Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Thermal Decomposition of Generation-4 Polyamidoamine Dendrimer Films:  Decomposition Catalyzed by Dendrimer-Encapsulated Pt Particles

View Author Information
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, South Carolina 29208
Cite this: Langmuir 2005, 21, 9, 3998–4006
Publication Date (Web):March 31, 2005
https://doi.org/10.1021/la047242n
Copyright © 2005 American Chemical Society

    Article Views

    1320

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The thermal decomposition of hydroxyl-terminated generation-4 polyamidoamine dendrimer (G4OH) films deposited on Au surfaces has been compared with decomposition of the same dendrimer encapsulating an ∼40-atom Pt particle (Pt−G4OH). Infrared absorption reflection spectroscopy studies showed that, when the films were heated in air to various temperatures up to 275 °C, the disappearance of the amide vibrational modes occurred at lower temperature for the Pt−G4OH film. Dendrimer decomposition was also investigated by thermogravimetric analysis (TGA) in both air and argon atmospheres. For the G4OH dendrimer, complete decomposition was achieved in air at 500 °C, while decomposition of the Pt−G4OH dendrimer was completed at 400 °C, leaving only platinum metal behind. In a nonoxidizing argon atmosphere, a greater fraction of the G4OH decomposed below 300 °C, but all of the dendrimer fragments were not removed until heating above 550 °C. In contrast, Pt−G4OH decomposition in argon was similar to that in air, except that decomposition occurred at temperatures ∼15 °C higher. Thermal decomposition of the dendrimer films on Au surfaces was also studied by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) under ultrahigh vacuum conditions. Heating the G4OH films to 250 °C during the TPD experiment induced the desorption of large dendrimer fragments at 55, 72, 84, 97, 127, 146, and 261 amu. For the Pt−G4OH films, mass fragments above 98 amu were not observed at any temperature, but much greater intensities for H2 desorption were detected compared to that of the G4OH film. XPS studies of the G4OH films demonstrated that significant bond breaking in the dendrimer did not occur until temperatures above 250 °C and heating to 450 °C caused dissociation of CO, C−O, and C−N bonds. For the Pt−G4OH dendrimer films, carbon−oxygen and carbon−nitrogen bond scission was observed at room temperature, and further decomposition to atomic species occurred after heating to 450 °C. All of these results are consistent with the fact that the Pt particles inside the G4OH dendrimer catalyze thermal decomposition, allowing dendrimer decomposition to occur at lower temperatures. However, the Pt particles also catalyze bond scission within the dendrimer fragments so that decomposition of the dendrimer to gaseous hydrogen is the dominant reaction pathway compared to desorption of the larger dendrimer fragments observed in the absence of Pt particles.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Department of Chemistry and Biochemistry.

     Department of Chemical Engineering.

    *

     Author to whom correspondence should be addressed. E-mail:  [email protected]. Phone:  803-777-1050. Fax:  803-777-9521.

    Cited By

    This article is cited by 72 publications.

    1. Meishuang Qiu, Yan Peng, Yizhuo Lu, Xiaorong Xiong, Tianyou Chen, Zushun Xu. Hyperbranched Polymer-Cross-Linked Enzyme Aggregates for the Compartmentalized Coimmobilization of Enzymes and Metal Nanoparticles. ACS Applied Polymer Materials 2024, 6 (11) , 6888-6896. https://doi.org/10.1021/acsapm.4c01242
    2. Morgan J. Anderson, Nevena Ostojic, and Richard M. Crooks . Microelectrochemical Flow Cell for Studying Electrocatalytic Reactions on Oxide-Coated Electrodes. Analytical Chemistry 2017, 89 (20) , 11027-11035. https://doi.org/10.1021/acs.analchem.7b03016
    3. Ndzondelelo Bingwa, Rapelang Patala, Ji-Hyang Noh, Matumuene J. Ndolomingo, Siyamthanda Tetyana, Semakaleng Bewana, and Reinout Meijboom . Synergistic Effects of Gold–Palladium Nanoalloys and Reducible Supports on the Catalytic Reduction of 4-Nitrophenol. Langmuir 2017, 33 (28) , 7086-7095. https://doi.org/10.1021/acs.langmuir.7b00903
    4. Nevena Ostojic and Richard M. Crooks . Electrocatalytic Reduction of Oxygen on Platinum Nanoparticles in the Presence and Absence of Interactions with the Electrode Surface. Langmuir 2016, 32 (38) , 9727-9735. https://doi.org/10.1021/acs.langmuir.6b02578
    5. Rachel M. Anderson, David F. Yancey, James A. Loussaert, and Richard M. Crooks . Multistep Galvanic Exchange Synthesis Yielding Fully Reduced Pt Dendrimer-Encapsulated Nanoparticles. Langmuir 2014, 30 (49) , 15009-15015. https://doi.org/10.1021/la503956h
    6. Srabanti Ghosh, Ali Hossain Khan, and Somobrata Acharya . Fabrication of Highly Stable, Hybrid PbS Nanocomposites in PAMAM Dendrimer Matrix for Photodetection. The Journal of Physical Chemistry C 2012, 116 (10) , 6022-6030. https://doi.org/10.1021/jp210856n
    7. V. Sue Myers, Anatoly I. Frenkel, and Richard M. Crooks . In Situ Structural Characterization of Platinum Dendrimer-Encapsulated Oxygen Reduction Electrocatalysts. Langmuir 2012, 28 (2) , 1596-1603. https://doi.org/10.1021/la203756z
    8. Lyudmila M. Bronstein and Zinaida B. Shifrina . Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles. Chemical Reviews 2011, 111 (9) , 5301-5344. https://doi.org/10.1021/cr2000724
    9. Surojit Pande and Richard M. Crooks . Analysis of Poly(amidoamine) Dendrimer Structure by UV–Vis Spectroscopy. Langmuir 2011, 27 (15) , 9609-9613. https://doi.org/10.1021/la201882t
    10. Christina H. Wales, Jacob Berger, Samuel Blass, Richard M. Crooks, and Neer Asherie . Quasi-Elastic Light Scattering of Platinum Dendrimer-Encapsulated Nanoparticles. Langmuir 2011, 27 (7) , 4104-4109. https://doi.org/10.1021/la1050095
    11. Yuri Borodko, Christopher M. Thompson, Wenyu Huang, Huseyin B. Yildiz, Heinz Frei, and Gabor A. Somorjai . Spectroscopic Study of Platinum and Rhodium Dendrimer (PAMAM G4OH) Compounds: Structure and Stability. The Journal of Physical Chemistry C 2011, 115 (11) , 4757-4767. https://doi.org/10.1021/jp1116454
    12. Arther T. Gates, Elizabeth G. Nettleton, V. Sue Myers and Richard M. Crooks. Synthesis and Characterization of NiSn Dendrimer-Encapsulated Nanoparticles. Langmuir 2010, 26 (15) , 12994-12999. https://doi.org/10.1021/la102214q
    13. M. Antonia Herrero, Javier Guerra, V. Sue Myers, M. Victoria Gómez, Richard M. Crooks and Maurizio Prato . Gold Dendrimer Encapsulated Nanoparticles as Labeling Agents for Multiwalled Carbon Nanotubes. ACS Nano 2010, 4 (2) , 905-912. https://doi.org/10.1021/nn901729d
    14. Daigo Yamamoto, Satoshi Watanabe and Minoru T. Miyahara. Coordination and Reduction Processes in the Synthesis of Dendrimer-Encapsulated Pt Nanoparticles. Langmuir 2010, 26 (4) , 2339-2345. https://doi.org/10.1021/la902770p
    15. Sue V. Myers, Anatoly I. Frenkel and Richard M. Crooks . X-ray Absorption Study of PdCu Bimetallic Alloy Nanoparticles Containing an Average of ∼64 Atoms. Chemistry of Materials 2009, 21 (20) , 4824-4829. https://doi.org/10.1021/cm901378x
    16. M. Victoria Gomez, Javier Guerra, Aldrik H. Velders and Richard M. Crooks . NMR Characterization of Fourth-Generation PAMAM Dendrimers in the Presence and Absence of Palladium Dendrimer-Encapsulated Nanoparticles. Journal of the American Chemical Society 2009, 131 (1) , 341-350. https://doi.org/10.1021/ja807488d
    17. Yaritza M. López-De Jesús, Aurélie Vicente, Gwendoline Lafaye, Patrice Marécot and Christopher T. Williams. Synthesis and Characterization of Dendrimer-Derived Supported Iridium Catalysts. The Journal of Physical Chemistry C 2008, 112 (36) , 13837-13845. https://doi.org/10.1021/jp800152f
    18. Marc R. Knecht, Michael G. Weir, V. Sue Myers, William D. Pyrz, Heechang Ye, Valeri Petkov, Douglas J. Buttrey, Anatoly I. Frenkel and Richard M. Crooks . Synthesis and Characterization of Pt Dendrimer-Encapsulated Nanoparticles: Effect of the Template on Nanoparticle Formation. Chemistry of Materials 2008, 20 (16) , 5218-5228. https://doi.org/10.1021/cm8004198
    19. Wenyu Huang, John N. Kuhn, Chia-Kuang Tsung, Yawen Zhang, Susan E. Habas, Peidong Yang and Gabor A. Somorjai . Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation. Nano Letters 2008, 8 (7) , 2027-2034. https://doi.org/10.1021/nl801325m
    20. Marc R. Knecht, Michael G. Weir, Anatoly I. Frenkel and Richard M. Crooks. Structural Rearrangement of Bimetallic Alloy PdAu Nanoparticles within Dendrimer Templates to Yield Core/Shell Configurations. Chemistry of Materials 2008, 20 (3) , 1019-1028. https://doi.org/10.1021/cm0717817
    21. D. Samuel Deutsch,, Attilio Siani,, Paul T. Fanson,, Hirohito Hirata,, Shinichi Matsumoto,, Christopher T. Williams, and, Michael D. Amiridis. FT-IR Investigation of the Thermal Decomposition of Poly(amidoamine) Dendrimers and Dendrimer−Metal Nanocomposites Supported on Al2O3 and ZrO2. The Journal of Physical Chemistry C 2007, 111 (11) , 4246-4255. https://doi.org/10.1021/jp065853d
    22. Oleg S. Alexeev,, Attilio Siani,, Gwendoline Lafaye,, Christopher T. Williams,, Harry J. Ploehn, and, Michael D. Amiridis. EXAFS Characterization of Dendrimer−Pt Nanocomposites Used for the Preparation of Pt/γ-Al2O3 Catalysts. The Journal of Physical Chemistry B 2006, 110 (49) , 24903-24914. https://doi.org/10.1021/jp063787+
    23. Gwendoline Lafaye,, Attilio Siani,, Patrice Marécot,, Michael D. Amiridis, and, Christopher T. Williams. Particle Size Control in Dendrimer-Derived Supported Ruthenium Catalysts. The Journal of Physical Chemistry B 2006, 110 (15) , 7725-7731. https://doi.org/10.1021/jp057025a
    24. Malvika Chawla, R.D. Kaushik, Mayank Kumar Malik, Vishakha Pundir, Jaspal Singh, Hafeezur Rehmaan. Development and optimization of RofA-PAMAM dendrimer complex materials for sustained drug delivery. Materials Today Communications 2022, 33 , 104881. https://doi.org/10.1016/j.mtcomm.2022.104881
    25. Zheng Liu, Mingsong Chen, Yecheng Xu, Jieyu Zhang, Xinxin Huang, Jing Luo, Jianzhang Li, Sheldon Q. Shi, Qiang Gao. Preparation of a strong and multiple-function soybean flour adhesive via the construction of tannin microspheres with a core–shell structure. Composites Part B: Engineering 2022, 242 , 110114. https://doi.org/10.1016/j.compositesb.2022.110114
    26. Hugo A. Andrade-Melecio, Víctor H. Antolín-Cerón, Abraham G. Alvarado-Mendoza, Milton Vázquez-Lepe, Karla A. Barrera-Rivera, Antonio Martínez-Richa, Sergio M. Nuño-Donlucas. Semi-Continuous Heterophase Polymerization to Synthesize Poly(methacrylic acid)-Based Nanocomposites for Drug Delivery. Polymers 2022, 14 (6) , 1195. https://doi.org/10.3390/polym14061195
    27. Malvika Chawla, R.D. Kaushik, Hafeezur Rehmaan, Jaspal Singh, Mayank Kumar Malik. Development and Optimization of Rofa-Pamam Dendrimer Conjugate Materials for Sustained Drug Delivery. SSRN Electronic Journal 2022, 318 https://doi.org/10.2139/ssrn.4145614
    28. Oluwatayo Racheal Onisuru, Charles O. Oseghale, Reinout Meijboom. In situ replacement of Cu-DEN: an approach for preparing a more noble metal nanocatalyst for catalytic use. New Journal of Chemistry 2020, 44 (46) , 20322-20333. https://doi.org/10.1039/D0NJ04381H
    29. Malvika Chawla, R. D. Kaushik, Jaspal Singh, Manila. Optimization and computational studies evaluating molecular dynamics of EDA cored polymeric dendrimer. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-77540-x
    30. Morena S. Xaba, Ji-Hyang Noh, Reinout Meijboom. Catalytic activity of different sizes of Pt /Co3O4 in the oxidative degradation of Methylene Blue with H2O2. Applied Surface Science 2019, 467-468 , 868-880. https://doi.org/10.1016/j.apsusc.2018.10.259
    31. Xiaoye Zhang, Yingxi Qin, Guifang Zhang, Yiping Zhao, Chao Lv, Xingtian Liu, Li Chen. Preparation of PVDF/Hyperbranched-Nano-Palygorskite Composite Membrane for Efficient Removal of Heavy Metal Ions. Polymers 2019, 11 (1) , 156. https://doi.org/10.3390/polym11010156
    32. Tianyou Chen, Zhao Cheng, Changfeng Yi, Zushun Xu. Synthesis of platinum nanoparticles templated by dendrimers terminated with alkyl chains. Chemical Communications 2018, 54 (66) , 9143-9146. https://doi.org/10.1039/C8CC05106B
    33. Nirmalesh Naveen, Chunguk Park, Kee-Sun Sohn, Myoungho Pyo. Nickel hydroxide nanoplatelets via dendrimer-assisted growth on graphene for high-performance energy-storage applications. Electrochimica Acta 2017, 248 , 313-321. https://doi.org/10.1016/j.electacta.2017.07.156
    34. Mulisa Nemanashi-Maumela, Isaac Nongwe, Reagile Clifford Motene, Bianca Leigh Davids, Reinout Meijboom. Au and Ag nanoparticles encapsulated within silica nanospheres using dendrimers as dual templating agent and their catalytic activity. Molecular Catalysis 2017, 438 , 184-196. https://doi.org/10.1016/j.mcat.2017.06.003
    35. Jing Hu, Cheng Zou, Yanjie Su, Ming Li, Nantao Hu, Hui Ni, Zhi Yang, Yafei Zhang. Enhanced NO 2 sensing performance of reduced graphene oxide by in situ anchoring carbon dots. Journal of Materials Chemistry C 2017, 5 (27) , 6862-6871. https://doi.org/10.1039/C7TC01208J
    36. Miao Guo, Guojun Lan, Juan Peng, Mingrun Li, Qihua Yang, Can Li. Enhancing the catalytic activity of Ru NPs deposited with carbon species in yolk–shell nanostructures. Journal of Materials Chemistry A 2016, 4 (28) , 10956-10963. https://doi.org/10.1039/C6TA03576K
    37. Shouyong Zhou, Ailian Xue, Yan Zhang, Meisheng Li, Kang Li, Yijiang Zhao, Weihong Xing. Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+ and reactive dyes. Applied Clay Science 2015, 107 , 220-229. https://doi.org/10.1016/j.clay.2015.01.032
    38. Qianli Wang, Yiwei Zhang, Yuming Zhou, Zewu Zhang, Yuanmei Xu, Chao Zhang, Xiaoli Sheng. Synthesis of dendrimer-templated Pt nanoparticles immobilized on mesoporous alumina for p-nitrophenol reduction. New Journal of Chemistry 2015, 39 (12) , 9942-9950. https://doi.org/10.1039/C5NJ02318A
    39. Kinjal J. Shah, Toyoko Imae, Atindra Shukla. Selective capture of CO 2 by poly(amido amine) dendrimer-loaded organoclays. RSC Advances 2015, 5 (45) , 35985-35992. https://doi.org/10.1039/C5RA04904K
    40. Priyanka Bhattacharya, Eduard N. Nasybulin, Mark H. Engelhard, Libor Kovarik, Mark E. Bowden, Xiaohong S. Li, Daniel J. Gaspar, Wu Xu, Ji‐Guang Zhang. Dendrimer‐Encapsulated Ruthenium Oxide Nanoparticles as Catalysts in Lithium‐Oxygen Batteries. Advanced Functional Materials 2014, 24 (47) , 7510-7519. https://doi.org/10.1002/adfm.201402701
    41. Jing-Jing Lv, Jie-Ning Zheng, Li-Li Chen, Meng Lin, Ai-Jun Wang, Jian-Rong Chen, Jiu-Ju Feng. Facile synthesis of bimetallic alloyed Pt-Pd nanocubes on reduced graphene oxide with enhanced eletrocatalytic properties. Electrochimica Acta 2014, 143 , 36-43. https://doi.org/10.1016/j.electacta.2014.07.128
    42. Wenyu Huang. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis and Application in Catalysis. 2014, 65-91. https://doi.org/10.1007/978-1-4614-8742-5_4
    43. Samuel A. Tenney, Kangmin Xie, John R. Monnier, Abraham Rodriguez, Randima P. Galhenage, Audrey S. Duke, Donna A. Chen. Novel recirculating loop reactor for studies on model catalysts: CO oxidation on Pt/TiO2(110). Review of Scientific Instruments 2013, 84 (10) https://doi.org/10.1063/1.4824142
    44. Junjiang Zhu, Tao Wang, Xuelian Xu, Ping Xiao, Jinlin Li. Pt nanoparticles supported on SBA-15: Synthesis, characterization and applications in heterogeneous catalysis. Applied Catalysis B: Environmental 2013, 130-131 , 197-217. https://doi.org/10.1016/j.apcatb.2012.11.005
    45. In-Hwan Yeo, Jun-Won Jang, Lyung-Joo Kim, Jae-Woo Park. Synthesis of Multi-Terminalized Magnetic-Cored Dendrimer for Adsorption of Chromium and Enhancement of Magnetic Recovery. Journal of Korean Society of Environmental Engineers 2012, 34 (9) , 613-622. https://doi.org/10.4491/KSEE.2012.34.9.613
    46. Zahra Nazarpoor, Shuguo Ma, Paul T. Fanson, Oleg S. Alexeev, Michael D. Amiridis. O2 plasma activation of dendrimer-derived Pt/γ-Al2O3 catalysts. Journal of Catalysis 2012, 290 , 26-36. https://doi.org/10.1016/j.jcat.2012.02.016
    47. Zahra Nazarpoor, Shuguo Ma, Paul T. Fanson, Oleg S. Alexeev, Michael D. Amiridis. Decomposition of poly(amidoamine) (PAMAM) dendrimers under O2 plasma conditions. Polymer Degradation and Stability 2012, 97 (3) , 439-451. https://doi.org/10.1016/j.polymdegradstab.2011.11.008
    48. Alison Stoddart, W. James Feast, Steve P. Rannard. Synthesis and thermal studies of aliphatic polyurethane dendrimers: a geometric approach to the Flory–Fox equation for dendrimer glass transition temperature. Soft Matter 2012, 8 (4) , 1096-1108. https://doi.org/10.1039/C1SM06725G
    49. Ampornphan Siriviriyanun, Toyoko Imae. Advantages of immobilization of Pt nanoparticles protected by dendrimers on multiwalled carbon nanotubes. Physical Chemistry Chemical Physics 2012, 14 (30) , 10622. https://doi.org/10.1039/c2cp41364g
    50. Govindachetty Saravanan, Hideki Abe. Influence of pH on dendritic structure of strongly fluorescent persulfate-treated poly(amidoamine) dendrimer. Journal of Photochemistry and Photobiology A: Chemistry 2011, 224 (1) , 102-109. https://doi.org/10.1016/j.jphotochem.2011.09.012
    51. H. Kavas, Z. Durmus, E. Tanrıverdi, M. Şenel, H. Sozeri, A. Baykal. Fabrication and characterization of dendrimer-encapsulated monometallic Co nanoparticles. Journal of Alloys and Compounds 2011, 509 (17) , 5341-5348. https://doi.org/10.1016/j.jallcom.2011.02.038
    52. Manuel A. Albiter, Ricardo Morales, Francisco Zaera. Dendrimer-based synthesis of Pt catalysts for hydrocarbon conversion. Applied Catalysis A: General 2011, 391 (1-2) , 386-393. https://doi.org/10.1016/j.apcata.2010.05.045
    53. P. Sonström, M. Bäumer. Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts. Physical Chemistry Chemical Physics 2011, 13 (43) , 19270. https://doi.org/10.1039/c1cp22048a
    54. Surojit Pande, Michael G. Weir, Brian A. Zaccheo, Richard M. Crooks. Synthesis, characterization, and electrocatalysis using Pt and Pd dendrimer-encapsulated nanoparticles prepared by galvanic exchange. New Journal of Chemistry 2011, 35 (10) , 2054. https://doi.org/10.1039/c1nj20083f
    55. Min Li, Li Qun Xu, Liang Wang, Y. P. Wu, Jun Li, Koon-Gee Neoh, En-Tang Kang. Clickable poly(ester amine) dendrimer-grafted Fe3O4 nanoparticles prepared via successive Michael addition and alkyne–azide click chemistry. Polymer Chemistry 2011, 2 (6) , 1312. https://doi.org/10.1039/c1py00084e
    56. V. Sue Myers, Michael G. Weir, Emily V. Carino, David F. Yancey, Surojit Pande, Richard M. Crooks. Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications. Chemical Science 2011, 2 (9) , 1632. https://doi.org/10.1039/c1sc00256b
    57. J. Ledesma-Garcia, I. L. Escalante-Garcia, Thomas W. Chapman, L. G. Arriaga, V. Baglio, V. Antonucci, A. S. Aricò, R. Ornelas, Luis A. Godinez. Pt dendrimer nanocomposites for oxygen reduction reaction in direct methanol fuel cells. Journal of Solid State Electrochemistry 2010, 14 (5) , 835-840. https://doi.org/10.1007/s10008-009-0862-x
    58. Pedro M. R. Paulo. Temperature echoes revisited to probe the vibrational behavior of dendrimers. The Journal of Chemical Physics 2010, 132 (11) https://doi.org/10.1063/1.3353952
    59. Yunlong Gu, Peter Sanders, Harry J. Ploehn. Quantitative analysis of Pt–PAMAM ligand exchange reactions: Time and concentration effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 356 (1-3) , 10-15. https://doi.org/10.1016/j.colsurfa.2009.11.037
    60. Yunlong Gu, Gang Wu, Xiao Feng Hu, Donna A. Chen, Tara Hansen, Hans-Conrad zur Loye, Harry J. Ploehn. PAMAM-stabilized Pt–Ru nanoparticles for methanol electro-oxidation. Journal of Power Sources 2010, 195 (2) , 425-434. https://doi.org/10.1016/j.jpowsour.2009.07.044
    61. Tero Tuuttila, Manu Lahtinen, Noora Kuuloja, Juhani Huuskonen, Kari Rissanen. Synthesis and thermal behavior of Janus dendrimers, part 1. Thermochimica Acta 2010, 497 (1-2) , 101-108. https://doi.org/10.1016/j.tca.2009.08.018
    62. Cole A. Witham, Wenyu Huang, Chia-Kuang Tsung, John N. Kuhn, Gabor A. Somorjai, F. Dean Toste. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chemistry 2010, 2 (1) , 36-41. https://doi.org/10.1038/nchem.468
    63. Yaritza M. López-De Jesús, Christopher T. Williams. PAMAM Dendrimer-Derived Ir/Al2O3 Catalysts: An EXAFS Characterization. Catalysis Letters 2009, 132 (3-4) , 430-437. https://doi.org/10.1007/s10562-009-0145-2
    64. Weilin Xu, Jason S. Kong, Peng Chen. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Physical Chemistry Chemical Physics 2009, 11 (15) , 2767. https://doi.org/10.1039/b820052a
    65. Maryam Bayati, Jose M. Abad, Craig A. Bridges, Matthew J. Rosseinsky, David J. Schiffrin. Size control and electrocatalytic properties of chemically synthesized platinum nanoparticles grown on functionalised HOPG. Journal of Electroanalytical Chemistry 2008, 623 (1) , 19-28. https://doi.org/10.1016/j.jelechem.2008.06.011
    66. Christina J. Crump, John D. Gilbertson, Bert D. Chandler. CO Oxidation and Toluene Hydrogenation by Pt/TiO2 Catalysts Prepared from Dendrimer Encapsulated Nanoparticle Precursors. Topics in Catalysis 2008, 49 (3-4) , 233-240. https://doi.org/10.1007/s11244-008-9093-0
    67. George R. Newkome, Carol D. Shreiner. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. Polymer 2008, 49 (1) , 1-173. https://doi.org/10.1016/j.polymer.2007.10.021
    68. B.A. Rozenberg, R. Tenne. Polymer-assisted fabrication of nanoparticles and nanocomposites. Progress in Polymer Science 2008, 33 (1) , 40-112. https://doi.org/10.1016/j.progpolymsci.2007.07.004
    69. Bert D. Chandler, John D. Gilbertson. PAMAM Dendrimer Templated Nanoparticle Catalysts. 2007, 129-160. https://doi.org/10.1002/9783527621323.ch4
    70. Rachel J. Korkosz, John D. Gilbertson, Kristin S. Prasifka, Bert D. Chandler. Dendrimer templates for supported Au catalysts. Catalysis Today 2007, 122 (3-4) , 370-377. https://doi.org/10.1016/j.cattod.2007.01.047
    71. Nalini P. Subramanian, Swaminatha P. Kumaraguru, Hector Colon-Mercado, Hansung Kim, Branko N. Popov, Timothy Black, Donna A. Chen. Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes. Journal of Power Sources 2006, 157 (1) , 56-63. https://doi.org/10.1016/j.jpowsour.2005.07.031
    72. Huifang Lang, Bert D. Chandler. Dendrimer Templates for Supported Nanoparticle Catalysts. , 91-113. https://doi.org/10.1007/978-0-387-34688-5_7