ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Interfacial Free Energy between Hard-Sphere Solids and Fluids

Cite this: Langmuir 1994, 10, 5, 1348–1350
Publication Date (Print):May 1, 1994
https://doi.org/10.1021/la00017a006
ACS Legacy Archive
Article Views
245
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (315 KB)

Note: In lieu of an abstract, this is the article's first page.

Free first page

Cited By

This article is cited by 27 publications.

  1. Yan Mu,, Andrew Houk, and, Xueyu Song. Anisotropic Interfacial Free Energies of the Hard-Sphere Crystal−Melt Interfaces. The Journal of Physical Chemistry B 2005, 109 (14) , 6500-6504. https://doi.org/10.1021/jp046289e
  2. Amit M. Kulkarni and, Charles F. Zukoski. Nanoparticle Crystal Nucleation:  Influence of Solution Conditions. Langmuir 2002, 18 (8) , 3090-3099. https://doi.org/10.1021/la011282z
  3. M. Bültmann, T. Schilling. Computation of the solid-liquid interfacial free energy in hard spheres by means of thermodynamic integration. Physical Review E 2020, 102 (4) https://doi.org/10.1103/PhysRevE.102.042123
  4. Arvind K. Gautam, Avinash Chandra. A computational study of liquid–solid interfacial free energy ( γ ) for SW-Ge potential model. Physica A: Statistical Mechanics and its Applications 2018, 506 , 128-134. https://doi.org/10.1016/j.physa.2018.04.001
  5. Ronald Benjamin, Jürgen Horbach. Crystal-liquid interfacial free energy of hard spheres via a thermodynamic integration scheme. Physical Review E 2015, 91 (3) https://doi.org/10.1103/PhysRevE.91.032410
  6. Richard B. Rogers, Bruce J. Ackerson. The measurement of solid–liquid interfacial energy in colloidal suspensions using grain boundary grooves. Philosophical Magazine 2011, 91 (5) , 682-729. https://doi.org/10.1080/14786435.2010.527306
  7. I. B. Ramsteiner, D. A. Weitz, F. Spaepen. Stiffness of the crystal-liquid interface in a hard-sphere colloidal system measured from capillary fluctuations. Physical Review E 2010, 82 (4) https://doi.org/10.1103/PhysRevE.82.041603
  8. K.F. Kelton, A.L. Greer. Crystallization in Liquids and Colloidal Suspensions. 2010,,, 229-278. https://doi.org/10.1016/S1470-1804(09)01507-7
  9. Graham Weir. Implications from the ratio of surface tension to bulk modulus and nearest neighbour distance, for planar surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2008, 464 (2097) , 2281-2292. https://doi.org/10.1098/rspa.2007.0360
  10. . Chapter 4 Solid-liquid interface. 2007,,, 113-141. https://doi.org/10.1016/S1470-1804(07)80028-9
  11. Ruslan L. Davidchack, James R. Morris, Brian B. Laird. The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. The Journal of Chemical Physics 2006, 125 (9) , 094710. https://doi.org/10.1063/1.2338303
  12. Yan Mu, Xueyu Song. Crystal-melt interfacial free energies of hard-dumbbell systems. Physical Review E 2006, 74 (3) https://doi.org/10.1103/PhysRevE.74.031611
  13. Yan Mu, Xueyu Song. Calculations of crystal-melt interfacial free energies by nonequilibrium work measurements. The Journal of Chemical Physics 2006, 124 (3) , 034712. https://doi.org/10.1063/1.2159474
  14. Brian B. Laird, Ruslan L. Davidchack. Direct Calculation of the Crystal−Melt Interfacial Free Energy via Molecular Dynamics Computer Simulation. The Journal of Physical Chemistry B 2005, 109 (38) , 17802-17812. https://doi.org/10.1021/jp0530754
  15. Ruslan L. Davidchack, Brian B. Laird. Crystal Structure and Interaction Dependence of the Crystal-Melt Interfacial Free Energy. Physical Review Letters 2005, 94 (8) https://doi.org/10.1103/PhysRevLett.94.086102
  16. Rafael M. Digilov. Semi-empirical model for prediction of crystal–melt interfacial tension. Surface Science 2004, 555 (1-3) , 68-74. https://doi.org/10.1016/j.susc.2004.02.024
  17. Zeshan Hu, Yulin Deng. Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate. Powder Technology 2004, 140 (1-2) , 10-16. https://doi.org/10.1016/j.powtec.2004.01.001
  18. P Wette, H.-J Schöpe, J Liu, T Palberg. Solidification in model systems of spherical particles with density-dependent interactions. Europhysics Letters (EPL) 2003, 64 (1) , 124-130. https://doi.org/10.1209/epl/i2003-00146-1
  19. Michael Knott, Ian J. Ford. Surface tension and nucleation rate of phases of a charged colloidal suspension. Physical Review E 2002, 65 (6) https://doi.org/10.1103/PhysRevE.65.061401
  20. Brian B. Laird. The solid–liquid interfacial free energy of close-packed metals: Hard-spheres and the Turnbull coefficient. The Journal of Chemical Physics 2001, 115 (7) , 2887-2888. https://doi.org/10.1063/1.1391481
  21. Ruslan L. Davidchack, Brian B. Laird. Direct Calculation of the Hard-Sphere Crystal / Melt Interfacial Free Energy. Physical Review Letters 2000, 85 (22) , 4751-4754. https://doi.org/10.1103/PhysRevLett.85.4751
  22. Martin Heni, Hartmut Löwen. Interfacial free energy of hard-sphere fluids and solids near a hard wall. Physical Review E 1999, 60 (6) , 7057-7065. https://doi.org/10.1103/PhysRevE.60.7057
  23. Dean C. Wang, Alice P. Gast. Crystallization of power-law fluids: A modified weighted density approximation model with a solid reference state. The Journal of Chemical Physics 1999, 110 (5) , 2522-2528. https://doi.org/10.1063/1.477957
  24. E. M. Wong, J. E. Bonevich, P. C. Searson. Growth Kinetics of Quantum Size ZnO Particles. MRS Proceedings 1998, 536 https://doi.org/10.1557/PROC-536-347
  25. D. W. M. Marr. Toward determining the true hard‐sphere interfacial free energy. The Journal of Chemical Physics 1995, 102 (20) , 8283-8284. https://doi.org/10.1063/1.468961
  26. J. S. Van Duijneveldt, H. N. W. Lekkerkerker. Crystallization in Colloidal Suspensions. 1995,,, 279-290. https://doi.org/10.1007/978-94-011-0137-0_21
  27. C. Sinn, A. Heymann, A. Stipp, T. Palberg. Solidification kinetics of hard-sphere colloidal suspensions. ,,, 266-275. https://doi.org/10.1007/3-540-45725-9_57

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE