Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
What Makes Copper-Exchanged SSZ-13 Zeolite Efficient at Cleaning Car Exhaust Gases?
My Activity

Figure 1Loading Img
    Molecular Structure, Quantum Chemistry, and General Theory

    What Makes Copper-Exchanged SSZ-13 Zeolite Efficient at Cleaning Car Exhaust Gases?
    Click to copy article linkArticle link copied!

    View Author Information
    Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, Université de Lyon, CNRS, 46 Allée d’Italie, F-69342 Lyon Cedex 07, France
    Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
    Faculty of Physics, Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna, Austria
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2013, 4, 14, 2244–2249
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz400817c
    Published June 25, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Recently, the outstanding properties of Cu-SSZ-13 (a zeolite in the chabazite structure) for the selective catalytic reduction of nitrous oxides were discovered. However, the true nature of the active site is still not answered satisfactorily. In this work, we identify the active site for the given reaction from first-principles simulations of the total energy of Cu(II) ions in various positions in combination with previously published catalytic activity as a function of the copper exchange level. This attribution is confirmed by the simulation of vibrational properties of CO adsorbed to the reduced Cu(I) species. The relation between energetic considerations, vibrational calculations, and experiment allows a clear statement about the distribution of active sites in the catalyst. We furthermore discuss the structural properties of the active site leading to the high stability under reaction conditions over a large temperature range. The insights from this work allow a more targeted catalyst design and represent a step toward an industrial application of copper-exchanged zeolites in cleaning car exhaust gases.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    A detailed description of computational methods, data for Cu(I) (before and after CO adsorption) and Cu(II) sites, as well as a graphical displays of the diffusion thermodynamics. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 114 publications.

    1. Asanka Wijerathne, Allison Sawyer, Rohil Daya, Christopher Paolucci. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. JACS Au 2024, 4 (1) , 197-215. https://doi.org/10.1021/jacsau.3c00632
    2. Ayoub Daouli, Jérôme Rey, El Hassane Lahrar, Valentin Valtchev, Michael Badawi, Rémy Guillet-Nicolas. Ab Initio Screening of Divalent Cations for CH4, CO2, H2, and N2 Separations in Chabazite Zeolite. Langmuir 2023, 39 (45) , 15962-15973. https://doi.org/10.1021/acs.langmuir.3c01882
    3. Stephen J. Percival, Susan E. Henkelis, Muyuan Li, Mara E. Schindelholz, James L. Krumhansl, Leo J. Small, Raul F. Lobo, Tina M. Nenoff. Nickel-Loaded SSZ-13 Zeolite-Based Sensor for the Direct Electrical Readout Detection of NO2. Industrial & Engineering Chemistry Research 2021, 60 (40) , 14371-14380. https://doi.org/10.1021/acs.iecr.1c03264
    4. Anqi Guo, Kunpeng Xie, Huarong Lei, Valentina Rizzotto, Limin Chen, Mingli Fu, Peirong Chen, Yue Peng, Daiqi Ye, Ulrich Simon. Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH3-SCR Catalyst for NOx Reduction. Environmental Science & Technology 2021, 55 (18) , 12619-12629. https://doi.org/10.1021/acs.est.1c03630
    5. Ashley T. Smith, Philipp N. Plessow, Felix Studt. Trends in the Reactivity of Proximate Aluminum Sites in H-SSZ-13. The Journal of Physical Chemistry C 2021, 125 (30) , 16508-16515. https://doi.org/10.1021/acs.jpcc.1c03509
    6. Florian Göltl, Saurabh Bhandari, Manos Mavrikakis. Thermodynamics Perspective on the Stepwise Conversion of Methane to Methanol over Cu-Exchanged SSZ-13. ACS Catalysis 2021, 11 (13) , 7719-7734. https://doi.org/10.1021/acscatal.1c00691
    7. Hwangho Lee, Inhak Song, Se Won Jeon, Do Heui Kim. Mobility of Cu Ions in Cu-SSZ-13 Determines the Reactivity of Selective Catalytic Reduction of NOx with NH3. The Journal of Physical Chemistry Letters 2021, 12 (12) , 3210-3216. https://doi.org/10.1021/acs.jpclett.1c00181
    8. Yu Liang, Allan J. Jacobson, Jeffrey D. Rimer. Strontium Ions Function as Both an Accelerant and Structure-Directing Agent of Chabazite Crystallization. ACS Materials Letters 2021, 3 (2) , 187-192. https://doi.org/10.1021/acsmaterialslett.0c00460
    9. Yani Zhang, Yue Peng, Junhua Li, Kyle Groden, Jean-Sabin McEwen, Eric D. Walter, Ying Chen, Yong Wang, Feng Gao. Probing Active-Site Relocation in Cu/SSZ-13 SCR Catalysts during Hydrothermal Aging by In Situ EPR Spectroscopy, Kinetics Studies, and DFT Calculations. ACS Catalysis 2020, 10 (16) , 9410-9419. https://doi.org/10.1021/acscatal.0c01590
    10. Florian Göltl, Sabrina Conrad, Patrick Wolf, Philipp Müller, Alyssa M. Love, Samuel P. Burt, Jamie N. Wheeler, Robert J. Hamers, Kerstin Hummer, Georg Kresse, Manos Mavrikakis, Ive Hermans. UV–Vis and Photoluminescence Spectroscopy to Understand the Coordination of Cu Cations in the Zeolite SSZ-13. Chemistry of Materials 2019, 31 (23) , 9582-9592. https://doi.org/10.1021/acs.chemmater.9b01439
    11. Jingyan Zhang, Fuyan Liu, Jian Liang, Hui Yu, Wenming Liu, Xiang Wang, Honggen Peng, Peng Wu. Exploring the Nanosize Effect of Mordenite Zeolites on Their Performance in the Removal of NOx. Industrial & Engineering Chemistry Research 2019, 58 (20) , 8625-8635. https://doi.org/10.1021/acs.iecr.9b00353
    12. Toyohiro Usui, Zhendong Liu, Sayoko Ibe, Jie Zhu, Chokkalingam Anand, Hirokazu Igarashi, Naoki Onaya, Yukichi Sasaki, Yuji Shiramata, Tetsuro Kusamoto, Toru Wakihara. Improve the Hydrothermal Stability of Cu-SSZ-13 Zeolite Catalyst by Loading a Small Amount of Ce. ACS Catalysis 2018, 8 (10) , 9165-9173. https://doi.org/10.1021/acscatal.8b01949
    13. B. Kerkeni, D. Berthout, D. Berthomieu, D. E. Doronkin, M. Casapu, J.-D. Grunwaldt, C. Chizallet. Copper Coordination to Water and Ammonia in CuII-Exchanged SSZ-13: Atomistic Insights from DFT Calculations and in Situ XAS Experiments. The Journal of Physical Chemistry C 2018, 122 (29) , 16741-16755. https://doi.org/10.1021/acs.jpcc.8b03572
    14. Hui Li, Christopher Paolucci, and William F. Schneider . Zeolite Adsorption Free Energies from ab Initio Potentials of Mean Force. Journal of Chemical Theory and Computation 2018, 14 (2) , 929-938. https://doi.org/10.1021/acs.jctc.7b00716
    15. Florian Göltl, Philipp Müller, Pajean Uchupalanun, Philippe Sautet, and Ive Hermans . Developing a Descriptor-Based Approach for CO and NO Adsorption Strength to Transition Metal Sites in Zeolites. Chemistry of Materials 2017, 29 (15) , 6434-6444. https://doi.org/10.1021/acs.chemmater.7b01860
    16. Bahar Ipek, Matthew J. Wulfers, Hacksung Kim, Florian Göltl, Ive Hermans, Joseph P. Smith, Karl S. Booksh, Craig M. Brown, and Raul F. Lobo . Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catalysis 2017, 7 (7) , 4291-4303. https://doi.org/10.1021/acscatal.6b03005
    17. Rongrong Zhao, Zhenchao Zhao, Shikun Li, and Weiping Zhang . Insights into the Correlation of Aluminum Distribution and Brönsted Acidity in H-Beta Zeolites from Solid-State NMR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry Letters 2017, 8 (10) , 2323-2327. https://doi.org/10.1021/acs.jpclett.7b00711
    18. Florian Göltl, Alyssa M. Love, and Ive Hermans . Developing a Thermodynamic Model for the Interactions between Water and Cu in the Zeolite SSZ-13. The Journal of Physical Chemistry C 2017, 121 (11) , 6160-6169. https://doi.org/10.1021/acs.jpcc.7b00254
    19. Lin Chen, Jonas Jansson, Magnus Skoglundh, and Henrik Grönbeck . Mechanism for Solid-State Ion Exchange of Cu+ into Zeolites. The Journal of Physical Chemistry C 2016, 120 (51) , 29182-29189. https://doi.org/10.1021/acs.jpcc.6b09553
    20. Trunojoyo Anggara, Christopher Paolucci, and William F. Schneider . Periodic DFT Characterization of NOx Adsorption in Cu-Exchanged SSZ-13 Zeolite Catalysts. The Journal of Physical Chemistry C 2016, 120 (49) , 27934-27943. https://doi.org/10.1021/acs.jpcc.6b07972
    21. Yu Mao, Ziyun Wang, Hai-Feng Wang, and P. Hu . Understanding Catalytic Reactions over Zeolites: A Density Functional Theory Study of Selective Catalytic Reduction of NOx by NH3 over Cu-SAPO-34. ACS Catalysis 2016, 6 (11) , 7882-7891. https://doi.org/10.1021/acscatal.6b01449
    22. Yongheng Li, Jianlin Deng, Weiyu Song, Jian Liu, Zhen Zhao, Manglai Gao, Yuechang Wei, and Liang Zhao . Nature of Cu Species in Cu–SAPO-18 Catalyst for NH3–SCR: Combination of Experiments and DFT Calculations. The Journal of Physical Chemistry C 2016, 120 (27) , 14669-14680. https://doi.org/10.1021/acs.jpcc.6b03464
    23. Christopher Paolucci, Atish A. Parekh, Ishant Khurana, John R. Di Iorio, Hui Li, Jonatan D. Albarracin Caballero, Arthur J. Shih, Trunojoyo Anggara, W. Nicholas Delgass, Jeffrey T. Miller, Fabio H. Ribeiro, Rajamani Gounder, and William F. Schneider . Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. Journal of the American Chemical Society 2016, 138 (18) , 6028-6048. https://doi.org/10.1021/jacs.6b02651
    24. John R. Di Iorio and Rajamani Gounder . Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. Chemistry of Materials 2016, 28 (7) , 2236-2247. https://doi.org/10.1021/acs.chemmater.6b00181
    25. Feng Gao, Yilin Wang, Nancy M. Washton, Márton Kollár, János Szanyi, and Charles H. F. Peden . Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH3–SCR Catalysts. ACS Catalysis 2015, 5 (11) , 6780-6791. https://doi.org/10.1021/acscatal.5b01621
    26. Ines Lezcano-Gonzalez, David S. Wragg, Wojciech A. Slawinski, Karen Hemelsoet, Andy Van Yperen-De Deyne, Michel Waroquier, Veronique Van Speybroeck, and Andrew M. Beale . Determination of the Nature of the Cu Coordination Complexes Formed in the Presence of NO and NH3 within SSZ-13. The Journal of Physical Chemistry C 2015, 119 (43) , 24393-24403. https://doi.org/10.1021/acs.jpcc.5b06875
    27. Manjesh Kumar, Helen Luo, Yuriy Román-Leshkov, and Jeffrey D. Rimer . SSZ-13 Crystallization by Particle Attachment and Deterministic Pathways to Crystal Size Control. Journal of the American Chemical Society 2015, 137 (40) , 13007-13017. https://doi.org/10.1021/jacs.5b07477
    28. Ton V. W. Janssens, Hanne Falsig, Lars F. Lundegaard, Peter N. R. Vennestrøm, Søren B. Rasmussen, Poul Georg Moses, Filippo Giordanino, Elisa Borfecchia, Kirill A. Lomachenko, Carlo Lamberti, Silvia Bordiga, Anita Godiksen, Susanne Mossin, and Pablo Beato . A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. ACS Catalysis 2015, 5 (5) , 2832-2845. https://doi.org/10.1021/cs501673g
    29. George M. Psofogiannakis, John F. McCleerey, Eugenio Jaramillo, and Adri C. T. van Duin . ReaxFF Reactive Molecular Dynamics Simulation of the Hydration of Cu-SSZ-13 Zeolite and the Formation of Cu Dimers. The Journal of Physical Chemistry C 2015, 119 (12) , 6678-6686. https://doi.org/10.1021/acs.jpcc.5b00699
    30. Marta Moreno-González, Beatriz Hueso, Mercedes Boronat, Teresa Blasco, and Avelino Corma . Ammonia-Containing Species Formed in Cu-Chabazite As Per In Situ EPR, Solid-State NMR, and DFT Calculations. The Journal of Physical Chemistry Letters 2015, 6 (6) , 1011-1017. https://doi.org/10.1021/acs.jpclett.5b00069
    31. Wenkang Su, Huazhen Chang, Yue Peng, Chaozhi Zhang, and Junhua Li . Reaction Pathway Investigation on the Selective Catalytic Reduction of NO with NH3 over Cu/SSZ-13 at Low Temperatures. Environmental Science & Technology 2015, 49 (1) , 467-473. https://doi.org/10.1021/es503430w
    32. Renqin Zhang, Jean-Sabin McEwen, Márton Kollár, Feng Gao, Yilin Wang, János Szanyi, and Charles H.F. Peden . NO Chemisorption on Cu/SSZ-13: A Comparative Study from Infrared Spectroscopy and DFT Calculations. ACS Catalysis 2014, 4 (11) , 4093-4105. https://doi.org/10.1021/cs500563s
    33. Anita Godiksen, Frederick N. Stappen, Peter N. R. Vennestrøm, Filippo Giordanino, Søren Birk Rasmussen, Lars F. Lundegaard, and Susanne Mossin . Coordination Environment of Copper Sites in Cu-CHA Zeolite Investigated by Electron Paramagnetic Resonance. The Journal of Physical Chemistry C 2014, 118 (40) , 23126-23138. https://doi.org/10.1021/jp5065616
    34. Tao Jiang, Florian Göltl, Rosa E. Bulo, and Philippe Sautet . Effect of Temperature on the Adsorption of Short Alkanes in the Zeolite SSZ-13—Adapting Adsorption Isotherms to Microporous Materials. ACS Catalysis 2014, 4 (7) , 2351-2358. https://doi.org/10.1021/cs500189v
    35. Daniel J. Hutton, David H. Lopez, Florian Göltl. Thermodynamic driving forces for autoreduction of Cu sites in the zeolite SSZ-13. Reaction Chemistry & Engineering 2024, 9 (7) , 1685-1695. https://doi.org/10.1039/D3RE00580A
    36. Florian Göltl, Saurabh Bhandari, Edgard A. Lebrón‐Rodríguez, Jake I. Gold, Daniel J. Hutton, Stacey I. Zones, Ive Hermans, James A. Dumesic, Manos Mavrikakis. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu‐Exchanged Zeolites. Angewandte Chemie International Edition 2024, 63 (23) https://doi.org/10.1002/anie.202403179
    37. Florian Göltl, Saurabh Bhandari, Edgard A. Lebrón‐Rodríguez, Jake I. Gold, Daniel J. Hutton, Stacey I. Zones, Ive Hermans, James A. Dumesic, Manos Mavrikakis. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu‐Exchanged Zeolites. Angewandte Chemie 2024, 4 https://doi.org/10.1002/ange.202403179
    38. Hailong Zhang, Jiwei Li, Diandian Wang, Yong Wang, Haifeng Xiong. A review on the active sites for direct oxidation of methane to methanol by copper-zeolites: Coordination structure, formation and activity. Coordination Chemistry Reviews 2024, 503 , 215637. https://doi.org/10.1016/j.ccr.2023.215637
    39. Ferenc Martinovic, Sabrina Ballauri, Nicola Blangetti, Samir Bensaid, Raffaele Pirone, Barbara Bonelli, Marco Armandi, Fabio Alessandro Deorsola. Solid-state ion exchange of Fe in small pore SSZ-13 zeolite: Characterization of the exchanged species and their relevance for the NOx SCR reaction. Applied Catalysis A: General 2023, 658 , 119160. https://doi.org/10.1016/j.apcata.2023.119160
    40. Joachim D. Bjerregaard, Martin Votsmeier, Henrik Grönbeck. Mechanism for SO2 poisoning of Cu-CHA during low temperature NH3-SCR. Journal of Catalysis 2023, 417 , 497-506. https://doi.org/10.1016/j.jcat.2022.12.023
    41. M. Olus Ozbek, Bahar Ipek. A Theoretical Investigation of Cu + , Ni 2+ and Co 2+ ‐Exchanged Zeolites for Hydrogen Storage. ChemPhysChem 2022, 23 (20) https://doi.org/10.1002/cphc.202200272
    42. Paolo Cleto Bruzzese, Enrico Salvadori, Stefan Jäger, Martin Hartmann, Bartolomeo Civalleri, Andreas Pöppl, Mario Chiesa. 17O-EPR determination of the structure and dynamics of copper single-metal sites in zeolites. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24935-7
    43. Patrick Tomkins, Bernd Marler, Robert McGuire, Ulrich Müller, Mathias Feyen, Andrei-Nicolae Parvulescu, Weiping Zhang, Toshiyuki Yokoi, Feng-Shou Xiao, Hermann Gies, Ute Kolb, Haishuang Zhao, Pieterjan Valvekens, Trees De Baerdemaeker, Dirk De Vos. The effect of trivalent framework heteroatoms in Cu-CHA on the Selective Catalytic Reduction of NO. Applied Catalysis A: General 2021, 626 , 118326. https://doi.org/10.1016/j.apcata.2021.118326
    44. Jinfeng Han, Caixia Liu, Qingling Liu, Shuangchun Lu, Yalian Bi, Xiaohan Wang, Mingyu Guo, Chunfeng Song, Na Ji, Xuebin Lu, Degang Ma, Zhenguo Li. Cu-exchanged Al-rich OFF-CHA twin-crystal zeolite for the selective catalytic reduction of NOx by NH3. Catalysis Today 2021, 376 , 87-94. https://doi.org/10.1016/j.cattod.2020.07.082
    45. Xueting Wang, Lin Chen, Peter N. R. Vennestrøm, Ton V. W. Janssens, Jonas Jansson, Henrik Grönbeck, Magnus Skoglundh. Direct measurement of enthalpy and entropy changes in NH 3 promoted O 2 activation over Cu−CHA at low temperature. ChemCatChem 2021, 13 (11) , 2577-2582. https://doi.org/10.1002/cctc.202100253
    46. Pei Zhao, Bundet Boekfa, Ken-ichi Shimizu, Masaru Ogura, Masahiro Ehara. Selective catalytic reduction of NO with NH 3 over Cu-exchanged CHA, GME, and AFX zeolites: a density functional theory study. Catalysis Science & Technology 2021, 11 (5) , 1780-1790. https://doi.org/10.1039/D0CY02342F
    47. Sibel Sogukkanli, Takahiko Moteki, Masaru Ogura. Selective methanol formation via CO-assisted direct partial oxidation of methane over copper-containing CHA-type zeolites prepared by one-pot synthesis. Green Chemistry 2021, 23 (5) , 2148-2154. https://doi.org/10.1039/D0GC03645E
    48. Jeroen Van der Mynsbrugge, Martin Head-Gordon, Alexis T. Bell. Computational modeling predicts the stability of both Pd + and Pd 2+ ion-exchanged into H-CHA. Journal of Materials Chemistry A 2021, 9 (4) , 2161-2174. https://doi.org/10.1039/D0TA11254B
    49. Wenting Lv, Sen Wang, Pengfei Wang, Yongjin Liu, Zhanggen Huang, Junfen Li, Mei Dong, Jianguo Wang, Weibin Fan. Regulation of Al distributions and Cu2+ locations in SSZ-13 zeolites for NH3-SCR of NO by different alkali metal cations. Journal of Catalysis 2021, 393 , 190-201. https://doi.org/10.1016/j.jcat.2020.11.027
    50. Caixia Liu, Yalian Bi, Jingfeng Han, Mingyu Guo, Qingling Liu. A Perspective on the Relationship Between Microstructure and Performance of Cu-Based Zeolites for the Selective Catalytic Reduction of NOx. Catalysis Surveys from Asia 2020, 24 (3) , 179-195. https://doi.org/10.1007/s10563-020-09302-8
    51. Eleanor Olegario, Jenichi Clairvaux Felizco, Christian Mark Pelicano, Herman Mendoza, Hideki Nakajima. Philippine natural zeolite surface engineered with CuO nanowires via a one-step thermal decomposition route. Journal of the Australian Ceramic Society 2020, 56 (3) , 803-809. https://doi.org/10.1007/s41779-019-00401-y
    52. Xiaoli Wei, Quanli Ke, Hao Cheng, Ya Guo, Zhongshan Yuan, Shengsheng Zhao, Tianjun Sun, Shudong Wang. Seed-assisted synthesis of Cu-(Mn)-UZM-9 zeolite as excellent NO removal and N2O inhibition catalysts in wider temperature window. Chemical Engineering Journal 2020, 391 , 123491. https://doi.org/10.1016/j.cej.2019.123491
    53. Jiawei Feng, Yunfeng Hu, Qiang Bao, Dan Liang, Ying Xu. Carbon monoxide and carbon dioxide adsorption on alkali metal cation‐exchanged SSZ‐13 zeolites. Micro & Nano Letters 2020, 15 (8) , 529-534. https://doi.org/10.1049/mnl.2020.0023
    54. Karoline Kvande, Dimitrios K. Pappas, Elisa Borfecchia, Kirill A. Lomachenko. Advanced X‐ray Absorption Spectroscopy Analysis to Determine Structure‐Activity Relationships for Cu‐Zeolites in the Direct Conversion of Methane to Methanol. ChemCatChem 2020, 12 (9) , 2385-2405. https://doi.org/10.1002/cctc.201902371
    55. Florian Göltl, Alyssa M. Love, Sarah C. Schuenzel, Patrick Wolf, Manos Mavrikakis, Ive Hermans. Computational description of key spectroscopic features of zeolite SSZ-13. Physical Chemistry Chemical Physics 2019, 21 (35) , 19065-19075. https://doi.org/10.1039/C9CP03146D
    56. Cédric Barroo, Austin J. Akey, David C. Bell. Atom Probe Tomography for Catalysis Applications: A Review. Applied Sciences 2019, 9 (13) , 2721. https://doi.org/10.3390/app9132721
    57. Hwangho Lee, Inhak Song, Se Won Jeon, Do Heui Kim. Inter-particle migration of Cu ions in physically mixed Cu-SSZ-13 and H-SSZ-13 treated by hydrothermal aging. Reaction Chemistry & Engineering 2019, 4 (6) , 1059-1066. https://doi.org/10.1039/C8RE00281A
    58. Chiara Negri, Matteo Signorile, Natale G. Porcaro, Elisa Borfecchia, Gloria Berlier, Ton V.W. Janssens, Silvia Bordiga. Dynamic CuII/CuI speciation in Cu-CHA catalysts by in situ Diffuse Reflectance UV–vis-NIR spectroscopy. Applied Catalysis A: General 2019, 578 , 1-9. https://doi.org/10.1016/j.apcata.2019.03.018
    59. Mingyu Guo, Qingling Liu, Peipei Zhao, Jinfeng Han, Xuan Li, Ying Ha, Zhenchao Fu, Chunfeng Song, Na Ji, Caixia Liu, Degang Ma, Zhenguo Li. Promotional effect of SO2 on Cr2O3 catalysts for the marine NH3-SCR reaction. Chemical Engineering Journal 2019, 361 , 830-838. https://doi.org/10.1016/j.cej.2018.12.100
    60. S. A. Yashnik, Z. R. Ismagilov. Control of the NO–NH3 SCR Behavior of Cu-ZSM-5 by Variation of the Electronic State of Copper. Topics in Catalysis 2019, 62 (1-4) , 179-191. https://doi.org/10.1007/s11244-018-1101-4
    61. Lidija V. Trandafilović, Oana Mihai, Jungwon Woo, Kirsten Leistner, Marie Stenfeldt, Louise Olsson. A kinetic model for SCR coated particulate filters—Effect of ammonia-soot interactions. Applied Catalysis B: Environmental 2019, 241 , 66-80. https://doi.org/10.1016/j.apcatb.2018.08.076
    62. Linxia Wang, Haijun Chen, Weichao Wang. N–H bond activation in ammonia by TM-SSZ-13 (Fe, Co, Ni and Cu) zeolites: a first-principles calculation. Physical Chemistry Chemical Physics 2019, 21 (3) , 1506-1513. https://doi.org/10.1039/C8CP06263C
    63. Zhendong Liu, Jie Zhu, Toru Wakihara, Tatsuya Okubo. Ultrafast synthesis of zeolites: breakthrough, progress and perspective. Inorganic Chemistry Frontiers 2019, 6 (1) , 14-31. https://doi.org/10.1039/C8QI00939B
    64. Jun Wang, Lan Shao, Chen Wang, Jianqiang Wang, Meiqing Shen, Wei Li. Controllable preparation of various crystal size and nature of intra-crystalline diffusion in Cu/SSZ-13 NH3-SCR catalysts. Journal of Catalysis 2018, 367 , 221-228. https://doi.org/10.1016/j.jcat.2018.09.004
    65. Lin Chen, Hanne Falsig, Ton V.W. Janssens, Henrik Grönbeck. Activation of oxygen on (NH3Cu NH3)+ in NH3-SCR over Cu-CHA. Journal of Catalysis 2018, 358 , 179-186. https://doi.org/10.1016/j.jcat.2017.12.009
    66. Anita Godiksen, Oliver L. Isaksen, Søren B. Rasmussen, Peter N. R. Vennestrøm, Susanne Mossin. Site‐Specific Reactivity of Copper Chabazite Zeolites with Nitric Oxide, Ammonia, and Oxygen. ChemCatChem 2018, 10 (2) , 366-370. https://doi.org/10.1002/cctc.201701357
    67. Lin Chen, Hanne Falsig, Ton V. W. Janssens, Jonas Jansson, Magnus Skoglundh, Henrik Grönbeck. Effect of Al-distribution on oxygen activation over Cu–CHA. Catalysis Science & Technology 2018, 8 (8) , 2131-2136. https://doi.org/10.1039/C8CY00083B
    68. P. Concepción, M. Boronat, R. Millán, M. Moliner, A. Corma. Identification of Distinct Copper Species in Cu-CHA Samples Using NO as Probe Molecule. A Combined IR Spectroscopic and DFT Study. Topics in Catalysis 2017, 60 (19-20) , 1653-1663. https://doi.org/10.1007/s11244-017-0844-7
    69. Joel E. Schmidt, Ramon Oord, Wei Guo, Jonathan D. Poplawsky, Bert M. Weckhuysen. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01765-0
    70. Hélène Olivier‐Bourbigou, Céline Chizallet, Franck Dumeignil, Pascal Fongarland, Christophe Geantet, Pascal Granger, Franck Launay, Axel Löfberg, Pascale Massiani, Françoise Maugé, Armelle Ouali, Anne‐Cécile Roger, Yves Schuurman, Nathalie Tanchoux, Denis Uzio, François Jérôme, Daniel Duprez, Catherine Pinel. The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects.. ChemCatChem 2017, 9 (12) , 2029-2064. https://doi.org/10.1002/cctc.201700426
    71. Jihui Wang, Huawang Zhao, Gary Haller, Yongdan Li. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts. Applied Catalysis B: Environmental 2017, 202 , 346-354. https://doi.org/10.1016/j.apcatb.2016.09.024
    72. Unai De-La-Torre, Beñat Pereda-Ayo, Manuel Moliner, José A. González-Marcos, Avelino Corma, Juan R. González-Velasco. Optimal Operating Conditions of Coupled Sequential NOx Storage/Reduction and Cu/CHA Selective Catalytic Reduction Monoliths. Topics in Catalysis 2017, 60 (1-2) , 30-39. https://doi.org/10.1007/s11244-016-0720-x
    73. Anita Godiksen, Peter N. R. Vennestrøm, Søren B. Rasmussen, Susanne Mossin. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy. Topics in Catalysis 2017, 60 (1-2) , 13-29. https://doi.org/10.1007/s11244-016-0731-7
    74. Sebastian Prodinger, Miroslaw A. Derewinski, Yilin Wang, Nancy M. Washton, Eric D. Walter, János Szanyi, Feng Gao, Yong Wang, Charles H.F. Peden. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts. Applied Catalysis B: Environmental 2017, 201 , 461-469. https://doi.org/10.1016/j.apcatb.2016.08.053
    75. Jeong Hwan Lee, Young Jin Kim, Taekyung Ryu, Pyung Soon Kim, Chang Hwan Kim, Suk Bong Hong. Synthesis of zeolite UZM-35 and catalytic properties of copper-exchanged UZM-35 for ammonia selective catalytic reduction. Applied Catalysis B: Environmental 2017, 200 , 428-438. https://doi.org/10.1016/j.apcatb.2016.07.040
    76. Lina Han, Cui Wen, Zhiping Wu, Jiancheng Wang, Liping Chang, Gang Feng, Rongbin Zhang, Dejin Kong, Jianwen Liu. Density functional theory investigations into the structures and acidity properties of Ti-doped SSZ-13 zeolite. Microporous and Mesoporous Materials 2017, 237 , 132-139. https://doi.org/10.1016/j.micromeso.2016.09.028
    77. Douglas W. Crandell, Haiyang Zhu, Xiaofan Yang, John Hochmuth, Mu-Hyun Baik. The mechanism of selective catalytic reduction of NO x on Cu-SSZ-13 – a computational study. Dalton Transactions 2017, 46 (2) , 369-377. https://doi.org/10.1039/C6DT03894H
    78. Samantha E. Russell, Juan María González Carballo, Claudia Orellana-Tavra, David Fairen-Jimenez, Russell E. Morris. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications. Dalton Transactions 2017, 46 (12) , 3915-3920. https://doi.org/10.1039/C7DT00195A
    79. Aleksandar Jović, Aleksandar Đorđević, Maria Čebela, Ivana Stojković Simatović, Radmila Hercigonja, Biljana Šljukić. Composite zeolite/carbonized polyaniline electrodes for p–nitrophenol sensing. Journal of Electroanalytical Chemistry 2016, 778 , 137-147. https://doi.org/10.1016/j.jelechem.2016.08.025
    80. Florian Göltl, Philippe Sautet, Ive Hermans. The impact of finite temperature on the coordination of Cu cations in the zeolite SSZ-13. Catalysis Today 2016, 267 , 41-46. https://doi.org/10.1016/j.cattod.2015.10.028
    81. Samira Siahrostami, Hanne Falsig, Pablo Beato, Poul Georg Moses, Jens K. Nørskov, Felix Studt. Exploring Scaling Relations for Chemisorption Energies on Transition‐Metal‐Exchanged Zeolites ZSM‐22 and ZSM‐5. ChemCatChem 2016, 8 (4) , 767-772. https://doi.org/10.1002/cctc.201501049
    82. Shiping Luo, Wenting Zhou, Aijuan Xie, Fenqin Wu, Chao Yao, Xiazhang Li, Shixiang Zuo, Tianhua Liu. Effect of MnO 2 polymorphs structure on the selective catalytic reduction of NO x with NH 3 over TiO 2 –Palygorskite. Chemical Engineering Journal 2016, 286 , 291-299. https://doi.org/10.1016/j.cej.2015.10.079
    83. C. Paolucci, J.R. Di Iorio, F.H. Ribeiro, R. Gounder, W.F. Schneider. Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. 2016, 1-107. https://doi.org/10.1016/bs.acat.2016.10.002
    84. C. Tyrsted, E. Borfecchia, G. Berlier, K. A. Lomachenko, C. Lamberti, S. Bordiga, P. N. R. Vennestrøm, T. V. W. Janssens, H. Falsig, P. Beato, A. Puig-Molina. Nitrate–nitrite equilibrium in the reaction of NO with a Cu-CHA catalyst for NH 3 -SCR. Catalysis Science & Technology 2016, 6 (23) , 8314-8324. https://doi.org/10.1039/C6CY01820C
    85. Wenjun Zhang, Ming L. Wang, Sammy Khalili, Steven W. Cranford. Materiomics for Oral Disease Diagnostics and Personal Health Monitoring: Designer Biomaterials for the Next Generation Biomarkers. OMICS: A Journal of Integrative Biology 2016, 20 (1) , 12-29. https://doi.org/10.1089/omi.2015.0144
    86. Feng Gao, Nancy M. Washton, Yilin Wang, Márton Kollár, János Szanyi, Charles H.F. Peden. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity. Journal of Catalysis 2015, 331 , 25-38. https://doi.org/10.1016/j.jcat.2015.08.004
    87. Florian Göltl, Philippe Sautet, Ive Hermans. Verursacht Dynamik das komplexe Infrarotspektrum von NO an Kupfer(II)‐Zentren in Zeolithen?. Angewandte Chemie 2015, 127 (27) , 7910-7915. https://doi.org/10.1002/ange.201501942
    88. Florian Göltl, Philippe Sautet, Ive Hermans. Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites?. Angewandte Chemie International Edition 2015, 54 (27) , 7799-7804. https://doi.org/10.1002/anie.201501942
    89. Yu Mao, Hai‐Feng Wang, P. Hu. Theoretical investigation of NH 3 ‐SCR processes over zeolites: A review. International Journal of Quantum Chemistry 2015, 115 (10) , 618-630. https://doi.org/10.1002/qua.24844
    90. Zhendong Liu, Toru Wakihara, Kazunori Oshima, Daisuke Nishioka, Yuusuke Hotta, Shanmugam P. Elangovan, Yutaka Yanaba, Takeshi Yoshikawa, Watcharop Chaikittisilp, Takeshi Matsuo, Takahiko Takewaki, Tatsuya Okubo. Widening Synthesis Bottlenecks: Realization of Ultrafast and Continuous‐Flow Synthesis of High‐Silica Zeolite SSZ‐13 for NO x Removal. Angewandte Chemie 2015, 127 (19) , 5775-5779. https://doi.org/10.1002/ange.201501160
    91. Zhendong Liu, Toru Wakihara, Kazunori Oshima, Daisuke Nishioka, Yuusuke Hotta, Shanmugam P. Elangovan, Yutaka Yanaba, Takeshi Yoshikawa, Watcharop Chaikittisilp, Takeshi Matsuo, Takahiko Takewaki, Tatsuya Okubo. Widening Synthesis Bottlenecks: Realization of Ultrafast and Continuous‐Flow Synthesis of High‐Silica Zeolite SSZ‐13 for NO x Removal. Angewandte Chemie International Edition 2015, 54 (19) , 5683-5687. https://doi.org/10.1002/anie.201501160
    92. Douglas W. Crandell, Haiyang Zhu, Xiaofan Yang, John Hochmuth, Mu-Hyun Baik. Computational and spectroscopic characterization of key intermediates of the Selective Catalytic Reduction cycle of NO on zeolite-supported Cu catalyst. Inorganica Chimica Acta 2015, 430 , 132-143. https://doi.org/10.1016/j.ica.2015.02.021
    93. Michael Fischer, Robert G. Bell. A DFT-D study of the interaction of methane, carbon monoxide, and nitrogen with cation-exchanged SAPO-34. Zeitschrift für Kristallographie - Crystalline Materials 2015, 230 (5) , 311-323. https://doi.org/10.1515/zkri-2014-1802
    94. Dieter Rauch, David Kubinski, Giovanni Cavataio, Devesh Upadhyay, Ralf Moos. Ammonia Loading Detection of Zeolite SCR Catalysts using a Radio Frequency based Method. SAE International Journal of Engines 2015, 8 (3) , 1126-1135. https://doi.org/10.4271/2015-01-0986
    95. E. Borfecchia, K. A. Lomachenko, F. Giordanino, H. Falsig, P. Beato, A. V. Soldatov, S. Bordiga, C. Lamberti. Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chemical Science 2015, 6 (1) , 548-563. https://doi.org/10.1039/C4SC02907K
    96. Cui Wen, Lu Geng, Lina Han, Jiancheng Wang, Liping Chang, Gang Feng, Dejin Kong, Jianwen Liu. A comparative first principles study on trivalent ion incorporated SSZ-13 zeolites. Physical Chemistry Chemical Physics 2015, 17 (44) , 29586-29596. https://doi.org/10.1039/C5CP04788A
    97. Wenkang Su, Zhenguo Li, Yue Peng, Junhua Li. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging. Physical Chemistry Chemical Physics 2015, 17 (43) , 29142-29149. https://doi.org/10.1039/C5CP05128B
    98. Veronique Van Speybroeck, Karen Hemelsoet, Lennart Joos, Michel Waroquier, Robert G. Bell, C. Richard A. Catlow. Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews 2015, 44 (20) , 7044-7111. https://doi.org/10.1039/C5CS00029G
    99. A. M. Beale, F. Gao, I. Lezcano-Gonzalez, C. H. F. Peden, J. Szanyi. Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials. Chemical Society Reviews 2015, 44 (20) , 7371-7405. https://doi.org/10.1039/C5CS00108K
    100. Dieter Rauch, David Kubinski, Ulrich Simon, Ralf Moos. Detection of the ammonia loading of a Cu Chabazite SCR catalyst by a radio frequency-based method. Sensors and Actuators B: Chemical 2014, 205 , 88-93. https://doi.org/10.1016/j.snb.2014.08.019
    Load all citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2013, 4, 14, 2244–2249
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz400817c
    Published June 25, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    2606

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.