ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

A Theoretical Investigation of Benzene−AlX3 and Ethene−AlX3 (X = H, F, Cl) Interactions

View Author Information
National Creative Research Initiative Center for Superfunctional Molecules, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790-784, Korea
Cite this: J. Phys. Chem. A 1999, 103, 45, 9116–9124
Publication Date (Web):October 26, 1999
https://doi.org/10.1021/jp992019y
Copyright © 1999 American Chemical Society

    Article Views

    338

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (135 KB)

    Abstract

    The present report details the results of a high-level theoretical investigation of benzene−AlX3 and ethene−AlX3 (X = H, F, Cl) interactions. The binding energies, preferred modes of interaction of AlX3 with benzene and ethene, and vibrational frequencies for these complexes have been evaluated at the MP2 level using basis sets ranging from the 6-31+G* to the much larger (6-311++G(2df,p) + diffuse(d,p)). In the lowest energy conformers of the benzene complexes, the Al atom is directly placed over one of the benzene carbons, while in the ethene complexes, the Al atom lies above the center of the π bond. The binding energies of both the benzene and ethene complexes of AlX3 are dominated by electrostatic contributions, which is in contrast to the dominance of the electron correlation energy in the benzene−BX3 complexes. A very sharp increase in the negative charge of the benzene carbon closest to the Al atom in the lowest energy conformers of the benzene complexes from −0.2 to −0.4 au points to an important role of activation of the aromatic ring by the Lewis acid in electrophilic aromatic substitution reactions.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 45 publications.

    1. Luo Wu, Rui Zhang, Yaning Zhang, Haiyan Liu, Zhichang Liu, Chunming Xu, Xianghai Meng. Aluminum Species and the Synthesis Mechanism of AlCl3–CuCl–Arene Solutions. Industrial & Engineering Chemistry Research 2021, 60 (3) , 1155-1163. https://doi.org/10.1021/acs.iecr.0c05222
    2. Jacob W. G. Bloom, Rajesh K. Raju, and Steven E. Wheeler . Physical Nature of Substituent Effects in XH/π Interactions. Journal of Chemical Theory and Computation 2012, 8 (9) , 3167-3174. https://doi.org/10.1021/ct300520n
    3. Marcel Harhausen, Roland Fröhlich, Gerald Kehr, and Gerhard Erker . Reactions of Modified Intermolecular Frustrated P/B Lewis Pairs with Dihydrogen, Ethene, and Carbon Dioxide. Organometallics 2012, 31 (7) , 2801-2809. https://doi.org/10.1021/om201076f
    4. M. P. S. Mateus, N. Galamba, and B. J. Costa Cabral . Electronic Properties of Hydrogen-Bonded Complexes of Benzene(HCN)1–4: Comparison with Benzene(H2O)1–4. The Journal of Physical Chemistry A 2011, 115 (46) , 13714-13723. https://doi.org/10.1021/jp208595p
    5. Hui-Jing Li, Régis Guillot, and Vincent Gandon . A Gallium-Catalyzed Cycloisomerization/Friedel−Crafts Tandem. The Journal of Organic Chemistry 2010, 75 (24) , 8435-8449. https://doi.org/10.1021/jo101709n
    6. P. Tarakeshwar,, T. J. Dhilip Kumar, and, N. Balakrishnan. Nature of Hydrogen Interaction and Saturation on Small Titanium Clusters. The Journal of Physical Chemistry A 2008, 112 (13) , 2846-2854. https://doi.org/10.1021/jp076718j
    7. Ronghu Wu and, Terry B. McMahon. Stabilization of Zwitterionic Structures of Amino Acids (Gly, Ala, Val, Leu, Ile, Ser and Pro) by Ammonium Ions in the Gas Phase. Journal of the American Chemical Society 2008, 130 (10) , 3065-3078. https://doi.org/10.1021/ja076685l
    8. Ronghu Wu and, Terry B. McMahon. Investigation of Proton Transport Tautomerism in Clusters of Protonated Nucleic Acid Bases (Cytosine, Uracil, Thymine, and Adenine) and Ammonia by High-Pressure Mass Spectrometry and Ab Initio Calculations. Journal of the American Chemical Society 2007, 129 (3) , 569-580. https://doi.org/10.1021/ja065088g
    9. A. F. Jalbout and, A. Boutalib. Ab Initio Molecular Orbital Investigation of the Amine-Alanes (CH3)nH3-nAlNX3 and Phosphane-Alanes (CH3)nH3-nAlPX3 (X = H, F, and Cl; n = 0−3) Complexes. The Journal of Physical Chemistry A 2006, 110 (45) , 12524-12527. https://doi.org/10.1021/jp063882i
    10. George A. Olah,, Béla Török,, Jens P. Joschek,, Imre Bucsi,, Pierre M. Esteves,, Golam Rasul, and, G. K. Surya Prakash. Efficient Chemoselective Carboxylation of Aromatics to Arylcarboxylic Acids with a Superelectrophilically Activated Carbon Dioxide−Al2Cl6/Al System. Journal of the American Chemical Society 2002, 124 (38) , 11379-11391. https://doi.org/10.1021/ja020787o
    11. Boggavarapu Kiran, , Ashwini Kumar Phukan and, Eluvathingal D. Jemmis. Is Borazine Aromatic? Unusual Parallel Behavior between Hydrocarbons and Corresponding B−N Analogues. Inorganic Chemistry 2001, 40 (14) , 3615-3618. https://doi.org/10.1021/ic001394y
    12. Kwang S. Kim,, P. Tarakeshwar, and, Jin Yong Lee. Molecular Clusters of π-Systems:  Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. Chemical Reviews 2000, 100 (11) , 4145-4186. https://doi.org/10.1021/cr990051i
    13. Zhen Xu, Fuping Pan, Mengqi Sun, Jianjun Xu, Nuwayo Eric Munyaneza, Zacary L. Croft, Gangshu (George) Cai, Guoliang Liu. Cascade degradation and upcycling of polystyrene waste to high-value chemicals. Proceedings of the National Academy of Sciences 2022, 119 (34) https://doi.org/10.1073/pnas.2203346119
    14. Fuying Wang, Yiming Jia, Jingyue Liang, You Han, Jinli Zhang, Xiaoyan Li, Wei Li. Intensifying strategy of ionic liquids for Pd-based catalysts in anthraquinone hydrogenation. Catalysis Science & Technology 2022, 12 (6) , 1766-1776. https://doi.org/10.1039/D1CY01986D
    15. . Context, Background, and Discovery. 2021, 1-19. https://doi.org/10.1039/9781839162442-00001
    16. Odile Eisenstein, Hélène Gérard. Structure, Bonding, and Reactivity of Organoaluminum Molecular Species: A Computational Perspective. 2017, 1-32. https://doi.org/10.1002/9780470682531.pat0843
    17. Sigismund T. A. G. Melissen, Vincent Tognetti, Georges Dupas, Julien Jouanneau, Guillaume Lê, Laurent Joubert. A DFT study of the formation of xanthydrol motifs during electrophilic poly(aryl ether ketone) synthesis. Journal of Molecular Modeling 2016, 22 (1) https://doi.org/10.1007/s00894-015-2861-4
    18. Peng Zhang, Tianbin Wu, Minqiang Hou, Jun Ma, Huizhen Liu, Tao Jiang, Weitao Wang, Congyi Wu, Buxing Han. The Hydrogenation of Aromatic Compounds under Mild Conditions by Using a Solid Lewis Acid and Supported Palladium Catalyst. ChemCatChem 2014, 6 (12) , 3323-3327. https://doi.org/10.1002/cctc.201402671
    19. Sigismund T. A. G. Melissen, Vincent Tognetti, Georges Dupas, Julien Jouanneau, Guillaume Lê, Laurent Joubert. A DFT study of the Al2Cl6-catalyzed Friedel–Crafts acylation of phenyl aromatic compounds. Journal of Molecular Modeling 2013, 19 (11) , 4947-4958. https://doi.org/10.1007/s00894-013-1984-8
    20. D.W. Stephan. Frustrated Lewis Pairs: Activation of H2 and Other Small Molecules. 2013, 1069-1103. https://doi.org/10.1016/B978-0-08-097774-4.00136-4
    21. Douglas W. Stephan. Discovery of Frustrated Lewis Pairs: Intermolecular FLPs for Activation of Small Molecules. 2012, 1-44. https://doi.org/10.1007/128_2012_381
    22. Ioana A. Gianoglio Pantano, Adriana Brandolin, Claudia Sarmoria. Mathematical modeling of the graft reaction between polystyrene and polyethylene. Polymer Degradation and Stability 2011, 96 (4) , 416-425. https://doi.org/10.1016/j.polymdegradstab.2011.01.016
    23. Hassanatu B. Mansaray, Alexander D. L. Rowe, Nicholas Phillips, Jochen Niemeyer, Michael Kelly, David A. Addy, Joshua I. Bates, Simon Aldridge. Modelling fundamental arene–borane contacts: spontaneous formation of a dibromoborenium cation driven by interaction between a borane Lewis acid and an arene π system. Chemical Communications 2011, 47 (45) , 12295. https://doi.org/10.1039/c1cc15259a
    24. Douglas W. Stephan, Gerhard Erker. Frustrated Lewis Pairs: Metal‐free Hydrogen Activation and More. Angewandte Chemie International Edition 2010, 49 (1) , 46-76. https://doi.org/10.1002/anie.200903708
    25. Douglas W. Stephan, Gerhard Erker. Frustrierte Lewis‐Paare: metallfreie Wasserstoffaktivierung und mehr. Angewandte Chemie 2010, 122 (1) , 50-81. https://doi.org/10.1002/ange.200903708
    26. Shinichi Yamabe, Shoko Yamazaki. A remarkable difference in the deprotonation steps of the Friedel-Crafts acylation and alkylation reactions. Journal of Physical Organic Chemistry 2009, 22 (11) , 1094-1103. https://doi.org/10.1002/poc.1564
    27. Ioana A. Gianoglio Pantano, Mónica F. Díaz, Adriana Brandolin, Claudia Sarmoria. Mathematical modeling of the catalytic degradation of polystyrene in the presence of aluminum chloride. Polymer Degradation and Stability 2009, 94 (4) , 566-574. https://doi.org/10.1016/j.polymdegradstab.2009.01.015
    28. Douglas W. Stephan. Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Transactions 2009, 64 (17) , 3129. https://doi.org/10.1039/b819621d
    29. Douglas W. Stephan. “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Organic & Biomolecular Chemistry 2008, 6 (9) , 1535. https://doi.org/10.1039/b802575b
    30. András Stirling, Andrea Hamza, Tibor András Rokob, Imre Pápai. Concerted attack of frustrated Lewis acid–base pairs on olefinic double bonds: a theoretical study. Chemical Communications 2008, 314 (27) , 3148. https://doi.org/10.1039/b804662j
    31. N. Jiten Singh, Eun Cheol Lee, Young Cheol Choi, Han Myoung Lee, Kwang S. Kim. Understanding Clusters toward the Design of Functional Molecules and Nanomaterials. Bulletin of the Chemical Society of Japan 2007, 80 (8) , 1437-1450. https://doi.org/10.1246/bcsj.80.1437
    32. Jenny S. J. McCahill, Gregory C. Welch, Douglas W. Stephan. Reactivity of “Frustrated Lewis Pairs”: Three‐Component Reactions of Phosphines, a Borane, and Olefins. Angewandte Chemie International Edition 2007, 46 (26) , 4968-4971. https://doi.org/10.1002/anie.200701215
    33. Jenny S. J. McCahill, Gregory C. Welch, Douglas W. Stephan. Reactivity of “Frustrated Lewis Pairs”: Three‐Component Reactions of Phosphines, a Borane, and Olefins. Angewandte Chemie 2007, 119 (26) , 5056-5059. https://doi.org/10.1002/ange.200701215
    34. Masahiko Maekawa, Toshie Minematsu, Atsuhiro Nabei, Hisashi Konaka, Takayoshi Kuroda-Sowa, Megumu Munakata. Syntheses and structural characterization of mononuclear Rh–Cp* and Ir–Cp* complexes with η6-phenanthrene, η6-pyrene and η6-triphenylene. Inorganica Chimica Acta 2006, 359 (1) , 168-182. https://doi.org/10.1016/j.ica.2005.06.076
    35. Ronghu Wu, Terry B McMahon. An investigation of the ionmolecule interactions of protonated glycine with ammonia by high pressure mass spectrometry and ab initio calculations. Canadian Journal of Chemistry 2005, 83 (11) , 1978-1993. https://doi.org/10.1139/v05-205
    36. Abdelaâli El Guerraze, Ahmed M. El-Nahas, Abdellah Jarid, Chafiq Serrar, Hafid Anane, M’hamed Esseffar. Theoretical study of H3AXH3 and H3AYH2 (A=B, Al, Ga; X=N, P, As and Y=O, S, and Se), electrostatic and hyperconjugative interactions roles. Chemical Physics 2005, 313 (1-3) , 159-168. https://doi.org/10.1016/j.chemphys.2005.01.009
    37. Kwang S. Kim, P. Tarakeshwar, Han Myoung Lee. Clusters to functional molecules, nanomaterials, and molecular devices. 2005, 963-993. https://doi.org/10.1016/B978-044451719-7/50077-9
    38. P. Tarakeshwar, Dongwook Kim, Han Myoung Lee, Seung Bum Sun, Kwang S. Kim. Theoretical Approaches to the Design of Functional Nanomaterials. 2004, 119-170. https://doi.org/10.1016/S1380-7323(04)80019-0
    39. Eun Cheol Lee, Han Myoung Lee, P. Tarakeshwar, Kwang S. Kim. Structures, energies, and spectra of aqua-silver (I) complexes. The Journal of Chemical Physics 2003, 119 (15) , 7725-7736. https://doi.org/10.1063/1.1607962
    40. . From Gas Phase Clusters to Nanomaterials: An Overview of Theoretical Insights. Bulletin of the Korean Chemical Society 2003, 757-762. https://doi.org/10.5012/bkcs.2003.24.6.757
    41. Han Myoung Lee, Dongwook Kim, Kwang S. Kim. Structures, spectra, and electronic properties of halide-water pentamers and hexamers, X−(H2O)5,6 (X=F,Cl,Br,I): Ab initio study. The Journal of Chemical Physics 2002, 116 (13) , 5509-5520. https://doi.org/10.1063/1.1453960
    42. Abdellah Jarid, Abderrahim Boutalib, Ignacio Nebot-Gil, Francisco Tomás. Comparative G2(MP2) molecular orbital study of [H 3 AlX(CH 3 ) 2 ] − (X=N, P, and As) and H 3 AlY(CH 3 ) 2 (Y=O, S, and Se) donor–acceptor complexes. Journal of Molecular Structure: THEOCHEM 2001, 572 (1-3) , 161-167. https://doi.org/10.1016/S0166-1280(01)00624-8
    43. P. Tarakeshwar, Kwang S. Kim, S. Djafari, K. Buchhold, B. Reimann, H.-D. Barth, B. Brutschy. Ab initio studies of π-water tetramer complexes: Evolution of optimal structures, binding energies, and vibrational spectra of π-(H2O)n (n=1–4) complexes. The Journal of Chemical Physics 2001, 114 (9) , 4016-4024. https://doi.org/10.1063/1.1343903
    44. P. Tarakeshwar, Kwang S. Kim, B. Brutschy. σ to π conformational transition: Interactions of the water trimer with π systems. The Journal of Chemical Physics 2001, 114 (3) , 1295-1305. https://doi.org/10.1063/1.1332991
    45. Jin Yong Lee, Jongseob Kim, Han Myoung Lee, P. Tarakeshwar, Kwang S. Kim. Structures, vibrational frequencies, and infrared spectra of the hexa-hydrated benzene clusters. The Journal of Chemical Physics 2000, 113 (15) , 6160-6168. https://doi.org/10.1063/1.1308553

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect