ACS Publications. Most Trusted. Most Cited. Most Read
Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell
My Activity

Figure 1Loading Img
    Perspective

    Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell
    Click to copy article linkArticle link copied!

    View Author Information
    School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    *E-mail: [email protected]. Tel: 82-31-290-7241. Fax: 82-31-290-7272
    Other Access Options

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2013, 4, 15, 2423–2429
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz400892a
    Published July 11, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Recently, perovskite CH3NH3PbI3 sensitizer has attracted great attention due to its superb light-harvesting characteristics. Organometallic or organic materials were mostly used as sensitizers for solid-state dye-sensitized solar cells at early stages. Inorganic nanocrystals have lately received attention as light harvesters due to their high light-absorbing properties. Metal chalcogenides have been investigated with solid-state dye-sensitized solar cells; however, the best power conversion efficiency was reported to be around 6%. CH3NH3PbX3 (X = Cl, Br, or I) perovskite sensitizer made a breakthrough in solid-state mescoscopic solar cells, where the first record efficiency of around 10% was reported in 2012 using submicrometer-thick TiO2 film sensitized with CH3NH3PbI3. A rapid increase in efficiency approaching 14% followed shortly. In this Perspective, recent progress in perovskite-sensitized solid-state mesoscopic solar cells is reviewed. On the basis of the recent achievements, a power conversion efficiency as high as 20% is expected based on optimized perovskite-based solid-state solar cells.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 1249 publications.

    1. Kai-Ping Wang, Zhi-Wei Wu, Kai-Feng Wang, Hao-Ting Xu, Jun He, Bo Wen, Chuan-Jia Tong, Li-Min Liu, Oleg V. Prezhdo. Detrimental Defect Cooperativity at TiO2/CH3NH3PbI3 Interface: Decreased Stability, Enhanced Ion Diffusion, and Reduced Charge Lifetime and Transport. ACS Energy Letters 2024, Article ASAP.
    2. Syed Bilal Junaid, Furqanul Hassan Naqvi, Jae-Hyeon Ko, Wonhyuk Shon, Seongsu Lee. Effect of Cation Incorporation on the Structural Distortions and Phase Transitions in Mixed Lead Chloride Perovskite Single Crystals. The Journal of Physical Chemistry C 2024, 128 (34) , 14552-14567. https://doi.org/10.1021/acs.jpcc.4c04614
    3. Gabrielius Rimkus, Sergejus Balčiu̅nas, Maciej Ptak, Szymon Smółka, Vytautas Klimavičius, Daria Szewczyk, Adam Sieradzki, Vidmantas Kalendra, Ju̅ras Banys, Mirosław Mączka, Mantas Šimėnas. Phase Diagram and Dielectric Response of Hybrid Lead Halide Hollow Perovskites: A Universal Behavior of Molecular Cation Mixing. Chemistry of Materials 2024, 36 (15) , 7397-7405. https://doi.org/10.1021/acs.chemmater.4c01346
    4. Sayan Maity, Suraj Verma, Lavanya M. Ramaniah, Varadharajan Srinivasan. Cooperative Octahedral Tilt Modes Drive Coexisting Displacive and Order–Disorder Pressure-Induced Phase Transitions in MAPbBr3. The Journal of Physical Chemistry C 2024, 128 (20) , 8531-8539. https://doi.org/10.1021/acs.jpcc.4c01857
    5. Mantas Simenas, Anna Gagor, Juras Banys, Miroslaw Maczka. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chemical Reviews 2024, 124 (5) , 2281-2326. https://doi.org/10.1021/acs.chemrev.3c00532
    6. Avneesh Kumar, Dong Wook Chang, Jong-Beom Baek. Current Status and Future of Organic–Inorganic Hybrid Perovskites for Photoelectrocatalysis Devices. Energy & Fuels 2023, 37 (23) , 17782-17802. https://doi.org/10.1021/acs.energyfuels.3c02680
    7. Nathaniel Hiott, Jishnudas Chakkamalayath, Prashant V. Kamat. Reversible Phase Transformation of Colloidal 2D Lead Halide Perovskite Platelets under Photoirradiation. ACS Materials Letters 2023, 5 (10) , 2614-2620. https://doi.org/10.1021/acsmaterialslett.3c00729
    8. Gábor Szabó, Nam-Gyu Park, (Senior Editor, ACS Energy Letters)Filippo De Angelis, (Senior Editor, ACS Energy Letters)Prashant V. Kamat (Editor-in-Chief, ACS Energy Letters). Are Perovskite Solar Cells Reaching the Efficiency and Voltage Limits?. ACS Energy Letters 2023, 8 (9) , 3829-3831. https://doi.org/10.1021/acsenergylett.3c01649
    9. Eric Osei-Agyemang, Krishna Rajan. Understanding the Thermodynamic Stability of the [100] Surface Systems of the Photovoltaic Chalcogenide Perovskite BaZrS3. The Journal of Physical Chemistry C 2023, 127 (34) , 17146-17156. https://doi.org/10.1021/acs.jpcc.3c03155
    10. Carmen Abia, Carlos A. López, Javier Gainza, João Elias F. S. Rodrigues, Brenda Fragoso, Mateus M. Ferrer, Maria Teresa Fernández-Díaz, François Fauth, José Luis Martínez, José Antonio Alonso. Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6–xIx Obtained by Mechanochemistry. ACS Applied Materials & Interfaces 2023, 15 (34) , 40762-40771. https://doi.org/10.1021/acsami.3c07707
    11. Namrata Jaykhedkar, Roman Bystrický, Milan Sýkora, Tomáš Bučko. How the Temperature and Composition Govern the Structure and Band Gap of Zr-Based Chalcogenide Perovskites: Insights from ML Accelerated AIMD. Inorganic Chemistry 2023, 62 (31) , 12480-12492. https://doi.org/10.1021/acs.inorgchem.3c01696
    12. Yachao Li, Haiying Song, Xiaoran Ma, Junfeng Liu, Chao Ge, Danmin Liu, Shibing Liu. Observation of Tetragonal-to-Orthorhombic Phase Transition in Perovskite MAPbI3 Single Crystal via Ultrafast Photoexcitation. The Journal of Physical Chemistry C 2023, 127 (26) , 12613-12620. https://doi.org/10.1021/acs.jpcc.3c01546
    13. Huimin Pang, Mingxuan Guo, Xingtong Chen, Xueqing Xia, Xiaojuan Sun, Wenlin Xia, Hengfei Shi, Yu Chen, Song Chen. Perovskite Solar Cells with an SbX3 (X = Cl, I) Interface Dipole Layer. ACS Materials Letters 2023, 5 (7) , 1962-1968. https://doi.org/10.1021/acsmaterialslett.3c00241
    14. RezaeeMelorina DolafiPh.D. studentDahalBiplavPh.D. studentLiWenzhiProfessorKailash Arole, Department of Materials Science and Engineering, Texas A&M University. Single-Walled Carbon Nanotubes: Synthesis & Applications. 2023https://doi.org/10.1021/acsinfocus.7e7021
    15. Sayan Maity, Suraj Verma, Lavanya M. Ramaniah, Varadharajan Srinivasan. Stabilizing Polar Domains in MAPbBr3 via the Hydrostatic Pressure-Induced Liquid Crystal-like Transition. The Journal of Physical Chemistry Letters 2023, 14 (24) , 5497-5504. https://doi.org/10.1021/acs.jpclett.3c01152
    16. Sumit Kumar, Sukanya Ghosh, Prasenjit Kar. Efficient Charge-Transfer Studies for Selective Detection of Bilirubin Biomolecules Using CsPbBr3 as the Fluorescent Probe. The Journal of Physical Chemistry B 2023, 127 (10) , 2138-2145. https://doi.org/10.1021/acs.jpcb.2c07517
    17. Marianna D’Amato, Qi Ying Tan, Quentin Glorieux, Alberto Bramati, Cesare Soci. Color-Tunable Mixed-Cation Perovskite Single Photon Emitters. ACS Photonics 2023, 10 (1) , 197-205. https://doi.org/10.1021/acsphotonics.2c01437
    18. Xiaotong Peng, Long Hu, Xueqian Sun, Yuerui Lu, Dewei Chu, Pu Xiao. Fabrication of High-Performance CsPbBr3 Perovskite Quantum Dots/Polymer Composites via Photopolymerization: Implications for Luminescent Displays and Lighting. ACS Applied Nano Materials 2023, 6 (1) , 646-655. https://doi.org/10.1021/acsanm.2c04773
    19. Sayan Maity, Suraj Verma, Lavanya M. Ramaniah, Varadharajan Srinivasan. Deciphering the Nature of Temperature-Induced Phases of MAPbBr3 by Ab Initio Molecular Dynamics. Chemistry of Materials 2022, 34 (23) , 10459-10469. https://doi.org/10.1021/acs.chemmater.2c02453
    20. Mantas Šimėnas, Sergejus Balčiu̅nas, Anna Ga̧gor, Agnieszka Pienia̧żek, Kasper Tolborg, Martynas Kinka, Vytautas Klimavicius, Šaru̅nas Svirskas, Vidmantas Kalendra, Maciej Ptak, Daria Szewczyk, Artur P. Herman, Robert Kudrawiec, Adam Sieradzki, Robertas Grigalaitis, Aron Walsh, Mirosław Ma̧czka, Ju̅ras Banys. Mixology of MA1–xEAxPbI3 Hybrid Perovskites: Phase Transitions, Cation Dynamics, and Photoluminescence. Chemistry of Materials 2022, 34 (22) , 10104-10112. https://doi.org/10.1021/acs.chemmater.2c02807
    21. Yu-Feng Chen, Zhen-Ming Luo, Chien-Hung Chiang, Chun-Guey Wu. Multifunctional Ionic Fullerene Additive for Synergistic Boundary and Defect Healing of Tin Perovskite to Achieve High-Efficiency Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (41) , 46603-46614. https://doi.org/10.1021/acsami.2c12785
    22. Zhengyang Gao, Yang Bai, Min Wang, Guangyang Mao, Xiaoshuo Liu, Peng Gao, Weijie Yang, Xunlei Ding, Jianxi Yao. Novel Prediction Model of Band Gap in Organic–Inorganic Hybrid Perovskites Based on a Simple Cluster Model Database. The Journal of Physical Chemistry C 2022, 126 (31) , 13409-13415. https://doi.org/10.1021/acs.jpcc.2c03016
    23. Zhaohui Yu, Junlei Tao, Jinliang Shen, Zhongzhong Jia, Hua Zhong, Song Yin, Xudong Liu, Mingxuan Liu, Guangsheng Fu, Shaopeng Yang, Weiguang Kong. Back-Contact Ionic Compound Engineering Boosting the Efficiency and Stability of Blade-Coated Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (29) , 34040-34048. https://doi.org/10.1021/acsami.2c07552
    24. Ningbo Fan, Xue Ma, Bin Xu. Effect of Iodine Octahedral Rotations on Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3. The Journal of Physical Chemistry C 2022, 126 (1) , 779-785. https://doi.org/10.1021/acs.jpcc.1c09230
    25. Wen-Cheng Qiao, Wei Dong, Xiao-Bin Fu, Kaiyang Ma, Jia-Qi Liang, Xue Lu Wang, Ye-Feng Yao. A-Site Mixing to Adjust the Photovoltaic Performance of a Double-Cation Perovskite: It Is Not Always the Simple Way. The Journal of Physical Chemistry Letters 2021, 12 (45) , 11206-11213. https://doi.org/10.1021/acs.jpclett.1c03095
    26. Nadja Klipfel, Hiroyuki Kanda, Albertus Adrian Sutanto, Mounir Mensi, Cansu Igci, Klaus Leifer, Keith Brooks, Sachin Kinge, Cristina Roldán-Carmona, Cristina Momblona, Paul J. Dyson, Mohammad Khaja Nazeeruddin. Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (44) , 52450-52460. https://doi.org/10.1021/acsami.1c10117
    27. Xia Chen, Jiasen Zhang, Chang Liu, Qiang Lou, KangHui Zheng, Xu Yin, Lin Xie, Pan Wen, Cuirong Liu, Ziyi Ge. TADF Molecule as an Interfacial Layer with Cascade Energy Alignment Enabling High Open-Circuit Voltage for 3D/2D Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (10) , 11112-11120. https://doi.org/10.1021/acsaem.1c02033
    28. Yifan Wu, Weibin Chu, Andrey S. Vasenko, Oleg V. Prezhdo. Common Defects Accelerate Charge Carrier Recombination in CsSnI3 without Creating Mid-Gap States. The Journal of Physical Chemistry Letters 2021, 12 (36) , 8699-8705. https://doi.org/10.1021/acs.jpclett.1c02443
    29. Mantas Šimėnas, Sergejus Balčiu̅nas, Šaru̅nas Svirskas, Martynas Kinka, Maciej Ptak, Vidmantas Kalendra, Anna Ga̧gor, Daria Szewczyk, Adam Sieradzki, Robertas Grigalaitis, Aron Walsh, Mirosław Ma̧czka, Ju̅ras Banys. Phase Diagram and Cation Dynamics of Mixed MA1–xFAxPbBr3 Hybrid Perovskites. Chemistry of Materials 2021, 33 (15) , 5926-5934. https://doi.org/10.1021/acs.chemmater.1c00885
    30. George C. Lisensky, Fabian Dauzvardis, Megan M. K. Young. Periodic Properties Illustrated by CH3NH3Pb(I1–xBrx)3 Solid Solution Perovskite Semiconductors. Journal of Chemical Education 2021, 98 (7) , 2392-2397. https://doi.org/10.1021/acs.jchemed.1c00435
    31. Shanshan Zhu, Jiaqi Tian, Jiejing Zhang, Chunxiao Gao, Xizhe Liu. Improving the Interfacial Contact of Screen-Printed Carbon Electrodes for Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (6) , 5554-5559. https://doi.org/10.1021/acsaem.1c00232
    32. Maximilian J. Schilcher, Paul J. Robinson, David J. Abramovitch, Liang Z. Tan, Andrew M. Rappe, David R. Reichman, David A. Egger. The Significance of Polarons and Dynamic Disorder in Halide Perovskites. ACS Energy Letters 2021, 6 (6) , 2162-2173. https://doi.org/10.1021/acsenergylett.1c00506
    33. Gyumin Jang, Sunihl Ma, Hyeok-Chan Kwon, Sukyoung Goh, Hayeon Ban, Joon Soo Kim, Ji-Hee Kim, Jooho Moon. Elucidation of the Formation Mechanism of Highly Oriented Multiphase Ruddlesden–Popper Perovskite Solar Cells. ACS Energy Letters 2021, 6 (1) , 249-260. https://doi.org/10.1021/acsenergylett.0c02438
    34. Chen-Xu Chen, Jie Wang, Min Gao, Dong Shi. Distinctive Bulk- and Surface-Specific Photoluminescence and Photocarrier Dynamics in CH3NH3PbI3 Perovskite. Crystal Growth & Design 2021, 21 (1) , 45-51. https://doi.org/10.1021/acs.cgd.0c00300
    35. Jiayi Guan, Jian Ni, Xiaojun Zhou, Yue Liu, Junyang Yin, Jinlin Wang, Dan Wang, Yaofang Zhang, Juan Li, Hongkun Cai, Jianjun Zhang. High-Performance Electron Transport Layer via Ultrasonic Spray Deposition for Commercialized Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (12) , 11570-11580. https://doi.org/10.1021/acsaem.0c01003
    36. Joong Il Jake Choi, Taek-Seung Kim, Daeho Kim, Si Woo Lee, Jeong Young Park. Operando Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles. ACS Nano 2020, 14 (12) , 16392-16413. https://doi.org/10.1021/acsnano.0c07549
    37. M. Mehedi Hasan, Md Didarul Islam, Taslim Ur Rashid. Biopolymer-Based Electrolytes for Dye-Sensitized Solar Cells: A Critical Review. Energy & Fuels 2020, 34 (12) , 15634-15671. https://doi.org/10.1021/acs.energyfuels.0c03396
    38. Hamid Pashaei Adl, Setatira Gorji, Mojtaba Karimi Habil, Isaac Suárez, Vladimir S. Chirvony, Andrés F. Gualdrón-Reyes, Iván Mora-Seró, Luisa M. Valencia, María de la Mata, Jesús Hernández-Saz, Sergio I. Molina, Carlos J. Zapata-Rodríguez, Juan P. Martínez-Pastor. Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI3 Perovskite Nanocrystals Coupled to Hyperbolic Metamaterials. ACS Photonics 2020, 7 (11) , 3152-3160. https://doi.org/10.1021/acsphotonics.0c01219
    39. Monika Rai, Lydia Helena Wong, Lioz Etgar. Effect of Perovskite Thickness on Electroluminescence and Solar Cell Conversion Efficiency. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8189-8194. https://doi.org/10.1021/acs.jpclett.0c02363
    40. Shih-Han Huang, Kuo-Yu Tian, Hung-Che Huang, Chia-Feng Li, Wei-Cheng Chu, Kun-Mu Lee, Yu-Ching Huang, Wei-Fang Su. Controlling the Morphology and Interface of the Perovskite Layer for Scalable High-Efficiency Solar Cells Fabricated Using Green Solvents and Blade Coating in an Ambient Environment. ACS Applied Materials & Interfaces 2020, 12 (23) , 26041-26049. https://doi.org/10.1021/acsami.0c06211
    41. Maria Luisa De Giorgi, Titti Lippolis, Nur Fadilah Jamaludin, Cesare Soci, Annalisa Bruno, Marco Anni. Origin of Amplified Spontaneous Emission Degradation in MAPbBr3 Thin Films under Nanosecond-UV Laser Irradiation. The Journal of Physical Chemistry C 2020, 124 (19) , 10696-10704. https://doi.org/10.1021/acs.jpcc.0c02331
    42. Marcos A. Reyes-Martinez, Peng Tan, Arvin Kakekhani, Sayan Banerjee, Ayan A. Zhumekenov, Wei Peng, Osman M. Bakr, Andrew M. Rappe, Yueh-Lin Loo. Unraveling the Elastic Properties of (Quasi)Two-Dimensional Hybrid Perovskites: A Joint Experimental and Theoretical Study. ACS Applied Materials & Interfaces 2020, 12 (15) , 17881-17892. https://doi.org/10.1021/acsami.0c02327
    43. Yiling Lian, Lan Jiang, Jingya Sun, Hao Jin, Mengmeng Wang, Jia Liu, Changji Pan, Qingsong Wang, Zhicheng Chen. Asymmetric Response Optoelectronic Device Based on Femtosecond-Laser-Irradiated Perovskite. ACS Applied Materials & Interfaces 2020, 12 (14) , 17070-17076. https://doi.org/10.1021/acsami.0c00763
    44. Junsang Cho, Jeffrey T. DuBose, Prashant V. Kamat. Charge Carrier Recombination Dynamics of Two-Dimensional Lead Halide Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (7) , 2570-2576. https://doi.org/10.1021/acs.jpclett.0c00392
    45. Rabi Khanal, Nicholas Ayers, Sheila Briggs, Yi Wang, Soumik Banerjee, Samrat Choudhury. Study of Structure and Electronic Properties of Heterointerfaces for Photovoltaic Applications. The Journal of Physical Chemistry C 2020, 124 (7) , 4141-4151. https://doi.org/10.1021/acs.jpcc.9b11447
    46. Xiangyang Wang, Shanshan Liu, Baohua Zhao, Heyuan Liu, Xiyou Li. Study on the Ultrafast Process of Perovskite Nanoparticles Modified by Different Alkyl Chains. Langmuir 2020, 36 (6) , 1507-1514. https://doi.org/10.1021/acs.langmuir.9b03242
    47. Abul Kalam, Rashmi Runjhun, Apurba Mahapatra, Mohammad Mahdi Tavakoli, Suverna Trivedi, Hadi Tavakoli Dastjerdi, Pawan Kumar, Janusz Lewiński, Manoj Pandey, Daniel Prochowicz, Pankaj Yadav. Interpretation of Resistance, Capacitance, Defect Density, and Activation Energy Levels in Single-Crystalline MAPbI3. The Journal of Physical Chemistry C 2020, 124 (6) , 3496-3502. https://doi.org/10.1021/acs.jpcc.9b11343
    48. Thi My Huyen Nguyen, Chung Wung Bark. Synthesis of Cobalt-Doped TiO2 Based on Metal–Organic Frameworks as an Effective Electron Transport Material in Perovskite Solar Cells. ACS Omega 2020, 5 (5) , 2280-2286. https://doi.org/10.1021/acsomega.9b03507
    49. Eric Osei-Agyemang, Ganesh Balasubramanian. Understanding the Extremely Poor Lattice Thermal Transport in Chalcogenide Perovskite BaZrS3. ACS Applied Energy Materials 2020, 3 (1) , 1139-1144. https://doi.org/10.1021/acsaem.9b02185
    50. Joong Il Jake Choi, Muhammad Ejaz Khan, Zafer Hawash, Hyunhwa Lee, Luis K. Ono, Yabing Qi, Yong-Hoon Kim, Jeong Young Park. Surface Termination-Dependent Nanotribological Properties of Single-Crystal MAPbBr3 Surfaces. The Journal of Physical Chemistry C 2020, 124 (2) , 1484-1491. https://doi.org/10.1021/acs.jpcc.9b10191
    51. Shubhranshu Bhandari, Anurag Roy, Aritra Ghosh, Tapas Kumar Mallick, Senthilarasu Sundaram. Performance of WO3-Incorporated Carbon Electrodes for Ambient Mesoscopic Perovskite Solar Cells. ACS Omega 2020, 5 (1) , 422-429. https://doi.org/10.1021/acsomega.9b02934
    52. Chang Liu, Zhongqi Li, Liu Yang, Xiuru Yao, Hongqi Li, Xinxia Liu, Yongsheng Zhao, Pinwen Zhu, Tian Cui, Cheng Sun, Yongjun Bao. Optical Behaviors of a Microsized Single-Crystal MAPbI3 Plate under High Pressure. The Journal of Physical Chemistry C 2019, 123 (50) , 30221-30227. https://doi.org/10.1021/acs.jpcc.9b10416
    53. Nam-Gyu Park (Senior Editor). Perovskite Solar Cell: Research Direction for Next 10 Years. ACS Energy Letters 2019, 4 (12) , 2983-2985. https://doi.org/10.1021/acsenergylett.9b02442
    54. Catherine M. Mauck, Arthur France-Lanord, Alexander C. Hernandez Oendra, Nabeel S. Dahod, Jeffrey C. Grossman, William A. Tisdale. Inorganic Cage Motion Dominates Excited-State Dynamics in 2D-Layered Perovskites (CxH2x+1NH3)2PbI4 (x = 4–9). The Journal of Physical Chemistry C 2019, 123 (45) , 27904-27916. https://doi.org/10.1021/acs.jpcc.9b07933
    55. Geemin Kim, Sol An, Seok-Ki Hyeong, Seoung-Ki Lee, Myungwoong Kim, Naechul Shin. Perovskite Pattern Formation by Chemical Vapor Deposition Using Photolithographically Defined Templates. Chemistry of Materials 2019, 31 (19) , 8212-8221. https://doi.org/10.1021/acs.chemmater.9b03155
    56. Minhua Zou, Xuefeng Xia, Yihua Jiang, Jiayi Peng, Zhenrong Jia, Xiaofeng Wang, Fan Li. Strengthened Perovskite/Fullerene Interface Enhances Efficiency and Stability of Inverted Planar Perovskite Solar Cells via a Tetrafluoroterephthalic Acid Interlayer. ACS Applied Materials & Interfaces 2019, 11 (36) , 33515-33524. https://doi.org/10.1021/acsami.9b12961
    57. Mingming Han, Jiamin Sun, Meng Peng, Ning Han, Zhihao Chen, Dong Liu, Yanan Guo, Shuai Zhao, Chongxin Shan, Tao Xu, Xiaotao Hao, Weida Hu, Zai-xing Yang. Controllable Growth of Lead-Free All-Inorganic Perovskite Nanowire Array with Fast and Stable Near-Infrared Photodetection. The Journal of Physical Chemistry C 2019, 123 (28) , 17566-17573. https://doi.org/10.1021/acs.jpcc.9b03289
    58. Fengshuo Zu, Christian M. Wolff, Maryline Ralaiarisoa, Patrick Amsalem, Dieter Neher, Norbert Koch. Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies. ACS Applied Materials & Interfaces 2019, 11 (24) , 21578-21583. https://doi.org/10.1021/acsami.9b05293
    59. Jing-Yuan Ma, Jie Ding, Hui-Juan Yan, Dong Wang, Jin-Song Hu. Temperature-Dependent Local Electrical Properties of Organic–Inorganic Halide Perovskites: In Situ KPFM and c-AFM Investigation. ACS Applied Materials & Interfaces 2019, 11 (24) , 21627-21633. https://doi.org/10.1021/acsami.9b06418
    60. Jiawei He, Hong-Jian Feng, Qiang Zhang, Zi-Xuan Chen, Chong-Xin Qian, Xiao-Wen Liang, Yong-Hua Cao, Xiao Cheng Zeng. A New Class of Bifunctional Perovskites BaMX4 (M = Co, Ni, Fe, Mn; X = F, Cl, Br, I): An n-Type Semiconductor with Combined Multiferroic and Photovoltaic Properties. The Journal of Physical Chemistry C 2019, 123 (23) , 14303-14311. https://doi.org/10.1021/acs.jpcc.9b04502
    61. Duo Wang, Cuncun Wu, Wei Luo, Xuan Guo, Xin Qi, Yuqing Zhang, Zehao Zhang, Ning Zhu, Bo Qu, Lixin Xiao, Zhijian Chen. To Greatly Reduce Defects via Photoannealing for High-Quality Perovskite Films. ACS Applied Materials & Interfaces 2019, 11 (23) , 20943-20948. https://doi.org/10.1021/acsami.9b06873
    62. Xiaoqian Ma, Ben Ma, Tianyan Yu, Xin Xu, Liuquan Zhang, Wei Wang, Kun Cao, Lingling Deng, Shufen Chen, Wei Huang. Indepth Studies on Working Mechanism of Plasmon-Enhanced Inverted Perovskite Solar Cells Incorporated with Ag@SiO2 Core–Shell Nanocubes. ACS Applied Energy Materials 2019, 2 (5) , 3605-3613. https://doi.org/10.1021/acsaem.9b00346
    63. Wei Wei, Meijia Li, Yun Hang Hu. Applications of 3D Potassium-Ion Pre-Intercalated Graphene for Perovskite and Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research 2019, 58 (20) , 8743-8749. https://doi.org/10.1021/acs.iecr.9b00795
    64. Premjit Limpamanoch, Nopporn Rujisamphan, Pisist Kumnorkaew, Vittaya Amornkitbamrung, I-Ming Tang, Qiao Zhang, Thidarat Supasai. Understanding Effects of Cesium in CH(NH2)2PbI3 for Stabilizing CH(NH2)2PbI3/CsPbI3 Interface under UV Illumination. The Journal of Physical Chemistry C 2019, 123 (19) , 12117-12125. https://doi.org/10.1021/acs.jpcc.9b01581
    65. Prashant V. Kamat (Editor-in-Chief). ACS Journals Celebrate 10 Years of Perovskite Photovoltaics. ACS Energy Letters 2019, 4 (5) , 1055-1056. https://doi.org/10.1021/acsenergylett.9b00609
    66. Prem Jyoti Singh Rana, Rajendra Kumar Gunasekaran, Sung Heum Park, Vellaiappillai Tamilavan, Senthil Karuppanan, Hee-Je Kim, Kandasamy Prabakar. Open Atmosphere-Processed Stable Perovskite Solar Cells Using Molecular Engineered, Dopant-Free, Highly Hydrophobic Polymeric Hole-Transporting Materials: Influence of Thiophene and Alkyl Chain on Power Conversion Efficiency. The Journal of Physical Chemistry C 2019, 123 (14) , 8560-8568. https://doi.org/10.1021/acs.jpcc.8b11898
    67. Ji-Xing Gao, Xiu-Ni Hua, Xiao-Gang Chen, Guang-Quan Mei, Wei-Qiang Liao. [C6N2H18][SbI5]: A Lead-free Hybrid Halide Semiconductor with Exceptional Dielectric Relaxation. Inorganic Chemistry 2019, 58 (7) , 4337-4343. https://doi.org/10.1021/acs.inorgchem.8b03424
    68. Wei Luo, Cuncun Wu, Duo Wang, Yuqing Zhang, Zehao Zhang, Xin Qi, Ning Zhu, Xuan Guo, Bo Qu, Lixin Xiao, Zhijian Chen. Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification. ACS Applied Materials & Interfaces 2019, 11 (9) , 9149-9155. https://doi.org/10.1021/acsami.8b22040
    69. Chun-Ho Lin, Bin Cheng, Ting-You Li, José Ramón Durán Retamal, Tzu-Chiao Wei, Hui-Chun Fu, Xiaosheng Fang, Jr-Hau He. Orthogonal Lithography for Halide Perovskite Optoelectronic Nanodevices. ACS Nano 2019, 13 (2) , 1168-1176. https://doi.org/10.1021/acsnano.8b05859
    70. Ying Zhang, Haiou Zhu, Jilin Zheng, Guangyue Chai, Zongpeng Song, Yanping Chen, Yuanhai Liu, Siyu He, Yongqiang Shi, Yumin Tang, Meng Wang, Wenwen Liu, Lingfeng Jiang, Shuangchen Ruan. Performance Enhancement of All-Inorganic Perovskite Quantum Dots (CsPbX3) by UV-NIR Laser Irradiation. The Journal of Physical Chemistry C 2019, 123 (7) , 4502-4511. https://doi.org/10.1021/acs.jpcc.8b11353
    71. Karen Valadez-Villalobos, Jesús Idígoras, Lilian P. Delgado, David Meneses-Rodríguez, Juan A. Anta, Gerko Oskam. Correlation between the Effectiveness of the Electron-Selective Contact and Photovoltaic Performance of Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2019, 10 (4) , 877-882. https://doi.org/10.1021/acs.jpclett.8b03834
    72. Han Liu, Xiangfeng Wei, Zhixiang Zhang, Xunyong Lei, Wenchao Xu, Linbao Luo, Hualing Zeng, Ruifeng Lu, Jiehua Liu. Microconcave MAPbBr3 Single Crystal for High-Performance Photodetector. The Journal of Physical Chemistry Letters 2019, 10 (4) , 786-792. https://doi.org/10.1021/acs.jpclett.9b00038
    73. Qiuyang Li, Tianquan Lian. Ultrafast Charge Separation in Two-Dimensional CsPbBr3 Perovskite Nanoplatelets. The Journal of Physical Chemistry Letters 2019, 10 (3) , 566-573. https://doi.org/10.1021/acs.jpclett.8b03610
    74. Kai Liu, Yingying Jiang, Yaqian Jiang, Yunlong Guo, Yunqi Liu, Eiichi Nakamura. Chemical Formation and Multiple Applications of Organic–Inorganic Hybrid Perovskite Materials. Journal of the American Chemical Society 2019, 141 (4) , 1406-1414. https://doi.org/10.1021/jacs.8b09532
    75. Lingling Mao, Constantinos C. Stoumpos, Mercouri G. Kanatzidis. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Journal of the American Chemical Society 2019, 141 (3) , 1171-1190. https://doi.org/10.1021/jacs.8b10851
    76. Jinlu He, Run Long. Lead Vacancy Can Explain the Suppressed Nonradiative Electron–Hole Recombination in FAPbI3 Perovskite under Iodine-Rich Conditions: A Time-Domain Ab Initio Study. The Journal of Physical Chemistry Letters 2018, 9 (22) , 6489-6495. https://doi.org/10.1021/acs.jpclett.8b03095
    77. Biplab Ghosh, Bo Wu, Hemant Kumar Mulmudi, Claude Guet, Klaus Weber, Tze Chien Sum, Subodh Mhaisalkar, Nripan Mathews. Limitations of Cs3Bi2I9 as Lead-Free Photovoltaic Absorber Materials. ACS Applied Materials & Interfaces 2018, 10 (41) , 35000-35007. https://doi.org/10.1021/acsami.7b14735
    78. Jinlu He, Wei-Hai Fang, Run Long, Oleg V. Prezhdo. Increased Lattice Stiffness Suppresses Nonradiative Charge Recombination in MAPbI3 Doped with Larger Cations: Time-Domain Ab Initio Analysis. ACS Energy Letters 2018, 3 (9) , 2070-2076. https://doi.org/10.1021/acsenergylett.8b01191
    79. Vladimir S. Chirvony, Juan P. Martínez-Pastor. Trap-Limited Dynamics of Excited Carriers and Interpretation of the Photoluminescence Decay Kinetics in Metal Halide Perovskites. The Journal of Physical Chemistry Letters 2018, 9 (17) , 4955-4962. https://doi.org/10.1021/acs.jpclett.8b01241
    80. Duygu Akın Kara, Koray Kara, Gorkem Oylumluoglu, Mesude Zeliha Yigit, Mustafa Can, Jae Joon Kim, Edmund K. Burnett, D. Leonardo Gonzalez Arellano, Sümeyra Buyukcelebi, Faruk Ozel, Ozlem Usluer, Alejandro L. Briseno, Mahmut Kus. Enhanced Device Efficiency and Long-Term Stability via Boronic Acid-Based Self-Assembled Monolayer Modification of Indium Tin Oxide in a Planar Perovskite Solar Cell. ACS Applied Materials & Interfaces 2018, 10 (35) , 30000-30007. https://doi.org/10.1021/acsami.8b10445
    81. Jing Ma, Xing Guo, Long Zhou, Zhenhua Lin, Chunfu Zhang, Zhou Yang, Gang Lu, Jingjing Chang, Yue Hao. Enhanced Planar Perovskite Solar Cell Performance via Contact Passivation of TiO2/Perovskite Interface with NaCl Doping Approach. ACS Applied Energy Materials 2018, 1 (8) , 3826-3834. https://doi.org/10.1021/acsaem.8b00602
    82. Zhe Xu, Jihuai Wu, Yuqian Yang, Zhang Lan, Jianming Lin. High-Efficiency Planar Hybrid Perovskite Solar Cells Using Indium Sulfide as Electron Transport Layer. ACS Applied Energy Materials 2018, 1 (8) , 4050-4056. https://doi.org/10.1021/acsaem.8b00726
    83. Nam-Gyu Park, Hiroshi Segawa. Research Direction toward Theoretical Efficiency in Perovskite Solar Cells. ACS Photonics 2018, 5 (8) , 2970-2977. https://doi.org/10.1021/acsphotonics.8b00124
    84. Chuan-Jia Tong, Linqiu Li, Li-Min Liu, Oleg V. Prezhdo. Long Carrier Lifetimes in PbI2-Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics. ACS Energy Letters 2018, 3 (8) , 1868-1874. https://doi.org/10.1021/acsenergylett.8b00961
    85. Ludmila Cojocaru, Karl Wienands, Tae Woong Kim, Satoshi Uchida, Alexander J. Bett, Saeid Rafizadeh, Jan Christoph Goldschmidt, Stefan W. Glunz. Detailed Investigation of Evaporated Perovskite Absorbers with High Crystal Quality on Different Substrates. ACS Applied Materials & Interfaces 2018, 10 (31) , 26293-26302. https://doi.org/10.1021/acsami.8b07999
    86. Francesco Cordero, Floriana Craciun, Francesco Trequattrini, Patrizia Imperatori, Anna Maria Paoletti, Giovanna Pennesi. Competition between Polar and Antiferrodistortive Modes and Correlated Dynamics of the Methylammonium Molecules in MAPbI3 from Anelastic and Dielectric Measurements. The Journal of Physical Chemistry Letters 2018, 9 (15) , 4401-4406. https://doi.org/10.1021/acs.jpclett.8b01761
    87. Xin Li, Junyou Yang, Qinghui Jiang, Hui Lai, Shuiping Li, Jiwu Xin, Weijing Chu, Jingdi Hou. Low-Temperature Solution-Processed ZnSe Electron Transport Layer for Efficient Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Photostability. ACS Nano 2018, 12 (6) , 5605-5614. https://doi.org/10.1021/acsnano.8b01351
    88. Puru Jena, Qiang Sun. Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chemical Reviews 2018, 118 (11) , 5755-5870. https://doi.org/10.1021/acs.chemrev.7b00524
    89. Philip Schulz. Interface Design for Metal Halide Perovskite Solar Cells. ACS Energy Letters 2018, 3 (6) , 1287-1293. https://doi.org/10.1021/acsenergylett.8b00404
    90. Minghua Li, Xiaoqin Yan, Zhuo Kang, Yahuan Huan, Yong Li, Ruxiao Zhang, Yue Zhang. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (22) , 18787-18795. https://doi.org/10.1021/acsami.8b04776
    91. Chintam Hanmandlu, Chi-Ching Liu, Chien-Yu Chen, Karunakara Moorthy Boopathi, Shang-Hsuan Wu, Mriganka Singh, Anisha Mohapatra, Hao-Wu Lin, Yia-Chung Chang, Yun-Chorng Chang, Chao-Sung Lai, Chih-Wei Chu. Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes: A Combined Experimental and Theoretical Approach. ACS Applied Materials & Interfaces 2018, 10 (21) , 17973-17984. https://doi.org/10.1021/acsami.8b04329
    92. Yaoguang Rong, Yue Ming, Wenxian Ji, Da Li, Anyi Mei, Yue Hu, Hongwei Han. Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. The Journal of Physical Chemistry Letters 2018, 9 (10) , 2707-2713. https://doi.org/10.1021/acs.jpclett.8b00912
    93. Wenna Du, Shuai Zhang, Jia Shi, Jie Chen, Zhiyong Wu, Yang Mi, Zhixiong Liu, Yuanzheng Li, Xinyu Sui, Rui Wang, Xiaohui Qiu, Tom Wu, Yunfeng Xiao, Qing Zhang, Xinfeng Liu. Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot Cavity. ACS Photonics 2018, 5 (5) , 2051-2059. https://doi.org/10.1021/acsphotonics.7b01593
    94. Jianming Yang, Zhongcheng Yuan, Xianjie Liu, Slawomir Braun, Yanqing Li, Jianxin Tang, Feng Gao, Chungang Duan, Mats Fahlman, Qinye Bao. Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS Applied Materials & Interfaces 2018, 10 (18) , 16225-16230. https://doi.org/10.1021/acsami.8b04182
    95. SeongSik Nam, Cuc Thi Kim Mai, Ilwhan Oh. Ultrastable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process. ACS Applied Materials & Interfaces 2018, 10 (17) , 14659-14664. https://doi.org/10.1021/acsami.8b00686
    96. Zhaosheng Zhang, Wei-Hai Fang, Marina V. Tokina, Run Long, Oleg V. Prezhdo. Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. Nano Letters 2018, 18 (4) , 2459-2466. https://doi.org/10.1021/acs.nanolett.8b00035
    97. Qinjun Sun, Shaolong Zhou, Xiaolei Shi, Xiaochun Wang, Liyan Gao, Zhanfeng Li, Yuying Hao. Efficiency Enhancement of Perovskite Solar Cells via Electrospun CuO Nanowires as Buffer Layers. ACS Applied Materials & Interfaces 2018, 10 (13) , 11289-11296. https://doi.org/10.1021/acsami.7b19335
    98. Jayanta Dana, Partha Maity, Biswajit Jana, Sourav Maiti, Hirendra N. Ghosh. Concurrent Ultrafast Electron- and Hole-Transfer Dynamics in CsPbBr3 Perovskite and Quantum Dots. ACS Omega 2018, 3 (3) , 2706-2714. https://doi.org/10.1021/acsomega.8b00276
    99. Satyawan Nagane, Dibyajyoti Ghosh, Robert L. Z. Hoye, Baodan Zhao, Shahab Ahmad, Alison B. Walker, M. Saiful Islam, Satishchandra Ogale, Aditya Sadhanala. Lead-Free Perovskite Semiconductors Based on Germanium–Tin Solid Solutions: Structural and Optoelectronic Properties. The Journal of Physical Chemistry C 2018, 122 (11) , 5940-5947. https://doi.org/10.1021/acs.jpcc.8b00480
    100. Lin Xie, An-Na Cho, Nam-Gyu Park, Kyungkon Kim. Efficient and Reproducible CH3NH3PbI3 Perovskite Layer Prepared Using a Binary Solvent Containing a Cyclic Urea Additive. ACS Applied Materials & Interfaces 2018, 10 (11) , 9390-9397. https://doi.org/10.1021/acsami.7b18761
    Load more citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2013, 4, 15, 2423–2429
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz400892a
    Published July 11, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    24k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.