ACS Publications. Most Trusted. Most Cited. Most Read
Improved Parametrization of Li+, Na+, K+, and Mg2+ Ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems
My Activity

Figure 1Loading Img
    Macromolecules, Soft Matter

    Improved Parametrization of Li+, Na+, K+, and Mg2+ Ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
    Other Access OptionsSupporting Information (2)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2012, 3, 1, 45–50
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz201501a
    Published December 6, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Atomic-scale modeling of compacted nucleic acids has the ability to reveal the inner workings of spectacular biomolecular machines, yet the outcome of such modeling efforts sensitively depends on the accuracy of the underlying computational models. Our molecular dynamics simulations of an array of 64 parallel duplex DNA revealed considerable artifacts of cation–DNA phosphate interactions in CHARMM and AMBER parameter sets: both the DNA arrangement and the pressure inside the DNA arrays were found to be in considerable disagreement with experiment. To improve the models, we fine-tuned van der Waals interaction parameters for specific ion pairs to reproduce experimental osmotic pressure of binary electrolyte solutions of biologically relevant ions. Repeating the DNA array simulations using our parameters produced results consistent with experiment. Our improved parametrization can be directly applied to molecular dynamics simulations of various charged biomolecular systems, including nucleic acids, proteins, and lipid bilayer membranes.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed description of the setup and procedures used in our MD simulations, discussion of the force field choices and our treatment of magnesium, complete account of the fitting procedures, and sample parameter files with NBFIX corrections. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 274 publications.

    1. Tetiana Bubon, Khatereh Azizi. Effects of Alkali-Metal Counterions on the Vibrational Dynamics of the DNA Hydration Shell. The Journal of Physical Chemistry B 2025, 129 (1) , 28-40. https://doi.org/10.1021/acs.jpcb.4c04449
    2. Craig A. Peeples, Ruibin Liu, Jana Shen. Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics. The Journal of Physical Chemistry B 2024, 128 (47) , 11616-11624. https://doi.org/10.1021/acs.jpcb.4c05971
    3. Sri Amruthaa Sankaranarayanan, Dokkari Nagalaxmi Yadav, Saanya Yadav, Aditya Srivastava, Sai Rachana Pramatha, Venkata Rao Kotagiri, Himanshu Joshi, Aravind Kumar Rengan. Tailoring Phage Nanosomes for Enhanced Theranostic Properties of Near Infrared Dyes. Langmuir 2024, 40 (32) , 16743-16756. https://doi.org/10.1021/acs.langmuir.4c01010
    4. Behzad Mehrafrooz, Luning Yu, Laxmi Pandey, Zuzanna S. Siwy, Meni Wanunu, Aleksei Aksimentiev. Electro-osmotic Flow Generation via a Sticky Ion Action. ACS Nano 2024, 18 (27) , 17521-17533. https://doi.org/10.1021/acsnano.4c00829
    5. Xiaojing Lin, Haonan Chen, Gensheng Wu, Jiajia Zhao, Yin Zhang, Jingjie Sha, Wei Si. Selective Capture and Manipulation of DNA through Double Charged Nanopores. The Journal of Physical Chemistry Letters 2024, 15 (19) , 5120-5129. https://doi.org/10.1021/acs.jpclett.4c00672
    6. Yiling Nan, Alexander D. MacKerell, Jr.. Balancing Group I Monatomic Ion–Polar Compound Interactions for Condensed Phase Simulation in the Polarizable Drude Force Field. Journal of Chemical Theory and Computation 2024, 20 (8) , 3242-3257. https://doi.org/10.1021/acs.jctc.3c01380
    7. Lev Levintov, Harish Vashisth. Adenine Methylation Enhances the Conformational Flexibility of an RNA Hairpin Tetraloop. The Journal of Physical Chemistry B 2024, 128 (13) , 3157-3166. https://doi.org/10.1021/acs.jpcb.4c00522
    8. Zack Jarin, Richard M. Venable, Kyungreem Han, Richard W. Pastor. Ion-Induced PIP2 Clustering with Martini3: Modification of Phosphate–Ion Interactions and Comparison with CHARMM36. The Journal of Physical Chemistry B 2024, 128 (9) , 2134-2143. https://doi.org/10.1021/acs.jpcb.3c06523
    9. Jingqian Liu, Aleksei Aksimentiev. Molecular Determinants of Current Blockade Produced by Peptide Transport Through a Nanopore. ACS Nanoscience Au 2024, 4 (1) , 21-29. https://doi.org/10.1021/acsnanoscienceau.3c00046
    10. Julian M. Delgado, Péter R. Nagy, Sameer Varma. Polarizable AMOEBA Model for Simulating Mg2+·Protein·Nucleotide Complexes. Journal of Chemical Information and Modeling 2024, 64 (2) , 378-392. https://doi.org/10.1021/acs.jcim.3c01513
    11. Amaury Coste, Ema Slejko, Julija Zavadlav, Matej Praprotnik. Developing an Implicit Solvation Machine Learning Model for Molecular Simulations of Ionic Media. Journal of Chemical Theory and Computation 2024, 20 (1) , 411-420. https://doi.org/10.1021/acs.jctc.3c00984
    12. Vladimir S. Farafonov, Michael Stich, Dmitry A. Nerukh. Complete Virion Simulated: All-Atom Model of an MS2 Bacteriophage with Native Genome. Journal of Chemical Theory and Computation 2023, 19 (21) , 7924-7933. https://doi.org/10.1021/acs.jctc.3c00846
    13. Caleb Huang, B. Montgomery Pettitt. Parameter Dependence of the Solubility Limit for Disodium Phosphate. The Journal of Physical Chemistry B 2023, 127 (40) , 8690-8696. https://doi.org/10.1021/acs.jpcb.3c05343
    14. Weiwei He, Xiangyun Qiu, Serdal Kirmizialtin. Sequence-Dependent Orientational Coupling and Electrostatic Attraction in Cation-Mediated DNA–DNA Interactions. Journal of Chemical Theory and Computation 2023, 19 (19) , 6827-6838. https://doi.org/10.1021/acs.jctc.3c00520
    15. Esmat Mohammadi, Soumil Y. Joshi, Sanket A. Deshmukh. Development, Validation, and Applications of Nonbonded Interaction Parameters between Coarse-Grained Amino Acid and Water Models. Biomacromolecules 2023, 24 (9) , 4078-4092. https://doi.org/10.1021/acs.biomac.3c00441
    16. Amit Kumar, Harish Vashisth. Mechanism of Ligand Discrimination by the NMT1 Riboswitch. Journal of Chemical Information and Modeling 2023, 63 (15) , 4864-4874. https://doi.org/10.1021/acs.jcim.3c00835
    17. Souvik Sinha, Chinmai Pindi, Mohd Ahsan, Pablo R. Arantes, Giulia Palermo. Machines on Genes through the Computational Microscope. Journal of Chemical Theory and Computation 2023, 19 (7) , 1945-1964. https://doi.org/10.1021/acs.jctc.2c01313
    18. Emad Pirhadi, Juan M. Vanegas, Mithila Farin, Jeffrey W. Schertzer, Xin Yong. Effect of Local Stress on Accurate Modeling of Bacterial Outer Membranes Using All-Atom Molecular Dynamics. Journal of Chemical Theory and Computation 2023, 19 (1) , 363-372. https://doi.org/10.1021/acs.jctc.2c01026
    19. Julián A. Delgado, Vered Wineman-Fisher, Sagar Pandit, Sameer Varma. Inclusion of High-Field Target Data in AMOEBA’s Calibration Improves Predictions of Protein–Ion Interactions. Journal of Chemical Information and Modeling 2022, 62 (19) , 4713-4726. https://doi.org/10.1021/acs.jcim.2c00758
    20. Zhifeng Jing, Pengyu Ren. Molecular Dynamics Simulations of Protein RNA Complexes by Using an Advanced Electrostatic Model. The Journal of Physical Chemistry B 2022, 126 (38) , 7343-7353. https://doi.org/10.1021/acs.jpcb.2c05278
    21. Amit Kumar, Harish Vashisth. Role of Mutations in Differential Recognition of Viral RNA Molecules by Peptides. Journal of Chemical Information and Modeling 2022, 62 (14) , 3381-3390. https://doi.org/10.1021/acs.jcim.2c00376
    22. Stefan K. Kolev, Petko St. Petkov, Teodor I. Milenov, Georgi N. Vayssilov. Sodium and Magnesium Ion Location at the Backbone and at the Nucleobase of RNA: Ab Initio Molecular Dynamics in Water Solution. ACS Omega 2022, 7 (27) , 23234-23244. https://doi.org/10.1021/acsomega.2c01327
    23. Giovanni Di Muccio, Blasco Morozzo della Rocca, Mauro Chinappi. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores. ACS Nano 2022, 16 (6) , 8716-8728. https://doi.org/10.1021/acsnano.1c03017
    24. Maxwell R. Tucker, Stefano Piana, Dazhi Tan, Michael V. LeVine, David E. Shaw. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA–Protein Complexes. The Journal of Physical Chemistry B 2022, 126 (24) , 4442-4457. https://doi.org/10.1021/acs.jpcb.1c10971
    25. Tiedong Sun, Vishal Minhas, Alexander Mirzoev, Nikolay Korolev, Alexander P. Lyubartsev, Lars Nordenskiöld. A Bottom-Up Coarse-Grained Model for Nucleosome–Nucleosome Interactions with Explicit Ions. Journal of Chemical Theory and Computation 2022, 18 (6) , 3948-3960. https://doi.org/10.1021/acs.jctc.2c00083
    26. Matthew Saunders, Vered Wineman-Fisher, Eric Jakobsson, Sameer Varma, Sagar A. Pandit. High-Dimensional Parameter Search Method to Determine Force Field Mixing Terms in Molecular Simulations. Langmuir 2022, 38 (9) , 2840-2851. https://doi.org/10.1021/acs.langmuir.1c03105
    27. Ian Hamilton, Magdalena Gebala, Daniel Herschlag, Rick Russell. Direct Measurement of Interhelical DNA Repulsion and Attraction by Quantitative Cross-Linking. Journal of the American Chemical Society 2022, 144 (4) , 1718-1728. https://doi.org/10.1021/jacs.1c11122
    28. Sorin Muraru, Sebastian Muraru, Florentin Romeo Nitu, Mariana Ionita. Recent Efforts and Milestones for Simulating Nucleic Acid FRET Experiments through Computational Methods. Journal of Chemical Information and Modeling 2022, 62 (2) , 232-239. https://doi.org/10.1021/acs.jcim.1c00957
    29. Egor S. Kolesnikov, Ivan Yu. Gushchin, Petr A. Zhilyaev, Alexey V. Onufriev. Similarities and Differences between Na+ and K+ Distributions around DNA Obtained with Three Popular Water Models. Journal of Chemical Theory and Computation 2021, 17 (11) , 7246-7259. https://doi.org/10.1021/acs.jctc.1c00332
    30. Esam A. Orabi, Tuǧba N. Öztürk, Nathan Bernhardt, José D. Faraldo-Gómez. Corrections in the CHARMM36 Parametrization of Chloride Interactions with Proteins, Lipids, and Alkali Cations, and Extension to Other Halide Anions. Journal of Chemical Theory and Computation 2021, 17 (10) , 6240-6261. https://doi.org/10.1021/acs.jctc.1c00550
    31. Briana T. A. Boychuk, Ye Eun Rebecca Jeong, Stacey D. Wetmore. Assessment of the Accuracy of DFT-Predicted Li+–Nucleic Acid Binding Energies. Journal of Chemical Theory and Computation 2021, 17 (8) , 5392-5408. https://doi.org/10.1021/acs.jctc.1c00401
    32. Philip Loche, Patrick Steinbrunner, Sean Friedowitz, Roland R. Netz, Douwe Jan Bonthuis. Transferable Ion Force Fields in Water from a Simultaneous Optimization of Ion Solvation and Ion–Ion Interaction. The Journal of Physical Chemistry B 2021, 125 (30) , 8581-8587. https://doi.org/10.1021/acs.jpcb.1c05303
    33. Mikhail Ivanov, Alexander P. Lyubartsev. Atomistic Molecular Dynamics Simulations of Lipids Near TiO2 Nanosurfaces. The Journal of Physical Chemistry B 2021, 125 (29) , 8048-8059. https://doi.org/10.1021/acs.jpcb.1c04547
    34. Jiarong Peng, Yongguang Zhang, Yang Jiang, Haiyang Zhang. Developing and Assessing Nonbonded Dummy Models of Magnesium Ion with Different Hydration Free Energy References. Journal of Chemical Information and Modeling 2021, 61 (6) , 2981-2997. https://doi.org/10.1021/acs.jcim.1c00281
    35. Eric R. Hantz, Steffen Lindert. Adaptative Steered Molecular Dynamics Study of Mutagenesis Effects on Calcium Affinity in the Regulatory Domain of Cardiac Troponin C. Journal of Chemical Information and Modeling 2021, 61 (6) , 3052-3057. https://doi.org/10.1021/acs.jcim.1c00419
    36. Diana Morzy, Roger Rubio-Sánchez, Himanshu Joshi, Aleksei Aksimentiev, Lorenzo Di Michele, Ulrich F. Keyser. Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures. Journal of the American Chemical Society 2021, 143 (19) , 7358-7367. https://doi.org/10.1021/jacs.1c00166
    37. Kristina Hübner, Himanshu Joshi, Aleksei Aksimentiev, Fernando D. Stefani, Philip Tinnefeld, Guillermo P. Acuna. Determining the In-Plane Orientation and Binding Mode of Single Fluorescent Dyes in DNA Origami Structures. ACS Nano 2021, 15 (3) , 5109-5117. https://doi.org/10.1021/acsnano.0c10259
    38. James D. Sterling, Wenjuan Jiang, Wesley M. Botello-Smith, Yun L. Luo. Ion Pairing and Dielectric Decrement in Glycosaminoglycan Brushes. The Journal of Physical Chemistry B 2021, 125 (10) , 2771-2780. https://doi.org/10.1021/acs.jpcb.0c11571
    39. A. Acharya, R. Agarwal, M. B. Baker, J. Baudry, D. Bhowmik, S. Boehm, K. G. Byler, S. Y. Chen, L. Coates, C. J. Cooper, O. Demerdash, I. Daidone, J. D. Eblen, S. Ellingson, S. Forli, J. Glaser, J. C. Gumbart, J. Gunnels, O. Hernandez, S. Irle, D. W. Kneller, A. Kovalevsky, J. Larkin, T. J. Lawrence, S. LeGrand, S.-H. Liu, J.C. Mitchell, G. Park, J.M. Parks, A. Pavlova, L. Petridis, D. Poole, L. Pouchard, A. Ramanathan, D. M. Rogers, D. Santos-Martins, A. Scheinberg, A. Sedova, Y. Shen, J. C. Smith, M. D. Smith, C. Soto, A. Tsaris, M. Thavappiragasam, A. F. Tillack, J. V. Vermaas, V. Q. Vuong, J. Yin, S. Yoo, M. Zahran, L. Zanetti-Polzi. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. Journal of Chemical Information and Modeling 2020, 60 (12) , 5832-5852. https://doi.org/10.1021/acs.jcim.0c01010
    40. Sadra Kashefolgheta, Marina P. Oliveira, Salomé R. Rieder, Bruno A. C. Horta, William E. Acree, Jr., Philippe H. Hünenberger. Evaluating Classical Force Fields against Experimental Cross-Solvation Free Energies. Journal of Chemical Theory and Computation 2020, 16 (12) , 7556-7580. https://doi.org/10.1021/acs.jctc.0c00688
    41. Jigneshkumar Dahyabhai Prajapati, Ulrich Kleinekathöfer. Voltage-Dependent Transport of Neutral Solutes through Nanopores: A Molecular View. The Journal of Physical Chemistry B 2020, 124 (47) , 10718-10731. https://doi.org/10.1021/acs.jpcb.0c08401
    42. Wei Si, Meng Yu, Gensheng Wu, Chang Chen, Jingjie Sha, Yin Zhang, Yunfei Chen. A Nanoparticle-DNA Assembled Nanorobot Powered by Charge-Tunable Quad-Nanopore System. ACS Nano 2020, 14 (11) , 15349-15360. https://doi.org/10.1021/acsnano.0c05779
    43. Mingye Xiong, Michael Graf, Nagendra Athreya, Aleksandra Radenovic, Jean-Pierre Leburton. Microscopic Detection Analysis of Single Molecules in MoS2 Membrane Nanopores. ACS Nano 2020, 14 (11) , 16131-16139. https://doi.org/10.1021/acsnano.0c08382
    44. Seonju You, Hong-Guen Lee, Kimoon Kim, Jejoong Yoo. Improved Parameterization of Protein–DNA Interactions for Molecular Dynamics Simulations of PCNA Diffusion on DNA. Journal of Chemical Theory and Computation 2020, 16 (7) , 4006-4013. https://doi.org/10.1021/acs.jctc.0c00241
    45. Jigneshkumar Dahyabhai Prajapati, Crystal Mele, Mehmet Alphan Aksoyoglu, Mathias Winterhalter, Ulrich Kleinekathöfer. Computational Modeling of Ion Transport in Bulk and through a Nanopore Using the Drude Polarizable Force Field. Journal of Chemical Information and Modeling 2020, 60 (6) , 3188-3203. https://doi.org/10.1021/acs.jcim.0c00389
    46. Manish Shankla, Aleksei Aksimentiev. Molecular Transport across the Ionic Liquid–Aqueous Electrolyte Interface in a MoS2 Nanopore. ACS Applied Materials & Interfaces 2020, 12 (23) , 26624-26634. https://doi.org/10.1021/acsami.0c04523
    47. Ali Rahnamoun, Kyoungtea Kim, Joel A. Pedersen, Rigoberto Hernandez. Ionic Environment Affects Bacterial Lipopolysaccharide Packing and Function. Langmuir 2020, 36 (12) , 3149-3158. https://doi.org/10.1021/acs.langmuir.9b03162
    48. Amy Rice, Mary T. Rooney, Alexander I. Greenwood, Myriam L. Cotten, Jeff Wereszczynski. Lipopolysaccharide Simulations Are Sensitive to Phosphate Charge and Ion Parameterization. Journal of Chemical Theory and Computation 2020, 16 (3) , 1806-1815. https://doi.org/10.1021/acs.jctc.9b00868
    49. D. A. Tolmachev, O. S. Boyko, N. V. Lukasheva, H. Martinez-Seara, Mikko Karttunen. Overbinding and Qualitative and Quantitative Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX and ECC Corrections. Journal of Chemical Theory and Computation 2020, 16 (1) , 677-687. https://doi.org/10.1021/acs.jctc.9b00813
    50. Vishal Minhas, Tiedong Sun, Alexander Mirzoev, Nikolay Korolev, Alexander P. Lyubartsev, Lars Nordenskiöld. Modeling DNA Flexibility: Comparison of Force Fields from Atomistic to Multiscale Levels. The Journal of Physical Chemistry B 2020, 124 (1) , 38-49. https://doi.org/10.1021/acs.jpcb.9b09106
    51. Yaozong Li, Rajiv Kumar Bedi, Lars Wiedmer, Danzhi Huang, Paweł Śledź, Amedeo Caflisch. Flexible Binding of m6A Reader Protein YTHDC1 to Its Preferred RNA Motif. Journal of Chemical Theory and Computation 2019, 15 (12) , 7004-7014. https://doi.org/10.1021/acs.jctc.9b00987
    52. Shun Zhu. Validation of the Generalized Force Fields GAFF, CGenFF, OPLS-AA, and PRODRGFF by Testing Against Experimental Osmotic Coefficient Data for Small Drug-Like Molecules. Journal of Chemical Information and Modeling 2019, 59 (10) , 4239-4247. https://doi.org/10.1021/acs.jcim.9b00552
    53. Job A. L. Roodhuizen, Philip J. T. M. Hendrikx, Peter A. J. Hilbers, Tom F. A. de Greef, Albert J. Markvoort. Counterion-Dependent Mechanisms of DNA Origami Nanostructure Stabilization Revealed by Atomistic Molecular Simulation. ACS Nano 2019, 13 (9) , 10798-10809. https://doi.org/10.1021/acsnano.9b05650
    54. Emelie Flood, Céline Boiteux, Bogdan Lev, Igor Vorobyov, Toby W. Allen. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chemical Reviews 2019, 119 (13) , 7737-7832. https://doi.org/10.1021/acs.chemrev.8b00630
    55. Jiancheng Luo, Songtao Ye, Tao Li, Erik Sarnello, Hui Li, Tianbo Liu. Distinctive Trend of Metal Binding Affinity via Hydration Shell Breakage in Nanoconfined Cavity. The Journal of Physical Chemistry C 2019, 123 (23) , 14825-14833. https://doi.org/10.1021/acs.jpcc.9b03004
    56. Petra Kührová, Vojtěch Mlýnský, Marie Zgarbová, Miroslav Krepl, Giovanni Bussi, Robert B. Best, Michal Otyepka, Jiří Šponer, Pavel Banáš. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. Journal of Chemical Theory and Computation 2019, 15 (5) , 3288-3305. https://doi.org/10.1021/acs.jctc.8b00955
    57. Vered Wineman-Fisher, Yasmine Al-Hamdani, Iqbal Addou, Alexandre Tkatchenko, Sameer Varma. Ion-Hydroxyl Interactions: From High-Level Quantum Benchmarks to Transferable Polarizable Force Fields. Journal of Chemical Theory and Computation 2019, 15 (4) , 2444-2453. https://doi.org/10.1021/acs.jctc.8b01198
    58. Carlos Nieto-Draghi, Bernard Rousseau. Thermodynamically Consistent Force Field for Coarse-Grained Modeling of Aqueous Electrolyte Solution. The Journal of Physical Chemistry B 2019, 123 (10) , 2424-2431. https://doi.org/10.1021/acs.jpcb.8b11190
    59. Shuangli Du, Haohao Fu, Xueguang Shao, Christophe Chipot, Wensheng Cai. Addressing Polarization Phenomena in Molecular Machines Containing Transition Metal Ions with an Additive Force Field. Journal of Chemical Theory and Computation 2019, 15 (3) , 1841-1847. https://doi.org/10.1021/acs.jctc.8b00972
    60. Qicheng Chen, Jie Ma, Yingjin Zhang, Chunlei Wu, Jinliang Xu. Effects of Temperature and Ionic Concentration on Nanodroplet Electrocoalescence. Langmuir 2019, 35 (3) , 750-759. https://doi.org/10.1021/acs.langmuir.8b03627
    61. Patrick M. Arnott, Himanshu Joshi, Aleksei Aksimentiev, Stefan Howorka. Dynamic Interactions between Lipid-Tethered DNA and Phospholipid Membranes. Langmuir 2018, 34 (49) , 15084-15092. https://doi.org/10.1021/acs.langmuir.8b02271
    62. Jingjie Sha, Wei Si, Bing Xu, Shuai Zhang, Kun Li, Kabin Lin, Hongjiao Shi, Yunfei Chen. Identification of Spherical and Nonspherical Proteins by a Solid-State Nanopore. Analytical Chemistry 2018, 90 (23) , 13826-13831. https://doi.org/10.1021/acs.analchem.8b04136
    63. Maciej Jasiński, Michael Feig, Joanna Trylska. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters. Journal of Chemical Theory and Computation 2018, 14 (7) , 3603-3620. https://doi.org/10.1021/acs.jctc.8b00291
    64. Jörg Sauter, Andrea Grafmüller. Efficient Osmotic Pressure Calculations Using Coarse-Grained Molecular Simulations. Journal of Chemical Theory and Computation 2018, 14 (3) , 1171-1176. https://doi.org/10.1021/acs.jctc.7b01220
    65. Benjamin Cressiot, Sandra J. Greive, Wei Si, Tomas C. Pascoa, Mehrnaz Mojtabavi, Maria Chechik, Huw T. Jenkins, Xueguang Lu, Ke Zhang, Aleksei Aksimentiev, Alfred A. Antson, and Meni Wanunu . Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization. ACS Nano 2017, 11 (12) , 11931-11945. https://doi.org/10.1021/acsnano.7b06980
    66. Gözde Ergin, Mária Lbadaoui-Darvas, and Satoshi Takahama . Molecular Structure Inhibiting Synergism in Charged Surfactant Mixtures: An Atomistic Molecular Dynamics Simulation Study. Langmuir 2017, 33 (49) , 14093-14104. https://doi.org/10.1021/acs.langmuir.7b03346
    67. Aaron J. Wolfe, Wei Si, Zhengqi Zhang, Adam R. Blanden, Yi-Ching Hsueh, Jack F. Gugel, Bach Pham, Min Chen, Stewart N. Loh, Sharon Rozovsky, Aleksei Aksimentiev, and Liviu Movileanu . Quantification of Membrane Protein-Detergent Complex Interactions. The Journal of Physical Chemistry B 2017, 121 (44) , 10228-10241. https://doi.org/10.1021/acs.jpcb.7b08045
    68. Shu-Han Chao, Jan Schäfer, and Martin Gruebele . The Surface of Protein λ6–85 Can Act as a Template for Recurring Poly(ethylene glycol) Structure. Biochemistry 2017, 56 (42) , 5671-5678. https://doi.org/10.1021/acs.biochem.7b00215
    69. Philipp S. Schmalhorst, Felix Deluweit, Roger Scherrers, Carl-Philipp Heisenberg, and Mateusz Sikora . Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides. Journal of Chemical Theory and Computation 2017, 13 (10) , 5039-5053. https://doi.org/10.1021/acs.jctc.7b00374
    70. Hui Li, Janamejaya Chowdhary, Lei Huang, Xibing He, Alexander D. MacKerell, Jr., and Benoît Roux . Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids. Journal of Chemical Theory and Computation 2017, 13 (9) , 4535-4552. https://doi.org/10.1021/acs.jctc.7b00262
    71. Tiedong Sun, Alexander Mirzoev, Nikolay Korolev, Alexander P. Lyubartsev, and Lars Nordenskiöld . All-Atom MD Simulation of DNA Condensation Using Ab Initio Derived Force Field Parameters of Cobalt(III)-Hexammine. The Journal of Physical Chemistry B 2017, 121 (33) , 7761-7770. https://doi.org/10.1021/acs.jpcb.7b03793
    72. Karl Decker, Martin Page, and Aleksei Aksimentiev . Nanoscale Ion Pump Derived from a Biological Water Channel. The Journal of Physical Chemistry B 2017, 121 (33) , 7899-7906. https://doi.org/10.1021/acs.jpcb.7b05568
    73. Wei Si and Aleksei Aksimentiev . Nanopore Sensing of Protein Folding. ACS Nano 2017, 11 (7) , 7091-7100. https://doi.org/10.1021/acsnano.7b02718
    74. Zheng Gong and Huai Sun . A Coarse-Grained Force Field Parameterized for MgCl2 and CaCl2 Aqueous Solutions. Journal of Chemical Information and Modeling 2017, 57 (7) , 1599-1608. https://doi.org/10.1021/acs.jcim.7b00206
    75. Wesley K. Lay, Mark S. Miller, and Adrian H. Elcock . Reparameterization of Solute—Solute Interactions for Amino Acid–Sugar Systems Using Isopiestic Osmotic Pressure Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2017, 13 (5) , 1874-1882. https://doi.org/10.1021/acs.jctc.7b00194
    76. Casey T. Andrews, Brady A. Campbell, and Adrian H. Elcock . Direct Comparison of Amino Acid and Salt Interactions with Double-Stranded and Single-Stranded DNA from Explicit-Solvent Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2017, 13 (4) , 1794-1811. https://doi.org/10.1021/acs.jctc.6b00883
    77. Mark S. Miller, Wesley K. Lay, Shuxiang Li, William C. Hacker, Jiadi An, Jianlan Ren, and Adrian H. Elcock . Reparametrization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2017, 13 (4) , 1812-1826. https://doi.org/10.1021/acs.jctc.6b01059
    78. Karl Decker, Martin Page, Ashley Boyd, Irene MacAllister, Mark Ginsberg, and Aleksei Aksimentiev . Selective Permeability of Truncated Aquaporin 1 in Silico. ACS Biomaterials Science & Engineering 2017, 3 (3) , 342-348. https://doi.org/10.1021/acsbiomaterials.6b00583
    79. Kai Tian, Karl Decker, Aleksei Aksimentiev, and Li-Qun Gu . Interference-Free Detection of Genetic Biomarkers Using Synthetic Dipole-Facilitated Nanopore Dielectrophoresis. ACS Nano 2017, 11 (2) , 1204-1213. https://doi.org/10.1021/acsnano.6b07570
    80. Pengfei Li and Kenneth M. Merz, Jr. . Metal Ion Modeling Using Classical Mechanics. Chemical Reviews 2017, 117 (3) , 1564-1686. https://doi.org/10.1021/acs.chemrev.6b00440
    81. Lingshuang Song, Lin Yang, Jie Meng, and Sichun Yang . Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental–Computational Study. The Journal of Physical Chemistry Letters 2017, 8 (2) , 347-351. https://doi.org/10.1021/acs.jpclett.6b02673
    82. Qianqian Cao, Lujuan Li, Fengli Huang, and Chuncheng Zuo . Ion-Specific Effects on the Elongation Dynamics of a Nanosized Water Droplet in Applied Electric Fields. Langmuir 2017, 33 (1) , 428-437. https://doi.org/10.1021/acs.langmuir.6b04101
    83. Justin A. Lemkul and Alexander D. MacKerell, Jr. . Balancing the Interactions of Mg2+ in Aqueous Solution and with Nucleic Acid Moieties For a Polarizable Force Field Based on the Classical Drude Oscillator Model. The Journal of Physical Chemistry B 2016, 120 (44) , 11436-11448. https://doi.org/10.1021/acs.jpcb.6b09262
    84. Xinxin Xia, Xiaoyu Kuang, Cheng Lu, Yuanyuan Jin, Xiaodong Xing, Gabriel Merino, and Andreas Hermann . Deciphering the Structural Evolution and Electronic Properties of Magnesium Clusters: An Aromatic Homonuclear Metal Mg17 Cluster. The Journal of Physical Chemistry A 2016, 120 (40) , 7947-7954. https://doi.org/10.1021/acs.jpca.6b07322
    85. Jejoong Yoo and Aleksei Aksimentiev . Refined Parameterization of Nonbonded Interactions Improves Conformational Sampling and Kinetics of Protein Folding Simulations. The Journal of Physical Chemistry Letters 2016, 7 (19) , 3812-3818. https://doi.org/10.1021/acs.jpclett.6b01747
    86. Kerstin Göpfrich, Chen-Yu Li, Maria Ricci, Satya Prathyusha Bhamidimarri, Jejoong Yoo, Bertalan Gyenes, Alexander Ohmann, Mathias Winterhalter, Aleksei Aksimentiev, and Ulrich F. Keyser . Large-Conductance Transmembrane Porin Made from DNA Origami. ACS Nano 2016, 10 (9) , 8207-8214. https://doi.org/10.1021/acsnano.6b03759
    87. Jörg Sauter and Andrea Grafmüller . Predicting the Chemical Potential and Osmotic Pressure of Polysaccharide Solutions by Molecular Simulations. Journal of Chemical Theory and Computation 2016, 12 (9) , 4375-4384. https://doi.org/10.1021/acs.jctc.6b00295
    88. Mark S. Miller, Wesley K. Lay, and Adrian H. Elcock . Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization. The Journal of Physical Chemistry B 2016, 120 (33) , 8217-8229. https://doi.org/10.1021/acs.jpcb.6b01902
    89. Di Luo and Yuguang Mu . Computational Insights into the Stability and Folding Pathways of Human Telomeric DNA G-Quadruplexes. The Journal of Physical Chemistry B 2016, 120 (22) , 4912-4926. https://doi.org/10.1021/acs.jpcb.6b01919
    90. Maxim Belkin and Aleksei Aksimentiev . Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores. ACS Applied Materials & Interfaces 2016, 8 (20) , 12599-12608. https://doi.org/10.1021/acsami.6b00463
    91. Wesley K. Lay, Mark S. Miller, and Adrian H. Elcock . Optimizing Solute–Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements. Journal of Chemical Theory and Computation 2016, 12 (4) , 1401-1407. https://doi.org/10.1021/acs.jctc.5b01136
    92. Jejoong Yoo and Aleksei Aksimentiev . Improved Parameterization of Amine–Carboxylate and Amine–Phosphate Interactions for Molecular Dynamics Simulations Using the CHARMM and AMBER Force Fields. Journal of Chemical Theory and Computation 2016, 12 (1) , 430-443. https://doi.org/10.1021/acs.jctc.5b00967
    93. Jejoong Yoo and Aleksei Aksimentiev . Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4680-4687. https://doi.org/10.1021/acs.jpclett.5b01964
    94. Magdalena Gebala, George M. Giambaşu, Jan Lipfert, Namita Bisaria, Steve Bonilla, Guangchao Li, Darrin M. York, and Daniel Herschlag . Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting. Journal of the American Chemical Society 2015, 137 (46) , 14705-14715. https://doi.org/10.1021/jacs.5b08395
    95. Maxim Belkin, Shu-Han Chao, Magnus P. Jonsson, Cees Dekker, and Aleksei Aksimentiev . Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano 2015, 9 (11) , 10598-10611. https://doi.org/10.1021/acsnano.5b04173
    96. Daniel M. Hinckley and Juan J. de Pablo . Coarse-Grained Ions for Nucleic Acid Modeling. Journal of Chemical Theory and Computation 2015, 11 (11) , 5436-5446. https://doi.org/10.1021/acs.jctc.5b00341
    97. Garrett B. Goh, David M. Eike, Bruce P. Murch, and Charles L. Brooks, III . Accurate Modeling of Ionic Surfactants at High Concentration. The Journal of Physical Chemistry B 2015, 119 (20) , 6217-6224. https://doi.org/10.1021/acs.jpcb.5b01765
    98. Di Luo and Yuguang Mu . All-Atomic Simulations on Human Telomeric G-Quadruplex DNA Binding with Thioflavin T. The Journal of Physical Chemistry B 2015, 119 (15) , 4955-4967. https://doi.org/10.1021/acs.jpcb.5b01107
    99. Alexey Savelyev and Alexander D. MacKerell, Jr. . Competition among Li+, Na+, K+, and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations Using the Additive CHARMM36 and Drude Polarizable Force Fields. The Journal of Physical Chemistry B 2015, 119 (12) , 4428-4440. https://doi.org/10.1021/acs.jpcb.5b00683
    100. Chen-Yu Li, Elisa A. Hemmig, Jinglin Kong, Jejoong Yoo, Silvia Hernández-Ainsa, Ulrich F. Keyser, and Aleksei Aksimentiev . Ionic Conductivity, Structural Deformation, and Programmable Anisotropy of DNA Origami in Electric Field. ACS Nano 2015, 9 (2) , 1420-1433. https://doi.org/10.1021/nn505825z
    Load more citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2012, 3, 1, 45–50
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz201501a
    Published December 6, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    4919

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.