration of the Reducing Agent and Temperature. Advanced Materials Research 2012, 557-559 , 572-576. https://doi.org/10.4028/www.scientific.net/AMR.557-559.572
    53. Hong Yu Mi, You Long Xu. Ag–Loaded Polypyrrole/Carbon Nanotube: One-Step In Situ Polymerization and Improved Capacitance. Advanced Materials Research 2012, 531 , 35-38. https://doi.org/10.4028/www.scientific.net/AMR.531.35
    54. Haosen Fan, Hao Wang, Xiaolan Yu, Ning Zhao, Xiaoli Zhang, Jian Xu. Synthesis and electrochemical properties of various dimensional polyaniline micro/nanostructures: Microdisks, nanospheres and nanofibers. Materials Letters 2012, 71 , 70-73. https://doi.org/10.1016/j.matlet.2011.11.121
    55. Yingzhi Li, Qinghua Zhang, Xin Zhao, Pingping Yu, Lihao Wu, Dajun Chen. Enhanced electrochemical performance of polyaniline/sulfonated polyhedral oligosilsesquioxane nanocomposites with porous and ordered hierarchical nanostructure. J. Mater. Chem. 2012, 22 (5) , 1884-1892. https://doi.org/10.1039/C1JM13359D
    56. Haosen Fan, Hao Wang, Ning Zhao, Xiaoli Zhang, Jian Xu. Hierarchical nanocomposite of polyanilinenanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. J. Mater. Chem. 2012, 22 (6) , 2774-2780. https://doi.org/10.1039/C1JM14311E
    57. Ling Shi, Ru-Ping Liang, Jian-Ding Qiu. Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes. Journal of Materials Chemistry 2012, 22 (33) , 17196. https://doi.org/10.1039/c2jm31859h
    58. Utpal Rana, Kuntal Chakrabarti, Sudip Malik. Benzene tetracarboxylic acid doped polyaniline nanostructures: morphological, spectroscopic and electrical characterization. Journal of Materials Chemistry 2012, 22 (31) , 15665. https://doi.org/10.1039/c2jm33093h
    59. Le Q. Hoa, Hiroyuki Yoshikawa, Masato Saito, Eiichi Tamiya. STUDY OF CO-ASSEMBLED CONDUCTING POLYMERS FOR ENHANCED ETHANOL ELECTRO-OXIDATION REACTION. MRS Proceedings 2012, 1446 https://doi.org/10.1557/opl.2012.916
    60. Le Quynh Hoa, Yasuhito Sugano, Hiroyuki Yoshikawa, Masato Saito, Eiichi Tamiya. Structural assembly effects of Pt nanoparticle–carbon nanotube–polyaniline nanocomposites on the enhancement of biohydrogen fuel cell performance. Electrochimica Acta 2011, 56 (27) , 9875-9882. https://doi.org/10.1016/j.electacta.2011.08.071
    61. Long Zhang, Peng Liu, Tingmei Wang. Preparation of superparamagnetic polyaniline hybrid hollow microspheres in oil/water emulsion with magnetic nanoparticles as cosurfactant. Chemical Engineering Journal 2011, 171 (2) , 711-716. https://doi.org/10.1016/j.cej.2011.05.032
    62. Xing Fa Ma, Shu Juan Niu, Ming Jun Gao, Xiao Chun He, Guang Li. Preparation of CNTs/PANi Core/Shell-Structured Nanowires and Improvement of Sensitivity of Chemical Sensors. Materials Science Forum 2011, 686 , 438-447. https://doi.org/10.4028/www.scientific.net/MSF.686.438

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect