Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Size Dependence of the Surface Plasmon Resonance Damping in Metal Nanospheres

View Author Information
Laboratoire de Spectrométrie Ionique et Moléculaire (UMR 5579), Université de Lyon, Université Lyon I, CNRS, Bât. A. Kastler, 43 Bld du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
*To whom correspondence should be addressed. Tel: +33 472431137. Fax: +33 472431507. E-mail: [email protected]
Cite this: J. Phys. Chem. Lett. 2010, 1, 19, 2922–2928
Publication Date (Web):September 17, 2010
https://doi.org/10.1021/jz1009136
Copyright © 2010 American Chemical Society

    Article Views

    2960

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The impact of quantum confinement on the width of the surface plasmon resonance of a metal nanoparticle is theoretically investigated in a model system formed by a silver nanosphere in different environments. Calculations are performed using the time-dependent local density approximation (TDLDA) for nanoparticle diameters up to about 11 nm, permitting precise quantification of the surface plasmon broadening due to size reduction. As expected, this is found to be inversely proportional to the particle diameter, but with an amplitude strongly depending on the environment (increasing by a factor of 4 when changing from vacuum to alumina). This is ascribed to the fact that damping is governed by the electronic surface spill-out (inherent in any quantum model) and thus strongly depends on the surface profile of the confining potential, that is, on the particle surface conditions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 98 publications.

    1. Ye Wang, Zhijie Yang, Jingjing Wei. Surface Plasmon Resonance Properties of Silver Nanocrystal Superlattices Spaced by Polystyrene Ligands. The Journal of Physical Chemistry C 2022, 126 (10) , 4948-4958. https://doi.org/10.1021/acs.jpcc.1c10264
    2. Maxime S. Maurice, Noémi Barros, Hamid Kachkachi. Orientational Selectivity of Hot Electrons Generated by a Dimer of Plasmonic Nanoparticles. The Journal of Physical Chemistry C 2021, 125 (43) , 23991-24000. https://doi.org/10.1021/acs.jpcc.1c04172
    3. Jacopo Marcheselli, Denis Chateau, Frederic Lerouge, Patrice Baldeck, Chantal Andraud, Stephane Parola, Stefano Baroni, Stefano Corni, Marco Garavelli, Ivan Rivalta. Simulating Plasmon Resonances of Gold Nanoparticles with Bipyramidal Shapes by Boundary Element Methods. Journal of Chemical Theory and Computation 2020, 16 (6) , 3807-3815. https://doi.org/10.1021/acs.jctc.0c00269
    4. Lawrence J. Tauzin, Yi-yu Cai, Kyle W. Smith, Seyyed Ali Hosseini Jebeli, Ujjal Bhattacharjee, Wei-Shun Chang, Stephan Link. Exploring the Relationship between Plasmon Damping and Luminescence in Lithographically Prepared Gold Nanorods. ACS Photonics 2018, 5 (9) , 3541-3549. https://doi.org/10.1021/acsphotonics.8b00258
    5. Rusha Chatterjee, Ilia M. Pavlovetc, Kyle Aleshire, Masaru Kuno. Single Semiconductor Nanostructure Extinction Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (29) , 16443-16463. https://doi.org/10.1021/acs.jpcc.8b00790
    6. Jamie M. Fitzgerald, Vincenzo Giannini. Battling Retardation and Nonlocality: The Hunt for the Ultimate Plasmonic Cascade Nanolens. ACS Photonics 2018, 5 (6) , 2459-2467. https://doi.org/10.1021/acsphotonics.8b00264
    7. Hiroaki Matsui, Takayuki Hasebe, Noriyuki Hasuike, Hitoshi Tabata. Plasmonic Heat Shielding in the Infrared Range Using Oxide Semiconductor Nanoparticles Based on Sn-Doped In2O3: Effect of Size and Interparticle Gap. ACS Applied Nano Materials 2018, 1 (4) , 1853-1862. https://doi.org/10.1021/acsanm.8b00260
    8. Nina Jiang, Xiaolu Zhuo, Jianfang Wang. Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews 2018, 118 (6) , 3054-3099. https://doi.org/10.1021/acs.chemrev.7b00252
    9. Yueying Wu, Guoliang Li, Jon P. Camden. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy. Chemical Reviews 2018, 118 (6) , 2994-3031. https://doi.org/10.1021/acs.chemrev.7b00354
    10. Maria Luiza de O. Pereira, Daniel Grasseschi, Henrique E. Toma. Photocatalytic Activity of Reduced Graphene Oxide–Gold Nanoparticle Nanomaterials: Interaction with Asphaltene and Conversion of a Model Compound. Energy & Fuels 2018, 32 (3) , 2673-2680. https://doi.org/10.1021/acs.energyfuels.7b02715
    11. Gregory V. Hartland, Lucas V. Besteiro, Paul Johns, and Alexander O. Govorov . What’s so Hot about Electrons in Metal Nanoparticles?. ACS Energy Letters 2017, 2 (7) , 1641-1653. https://doi.org/10.1021/acsenergylett.7b00333
    12. Jean Lermé, Christophe Bonnet, Marie-Ange Lebeault, Michel Pellarin, and Emmanuel Cottancin . Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences. The Journal of Physical Chemistry C 2017, 121 (10) , 5693-5708. https://doi.org/10.1021/acs.jpcc.6b12298
    13. R. Carmina Monreal, Tomasz J. Antosiewicz, and S. Peter Apell . Diffuse Surface Scattering and Quantum Size Effects in the Surface Plasmon Resonances of Low-Carrier-Density Nanocrystals. The Journal of Physical Chemistry C 2016, 120 (9) , 5074-5082. https://doi.org/10.1021/acs.jpcc.5b10059
    14. Zhouying Zhao, V. A. Vulcano Rossi, John P. Baltrus, Paul R. Ohodnicki, and Michael A. Carpenter . Ag Nanoparticles Supported on Yttria-Stabilized Zirconia: A Synergistic System within Redox Environments. The Journal of Physical Chemistry C 2016, 120 (9) , 5020-5032. https://doi.org/10.1021/acs.jpcc.6b00189
    15. R. Carmina Monreal, Tomasz J. Antosiewicz, and S. Peter Apell . Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres. The Journal of Physical Chemistry Letters 2015, 6 (10) , 1847-1853. https://doi.org/10.1021/acs.jpclett.5b00581
    16. Julien Romann, Jingjing Wei, and Marie-Paule Pileni . Computational Matching of Surface Plasmon Resonance: Interactions between Silver Nanoparticles and Ligands. The Journal of Physical Chemistry C 2015, 119 (20) , 11094-11099. https://doi.org/10.1021/jp511859p
    17. Amala Dass, Shevanuja Theivendran, Praneeth Reddy Nimmala, Chanaka Kumara, Vijay Reddy Jupally, Alessandro Fortunelli, Luca Sementa, Giovanni Barcaro, Xiaobing Zuo, and Bruce C. Noll . Au133(SPh-tBu)52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis. Journal of the American Chemical Society 2015, 137 (14) , 4610-4613. https://doi.org/10.1021/ja513152h
    18. Ana M. Brown, Matthew T. Sheldon, and Harry A. Atwater . Electrochemical Tuning of the Dielectric Function of Au Nanoparticles. ACS Photonics 2015, 2 (4) , 459-464. https://doi.org/10.1021/ph500358q
    19. Pooya Tabib Zadeh Adibi, Francesco Mazzotta, Tomasz J. Antosiewicz, Magnus Skoglundh, Henrik Grönbeck, and Christoph Langhammer . In Situ Plasmonic Sensing of Platinum Model Catalyst Sintering on Different Oxide Supports and in O2 and NO2 Atmospheres with Different Concentrations. ACS Catalysis 2015, 5 (1) , 426-432. https://doi.org/10.1021/cs5015173
    20. Christyn A. Thibodeaux, Vikram Kulkarni, Wei-Shun Chang, Oara Neumann, Yang Cao, Bruce Brinson, Ciceron Ayala-Orozco, Chih-Wei Chen, Emilia Morosan, Stephan Link, Peter Nordlander, and Naomi J. Halas . Impurity-Induced Plasmon Damping in Individual Cobalt-Doped Hollow Au Nanoshells. The Journal of Physical Chemistry B 2014, 118 (49) , 14056-14061. https://doi.org/10.1021/jp504467j
    21. Jingjing Wei, Nicolas Schaeffer, and Marie-Paule Pileni . Ag Nanocrystals: 1. Effect of Ligands on Plasmonic Properties. The Journal of Physical Chemistry B 2014, 118 (49) , 14070-14075. https://doi.org/10.1021/jp5050699
    22. Mary Sajini Devadas, Zhongming Li, and Gregory V. Hartland . Imaging and Analysis of Single Optically Trapped Gold Nanoparticles Using Spatial Modulation Spectroscopy. The Journal of Physical Chemistry Letters 2014, 5 (16) , 2910-2915. https://doi.org/10.1021/jz501409q
    23. Moussa Zaarour, Mohamad El Roz, Biao Dong, Richard Retoux, Roy Aad, Julien Cardin, Christian Dufour, Fabrice Gourbilleau, Jean-Pierre Gilson, and Svetlana Mintova . Photochemical Preparation of Silver Nanoparticles Supported on Zeolite Crystals. Langmuir 2014, 30 (21) , 6250-6256. https://doi.org/10.1021/la5006743
    24. Luca Bergamini and Stefano Corni . Benchmarking Common Approximations for Determining the Particle-Size Dependence of Adsorbate-Induced Localized Surface Plasmon Resonance Shifts. The Journal of Physical Chemistry C 2013, 117 (28) , 14742-14750. https://doi.org/10.1021/jp4016905
    25. Vincent Juvé, M. Fernanda Cardinal, Anna Lombardi, Aurélien Crut, Paolo Maioli, Jorge Pérez-Juste, Luis M. Liz-Marzán, Natalia Del Fatti, and Fabrice Vallée . Size-Dependent Surface Plasmon Resonance Broadening in Nonspherical Nanoparticles: Single Gold Nanorods. Nano Letters 2013, 13 (5) , 2234-2240. https://doi.org/10.1021/nl400777y
    26. Johannes Kern, Swen Großmann, Nadezda V. Tarakina, Tim Häckel, Monika Emmerling, Martin Kamp, Jer-Shing Huang, Paolo Biagioni, Jord C. Prangsma, and Bert Hecht . Atomic-Scale Confinement of Resonant Optical Fields. Nano Letters 2012, 12 (11) , 5504-5509. https://doi.org/10.1021/nl302315g
    27. Yevgeniy R. Davletshin, Anna Lombardi, M. Fernanda Cardinal, Vincent Juvé, Aurélien Crut, Paolo Maioli, Luis M. Liz-Marzán, Fabrice Vallée, Natalia Del Fatti, and J. Carl Kumaradas . A Quantitative Study of the Environmental Effects on the Optical Response of Gold Nanorods. ACS Nano 2012, 6 (9) , 8183-8193. https://doi.org/10.1021/nn302869v
    28. Denis Mongin, Ehud Shaviv, Paolo Maioli, Aurélien Crut, Uri Banin, Natalia Del Fatti, and Fabrice Vallée . Ultrafast Photoinduced Charge Separation in Metal–Semiconductor Nanohybrids. ACS Nano 2012, 6 (8) , 7034-7043. https://doi.org/10.1021/nn302089h
    29. Anna Lombardi, Matthieu Loumaigne, Aurélien Crut, Paolo Maioli, Natalia Del Fatti, and Fabrice Vallée , Miguel Spuch-Calvar, Julien Burgin, Jérome Majimel, and Mona Tréguer-Delapierre . Surface Plasmon Resonance Properties of Single Elongated Nano-objects: Gold Nanobipyramids and Nanorods. Langmuir 2012, 28 (24) , 9027-9033. https://doi.org/10.1021/la300210h
    30. Cynthia Said-Mohamed, Jukka Niskanen, Didier Lairez, Heikki Tenhu, Paolo Maioli, Natalia Del Fatti, Fabrice Vallée, and Lay-Theng Lee . Polymer-Modulated Optical Properties of Gold Sols. The Journal of Physical Chemistry C 2012, 116 (23) , 12660-12669. https://doi.org/10.1021/jp3029209
    31. Giovanni Barcaro, Michel Broyer, Nicola Durante, Alessandro Fortunelli, and Mauro Stener . Alloying Effects on the Optical Properties of Ag–Au Nanoclusters from TDDFT Calculations. The Journal of Physical Chemistry C 2011, 115 (49) , 24085-24091. https://doi.org/10.1021/jp2087219
    32. Gregory V. Hartland (Senior Editor) , George Schatz (Editor-in-Chief) . Virtual Issue: Plasmon Resonances - A Physical Chemistry Perspective. The Journal of Physical Chemistry C 2011, 115 (31) , 15121-15123. https://doi.org/10.1021/jp206376f
    33. Jean Lermé . Size Evolution of the Surface Plasmon Resonance Damping in Silver Nanoparticles: Confinement and Dielectric Effects. The Journal of Physical Chemistry C 2011, 115 (29) , 14098-14110. https://doi.org/10.1021/jp203481m
    34. George C. Schatz. Computational Nanomaterials Modeling. The Journal of Physical Chemistry Letters 2011, 2 (2) , 125-126. https://doi.org/10.1021/jz1017152
    35. Samar Moustafa, Mohamed K. Zayed, Moustafa Ahmed, Hesham Fares. Bandwidth of quantized surface plasmons: competition between radiative and nonradiative damping effects. Physical Chemistry Chemical Physics 2024, 26 (3) , 1994-2006. https://doi.org/10.1039/D3CP04564A
    36. Darya E. Votkina, Andriy Trelin, Viktor Semin, Oleksiy Lyutakov, Václav Švorčík, Pavel V. Petunin, Gérard Audran, Sylvain R. A. Marque, Olga Guselnikova, Pavel S Postnikov. Size-dependent AuNPs Plasmonic Activity for the Rational Design of Organic Reactions Catalyst. Catalysis Science & Technology 2024, https://doi.org/10.1039/D4CY00084F
    37. A.I. Zelenina, I.S. Gordeev, L.N. Kolotova. Atomistic simulation of Si-Al nanosponge structure features produced by laser printing method. Journal of Non-Crystalline Solids 2023, 606 , 122215. https://doi.org/10.1016/j.jnoncrysol.2023.122215
    38. . Influence of the Nanoparticle Crystalline Structures Called Nanocrystallinities on Various Properties. 2023, 27-64. https://doi.org/10.1002/9783527344796.ch2
    39. Gaurav Pal Singh, Neha Sardana. Plasmonic response of metallic nanoparticles embedded in glass and a-Si. Bulletin of Materials Science 2022, 45 (4) https://doi.org/10.1007/s12034-022-02812-3
    40. Fabio Della Sala. Orbital-free methods for plasmonics: Linear response. The Journal of Chemical Physics 2022, 157 (10) https://doi.org/10.1063/5.0100797
    41. Yi-Sheng Lai, Yu-Lin Chen, Chia-Chun Lin, Yen-Hsun Su. Ultrafast chiral peptides purification via surface plasmon enhanced spin selectivity. Biosensors and Bioelectronics 2022, 211 , 114339. https://doi.org/10.1016/j.bios.2022.114339
    42. P. Elli Stamatopoulou, Christos Tserkezis. Finite-size and quantum effects in plasmonics: manifestations and theoretical modelling [Invited]. Optical Materials Express 2022, 12 (5) , 1869. https://doi.org/10.1364/OME.456407
    43. Pradeep Kumar Sharma. Anomalous Plasmon Shift of Gold Nanoparticles. 2022, 1-11. https://doi.org/10.1109/I2CT54291.2022.9825106
    44. Mengya Li, Junle Zhang, Yanjie He, Xiaomeng Zhang, Zhe Cui, Peng Fu, Minying Liu, Ge Shi, Xiaoguang Qiao, Xinchang Pang. Dual enhancement of carrier generation and migration on Au/g-C 3 N 4 photocatalysts for highly-efficient broadband PET-RAFT polymerization. Polymer Chemistry 2022, 13 (8) , 1022-1030. https://doi.org/10.1039/D1PY01590G
    45. Yohei K. Sato, Masami Terauchi. Evaluation of exchange-correlation effects on the heat-shielding performance of carrier electrons in LaB6 using momentum-transfer resolved electron energy-loss spectroscopy. Journal of Applied Physics 2022, 131 (6) https://doi.org/10.1063/5.0076692
    46. Élise Camus, Julien Ramade, Michel Pellarin, Nicholas Blanchard, Matthias Hillenkamp, Cyril Langlois, Lucian Roiban, Emmanuel Cottancin. Structural and optical properties of silver-indium and silver-aluminium nanoalloys: stability against oxidation. The European Physical Journal Applied Physics 2022, 97 , 59. https://doi.org/10.1051/epjap/2022210298
    47. Mai Hung Thanh Tung, Le Manh Cuong, Tran Thi Thu Phuong, Cao Van Hoang, Tran Thi Thu Hien, Nguyen Thi Bich Huong, Pham Thi Ha Thanh, Pham Van Quan, Nguyen Thi Thu Phuong, Thanh-Dong Pham, Nguyen Thi Dieu Cam. Construction of Ag decorated on InVO4/g-C3N4 for novel photocatalytic degradation of residual antibiotics. Journal of Solid State Chemistry 2022, 305 , 122643. https://doi.org/10.1016/j.jssc.2021.122643
    48. Subhavna Juneja, Jaspal Singh, Roshni Thapa, R. K. Soni, Jaydeep Bhattacharya. Improved SERS sensing on biosynthetically grown self-cleaning plasmonic ZnO nano-leaves. New Journal of Chemistry 2021, 45 (44) , 20895-20903. https://doi.org/10.1039/D1NJ02883A
    49. L. Keerthana, Mushtaq Ahmad Dar, Gnanaprakash Dharmalingam. Plasmonic Au‐Metal Oxide Nanocomposites for High‐Temperature and Harsh Environment Sensing Applications. Chemistry – An Asian Journal 2021, 16 (22) , 3558-3584. https://doi.org/10.1002/asia.202100885
    50. Ora Bitton, Satyendra Nath Gupta, Yong Cao, Alexander Vaskevich, Lothar Houben, Tamar Yelin, Gilad Haran. Improving the quality factors of plasmonic silver cavities for strong coupling with quantum emitters. The Journal of Chemical Physics 2021, 154 (1) https://doi.org/10.1063/5.0034739
    51. Kashmiri Baruah, Ashok Kumar, Pritam Deb. Visible light active Au@g-C3N4 core-shell plasmonic photocatalyst. Materials Today: Proceedings 2021, 47 , 1627-1632. https://doi.org/10.1016/j.matpr.2021.04.333
    52. Daniel Grasseschi, Walner Costa Silva, Ronald de Souza Paiva, Leon Diez Starke, Arley Sena do Nascimento. Surface coordination chemistry of graphene: Understanding the coordination of single transition metal atoms. Coordination Chemistry Reviews 2020, 422 , 213469. https://doi.org/10.1016/j.ccr.2020.213469
    53. M K Svendsen, C Wolff, A-P Jauho, N A Mortensen, C Tserkezis. Role of diffusive surface scattering in nonlocal plasmonics. Journal of Physics: Condensed Matter 2020, 32 (39) , 395702. https://doi.org/10.1088/1361-648X/ab977d
    54. Phuong Que Tran Do, Vu Thi Huong, Nguyen Tran Truc Phuong, Thi-Hiep Nguyen, Hanh Kieu Thi Ta, Heongkyu Ju, Thang Bach Phan, Viet-Duc Phung, Kieu The Loan Trinh, Nhu Hoa Thi Tran. The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region. RSC Advances 2020, 10 (51) , 30858-30869. https://doi.org/10.1039/D0RA05271J
    55. N. L. Matsko. Formation of normal surface plasmon modes in small sodium nanoparticles. Physical Chemistry Chemical Physics 2020, 22 (23) , 13285-13291. https://doi.org/10.1039/D0CP00323A
    56. Surendra Maharjan, Kang-Shyang Liao, Alexander J. Wang, Zhuan Zhu, Brian P. McElhenny, Jiming Bao, Seamus A. Curran. Sol-gel synthesis of stabilized silver nanoparticles in an organosiloxane matrix and its optical nonlinearity. Chemical Physics 2020, 532 , 110610. https://doi.org/10.1016/j.chemphys.2019.110610
    57. Dinesh Kumar, Chan Hee Park, Cheol Sang Kim. Strategic harmonization of silica shell stabilization with Pt embedding on AuNPs for efficient artificial photosynthesis. Journal of Materials Chemistry A 2020, 8 (11) , 5734-5743. https://doi.org/10.1039/C9TA13531F
    58. Sheau Wei Ong, Bin Leong Ong, Eng Soon Tok. Optical and chemical stability of sputtered-Au nanoparticles and film in ambient environment. Applied Surface Science 2019, 488 , 753-762. https://doi.org/10.1016/j.apsusc.2019.05.233
    59. Ora Bitton, Satyendra Nath Gupta, Gilad Haran. Quantum dot plasmonics: from weak to strong coupling. Nanophotonics 2019, 8 (4) , 559-575. https://doi.org/10.1515/nanoph-2018-0218
    60. Jérôme Cuny, Nathalie Tarrat, Fernand Spiegelman, Arthur Huguenot, Mathias Rapacioli. Density-functional tight-binding approach for metal clusters, nanoparticles, surfaces and bulk: application to silver and gold. Journal of Physics: Condensed Matter 2018, 30 (30) , 303001. https://doi.org/10.1088/1361-648X/aacd6c
    61. Tigran V. Shahbazyan. Surface-Assisted Carrier Excitation in Plasmonic Nanostructures. Plasmonics 2018, 13 (3) , 757-761. https://doi.org/10.1007/s11468-017-0569-2
    62. G. Neal Blackman, Dentcho A. Genov. Bounds on quantum confinement effects in metal nanoparticles. Physical Review B 2018, 97 (11) https://doi.org/10.1103/PhysRevB.97.115440
    63. Taisuke Shiratsu, Hiroshi Yao. Size dependence of magneto-optical activity in silver nanoparticles with dimensions between 10 and 60 nm studied by MCD spectroscopy. Physical Chemistry Chemical Physics 2018, 20 (6) , 4269-4276. https://doi.org/10.1039/C7CP07695A
    64. Albert S. Reyna, Cid B. de Araújo. High-order optical nonlinearities in plasmonic nanocomposites—a review. Advances in Optics and Photonics 2017, 9 (4) , 720. https://doi.org/10.1364/AOP.9.000720
    65. Tigran V. Shahbazyan, Brittany Keys, , , . Surface-assisted plasmon decay in metal nanostructures. 2017, 73. https://doi.org/10.1117/12.2272872
    66. Mario Zapata Herrera, Andrey K. Kazansky, Javier Aizpurua, Andrei G. Borisov. Quantum description of the optical response of charged monolayer–thick metallic patch nanoantennas. Physical Review B 2017, 95 (24) https://doi.org/10.1103/PhysRevB.95.245413
    67. A. El-Khawaldeh, H.-J. Kull. Mode conversion of Mie plasmons at the surface of metallic atomic clusters. Physical Review A 2017, 95 (4) https://doi.org/10.1103/PhysRevA.95.043401
    68. Aurélien Crut, Paolo Maioli, Fabrice Vallée, Natalia Del Fatti. Linear and ultrafast nonlinear plasmonics of single nano-objects. Journal of Physics: Condensed Matter 2017, 29 (12) , 123002. https://doi.org/10.1088/1361-648X/aa59cc
    69. Anup Kumar Sasmal, Tarasankar Pal. Role of Metal Nanoparticles and Its Surface Plasmon Activity on Nanocomposites for Visible Light-Induced Catalysis. 2017, 69-105. https://doi.org/10.1007/978-3-319-62446-4_4
    70. Tigran V. Shahbazyan. Landau damping of surface plasmons in metal nanostructures. Physical Review B 2016, 94 (23) https://doi.org/10.1103/PhysRevB.94.235431
    71. Jamie M. Fitzgerald, Prineha Narang, Richard V. Craster, Stefan A. Maier, Vincenzo Giannini. Quantum Plasmonics. Proceedings of the IEEE 2016, 104 (12) , 2307-2322. https://doi.org/10.1109/JPROC.2016.2584860
    72. Arman S. Kirakosyan, Mark I. Stockman, Tigran V. Shahbazyan. Surface plasmon lifetime in metal nanoshells. Physical Review B 2016, 94 (15) https://doi.org/10.1103/PhysRevB.94.155429
    73. Etienne Pertreux, Anna Lombardi, Ileana Florea, Miguel Spuch‐Calvar, Sergio Gómez‐Graña, Dris Ihiawakrim, Charles Hirlimann, Ovidiu Ersen, Jérôme Majimel, Mona Tréguer‐Delapierre, Mike Hettich, Paolo Maioli, Aurélien Crut, Fabrice Vallée, Natalia Del Fatti. Surface Plasmon Resonance of an Individual Nano‐Object on an Absorbing Substrate: Quantitative Effects of Distance and 3D Orientation. Advanced Optical Materials 2016, 4 (4) , 567-577. https://doi.org/10.1002/adom.201500548
    74. K. Srinivasu, Brindaban Modak, Swapan K. Ghosh. Improving the photocatalytic activity of s-triazine based graphitic carbon nitride through metal decoration: an ab initio investigation. Physical Chemistry Chemical Physics 2016, 18 (38) , 26466-26474. https://doi.org/10.1039/C6CP03126A
    75. R. Carles, M. Bayle, P. Benzo, G. Benassayag, C. Bonafos, G. Cacciato, V. Privitera. Plasmon-resonant Raman spectroscopy in metallic nanoparticles: Surface-enhanced scattering by electronic excitations. Physical Review B 2015, 92 (17) https://doi.org/10.1103/PhysRevB.92.174302
    76. Mary Sajini Devadas, Tuphan Devkota, Paul Johns, Zhongming Li, Shun Shang Lo, Kuai Yu, Libai Huang, Gregory V Hartland. Imaging nano-objects by linear and nonlinear optical absorption microscopies. Nanotechnology 2015, 26 (35) , 354001. https://doi.org/10.1088/0957-4484/26/35/354001
    77. Søren Raza, Sergey I Bozhevolnyi, Martijn Wubs, N Asger Mortensen. Nonlocal optical response in metallic nanostructures. Journal of Physics: Condensed Matter 2015, 27 (18) , 183204. https://doi.org/10.1088/0953-8984/27/18/183204
    78. Marie Paule Pileni. Nano-supracrystallinity. EPL (Europhysics Letters) 2015, 109 (5) , 58001. https://doi.org/10.1209/0295-5075/109/58001
    79. Aurélien Crut, Paolo Maioli, Natalia Del Fatti, Fabrice Vallée. Time-domain investigation of the acoustic vibrations of metal nanoparticles: Size and encapsulation effects. Ultrasonics 2015, 56 , 98-108. https://doi.org/10.1016/j.ultras.2014.02.013
    80. Aurélien Crut, Paolo Maioli, Natalia Del Fatti, Fabrice Vallée. Acoustic vibrations of metal nano-objects: Time-domain investigations. Physics Reports 2015, 549 , 1-43. https://doi.org/10.1016/j.physrep.2014.09.004
    81. N. Goubet, I. Tempra, J. Yang, G. Soavi, D. Polli, G. Cerullo, M. P. Pileni. Size and nanocrystallinity controlled gold nanocrystals: synthesis, electronic and mechanical properties. Nanoscale 2015, 7 (7) , 3237-3246. https://doi.org/10.1039/C4NR06513A
    82. Tatjana Stoll, Paolo Maioli, Aurélien Crut, Natalia Del Fatti, Fabrice Vallée. Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles. The European Physical Journal B 2014, 87 (11) https://doi.org/10.1140/epjb/e2014-50515-4
    83. R. Carmina Monreal, S. Peter Apell, Tomasz J. Antosiewicz. Surface scattering contribution to the plasmon width in embedded Ag nanospheres. Optics Express 2014, 22 (21) , 24994. https://doi.org/10.1364/OE.22.024994
    84. Frank Hubenthal. Does the excitation of a plasmon resonance induce a strong chemical enhancement in SERS? On the relation between chemical interface damping and chemical enhancement in SERS. Applied Physics B 2014, 117 (1) , 1-5. https://doi.org/10.1007/s00340-014-5907-x
    85. Daniel Grasseschi, Andre L. A. Parussulo, Vitor M. Zamarion, Robson R. Guimarães, Koiti Araki, Henrique E. Toma. SERS studies of isolated and agglomerated gold nanoparticles functionalized with a dicarboxybipyridine‐trimercaptotriazine‐ruthenium dye. Journal of Raman Spectroscopy 2014, 45 (9) , 758-763. https://doi.org/10.1002/jrs.4562
    86. Subhajyoti Samanta, Satyabadi Martha, Kulamani Parida. Facile Synthesis of Au/g‐C 3 N 4 Nanocomposites: An Inorganic/Organic Hybrid Plasmonic Photocatalyst with Enhanced Hydrogen Gas Evolution Under Visible‐Light Irradiation. ChemCatChem 2014, 6 (5) , 1453-1462. https://doi.org/10.1002/cctc.201300949
    87. Aurélien Crut, Paolo Maioli, Natalia Del Fatti, Fabrice Vallée. Optical absorption and scattering spectroscopies of single nano-objects. Chemical Society Reviews 2014, 43 (11) , 3921. https://doi.org/10.1039/c3cs60367a
    88. Frank Hubenthal. Increased Damping of Plasmon Resonances in Gold Nanoparticles Due to Broadening of the Band Structure. Plasmonics 2013, 8 (3) , 1341-1349. https://doi.org/10.1007/s11468-013-9536-8
    89. Giovanni Barcaro, Alfredo Caro, Alessandro Fortunelli. Alloys on the Nanoscale. 2013, 409-472. https://doi.org/10.1007/978-3-642-20595-8_11
    90. Fabrice Vallée, Natalia Del Fatti. Ultrafast Nonlinear Plasmonics. 2013, 167-205. https://doi.org/10.1007/978-94-007-7805-4_5
    91. E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. de Melo, L. de S. Menezes, C. B. de Araújo. Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents. Applied Physics B 2012, 108 (1) , 9-16. https://doi.org/10.1007/s00340-012-5057-y
    92. Julien R G Navarro, Delphine Manchon, Fréderic Lerouge, Emmanuel Cottancin, Jean Lermé, Christophe Bonnet, Fréderic Chaput, Alexis Mosset, Michel Pellarin, Stephane Parola. Synthesis, electron tomography and single-particle optical response of twisted gold nano-bipyramids. Nanotechnology 2012, 23 (14) , 145707. https://doi.org/10.1088/0957-4484/23/14/145707
    93. Jing Leng, Xiaolei Wen, Jinan Rao, Gang Zou, Qijin Zhang. Thermal and pH dual stimuli-responsive hybrid inclusion complex with tunable nonlinear optical properties. Polymer 2012, 53 (7) , 1543-1550. https://doi.org/10.1016/j.polymer.2012.02.006
    94. Emmanuel Cottancin, Natalia Del Fatti, Valérie Halté. Optical, Structural and Magneto-Optical Properties of Metal Clusters and Nanoparticles. 2012, 331-368. https://doi.org/10.1007/978-1-4471-4014-6_10
    95. Peng Wang, Baibiao Huang, Ying Dai, Myung-Hwan Whangbo. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics 2012, 14 (28) , 9813. https://doi.org/10.1039/c2cp40823f
    96. Sandra M. Lang, Pieterjan Claes, Ngo Tuan Cuong, Minh Tho Nguyen, Peter Lievens, Ewald Janssens. Copper doping of small gold cluster cations: Influence on geometric and electronic structure. The Journal of Chemical Physics 2011, 135 (22) https://doi.org/10.1063/1.3664307
    97. H. Baida, D. Christofilos, P. Maioli, A. Crut, N. Del Fatti, F. Vallée. Surface plasmon resonance spectroscopy of single surfactant-stabilized gold nanoparticles. The European Physical Journal D 2011, 63 (2) , 293-299. https://doi.org/10.1140/epjd/e2010-10594-y
    98. Alexander Moroz. Electron mean-free path in metal-coated nanowires. Journal of the Optical Society of America B 2011, 28 (5) , 1130. https://doi.org/10.1364/JOSAB.28.001130