ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Coupled Concentration Polarization and Electroosmotic Circulation near Micro/Nanointerfaces: Taylor–Aris Model of Hydrodynamic Dispersion and Limits of Its Applicability

View Author Information
Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
Polytechnic University of Catalonia, Barcelona, Spain
§ Institute of Bio-Colloid Chemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
University Rovira i Virgili, Tarragona, Spain
Cite this: Langmuir 2011, 27, 18, 11710–11721
Publication Date (Web):August 3, 2011
https://doi.org/10.1021/la201354s
Copyright © 2011 American Chemical Society

    Article Views

    935

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)

    Abstract

    Abstract Image

    Mismatches in electrokinetic properties between micro- and nanochannels give rise to superposition of electroosmotic and pressure-driven flows in the microchannels. Parabolic or similar flow profiles are known to cause the so-called hydrodynamic dispersion, which under certain conditions can be formally assimilated to an increase in the solute diffusivity (Taylor–Aris model). It is demonstrated theoretically that taking into account these phenomena modifies considerably the pattern of current-induced concentration polarization of micro/nanointerfaces as compared to the classical model of unstirred boundary layer. In particular, the hydrodynamic dispersion leads to disappearance of limiting current. At essentially “over-limiting” current densities, the time-dependent profiles of salt concentration in microchannels behave like sharp concentration “fronts” moving away from the interface until they reach the reservoir end of the microchannel. Under galvanostatic conditions postulated in this study, these “fronts” move with practically constant speed directly proportional to the current density. The sharp transition from a low-concentration to a high-concentration zone can be useful for the analyte preconcentration via stacking. The pattern of moving sharp concentration “fronts” has been predicted for the first time for relatively broad microchannels with negligible surface conductance. The Taylor–Aris approach to the description of hydrodynamic dispersion is quantitatively applicable only to the analysis of sufficiently “slow” processes (as compared to the characteristic time of diffusion relaxation in the transversal direction). A posteriori estimates reveal that the condition of “slow” processes is typically not satisfied close to current-polarized micro/nanointerfaces. Accordingly, to make the description quantitative, one needs to go beyond the Taylor–Aris approximation, which will be attempted in future studies. It is argued that doing so would make even stronger the dampening impact of hydrodynamic dispersion on the current-induced concentration polarization of micro/nanointerfaces.

    Cited By

    This article is cited by 56 publications.

    1. Barak Sabbagh, Sinwook Park, Gilad Yossifon. Microvalve-Based Tunability of Electrically Driven Ion Transport through a Microfluidic System with an Ion-Exchange Membrane. Analytical Chemistry 2023, 95 (16) , 6514-6522. https://doi.org/10.1021/acs.analchem.2c04600
    2. Mohammad A. Alkhadra, Xiao Su, Matthew E. Suss, Huanhuan Tian, Eric N. Guyes, Amit N. Shocron, Kameron M. Conforti, J. Pedro de Souza, Nayeong Kim, Michele Tedesco, Khoiruddin Khoiruddin, I Gede Wenten, Juan G. Santiago, T. Alan Hatton, Martin Z. Bazant. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chemical Reviews 2022, 122 (16) , 13547-13635. https://doi.org/10.1021/acs.chemrev.1c00396
    3. Kexin Tang, Kun Zhou. Water Desalination by Flow-Electrode Capacitive Deionization in Overlimiting Current Regimes. Environmental Science & Technology 2020, 54 (9) , 5853-5863. https://doi.org/10.1021/acs.est.9b07591
    4. Sinwook Park, Ramadan Abu-Rjal, Leon Rosentsvit, Gilad Yossifon. Novel Electrochemical Flow Sensor Based on Sensing the Convective-Diffusive Ionic Concentration Layer. ACS Sensors 2019, 4 (7) , 1806-1815. https://doi.org/10.1021/acssensors.9b00431
    5. Honggu Chun . Electroosmotic Effects on Sample Concentration at the Interface of a Micro/Nanochannel. Analytical Chemistry 2017, 89 (17) , 8924-8930. https://doi.org/10.1021/acs.analchem.7b01392
    6. Shima Alizadeh and Ali Mani . Multiscale Model for Electrokinetic Transport in Networks of Pores, Part I: Model Derivation. Langmuir 2017, 33 (25) , 6205-6219. https://doi.org/10.1021/acs.langmuir.6b03816
    7. Sven Schlumpberger, Nancy B. Lu, Matthew E. Suss, and Martin Z. Bazant . Scalable and Continuous Water Deionization by Shock Electrodialysis. Environmental Science & Technology Letters 2015, 2 (12) , 367-372. https://doi.org/10.1021/acs.estlett.5b00303
    8. Daosheng Deng, E. Victoria Dydek, Ji-Hyung Han, Sven Schlumpberger, Ali Mani, Boris Zaltzman, and Martin Z. Bazant . Overlimiting Current and Shock Electrodialysis in Porous Media. Langmuir 2013, 29 (52) , 16167-16177. https://doi.org/10.1021/la4040547
    9. Dung T. Nguyen, Van-Sang Pham. Modeling non-linear ion transport phenomena in ion-selective membranes: Three simplified models. Separation and Purification Technology 2023, 39 , 125929. https://doi.org/10.1016/j.seppur.2023.125929
    10. Sven Schlumpberger, Raymond B. Smith, Huanhuan Tian, Ali Mani, Martin Z. Bazant. Deionization shocks in crossflow. AIChE Journal 2021, 67 (8) https://doi.org/10.1002/aic.17274
    11. Huanhuan Tian, Mohammad A. Alkhadra, Martin Z. Bazant. Theory of shock electrodialysis I: Water dissociation and electrosmotic vortices. Journal of Colloid and Interface Science 2021, 589 , 605-615. https://doi.org/10.1016/j.jcis.2020.12.125
    12. Ali Mani, Danah Park. Macroscopic forcing method: A tool for turbulence modeling and analysis of closures. Physical Review Fluids 2021, 6 (5) https://doi.org/10.1103/PhysRevFluids.6.054607
    13. I.G. Wenten, K. Khoiruddin, Mohammad A. Alkhadra, Huanhuan Tian, Martin Z. Bazant. Novel ionic separation mechanisms in electrically driven membrane processes. Advances in Colloid and Interface Science 2020, 284 , 102269. https://doi.org/10.1016/j.cis.2020.102269
    14. J.W. Haverkort. Modeling and Experiments of Binary Electrolytes in the Presence of Diffusion, Migration, and Electro-Osmotic Flow. Physical Review Applied 2020, 14 (4) https://doi.org/10.1103/PhysRevApplied.14.044047
    15. Mohammad Mirzadeh, Tingtao Zhou, Mohammad Amin Amooie, Dimitrios Fraggedakis, Todd R. Ferguson, Martin Z. Bazant. Vortices of electro-osmotic flow in heterogeneous porous media. Physical Review Fluids 2020, 5 (10) https://doi.org/10.1103/PhysRevFluids.5.103701
    16. Bingrui Xu, Zhibo Gu, Wei Liu, Peng Huo, Yueting Zhou, S. M. Rubinstein, M. Z. Bazant, B. Zaltzman, I. Rubinstein, Daosheng Deng. Electro-osmotic instability of concentration enrichment in curved geometries for an aqueous electrolyte. Physical Review Fluids 2020, 5 (9) https://doi.org/10.1103/PhysRevFluids.5.091701
    17. Keon Huh, So-Yoon Yang, Jae Suk Park, Jung A. Lee, Hyomin Lee, Sung Jae Kim. Surface conduction and electroosmotic flow around charged dielectric pillar arrays in microchannels. Lab on a Chip 2020, 20 (3) , 675-686. https://doi.org/10.1039/C9LC01008D
    18. Shima Alizadeh, Martin Z. Bazant, Ali Mani. Impact of network heterogeneity on electrokinetic transport in porous media. Journal of Colloid and Interface Science 2019, 553 , 451-464. https://doi.org/10.1016/j.jcis.2019.06.023
    19. Chen Wang, Yang Wang, Yue Zhou, Zeng-Qiang Wu, Xing-Hua Xia. High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices. Analytical and Bioanalytical Chemistry 2019, 411 (18) , 4007-4016. https://doi.org/10.1007/s00216-019-01756-8
    20. Mykola P. Bondarenko, Merlin L. Bruening, Andriy Yaroshchuk. Highly Selective Current‐Induced Accumulation of Trace Ions at Micro‐/NanoPorous Interfaces. Advanced Theory and Simulations 2019, 2 (6) https://doi.org/10.1002/adts.201900009
    21. Edwin Khoo, Hongbo Zhao, Martin Z. Bazant. Linear Stability Analysis of Transient Electrodeposition in Charged Porous Media: Suppression of Dendritic Growth by Surface Conduction. Journal of The Electrochemical Society 2019, 166 (10) , A2280-A2299. https://doi.org/10.1149/2.1521910jes
    22. Honggu Chun. Development of a low flow‐resistive charged nanoporous membrane in a microchip for fast electropreconcentration. ELECTROPHORESIS 2018, 39 (17) , 2181-2187. https://doi.org/10.1002/elps.201800093
    23. Andriy Yaroshchuk, Mykola P. Bondarenko. Current‐Induced Concentration Polarization of Nanoporous Media: Role of Electroosmosis. Small 2018, 14 (18) https://doi.org/10.1002/smll.201703723
    24. Edwin Khoo, Martin Z. Bazant. Theory of voltammetry in charged porous media. Journal of Electroanalytical Chemistry 2018, 811 , 105-120. https://doi.org/10.1016/j.jelechem.2018.01.023
    25. Vahid Hoshyargar, Mahdie Talebi, Seyed Nezameddin Ashrafizadeh, Arman Sadeghi. Hydrodynamic dispersion by electroosmotic flow of viscoelastic fluids within a slit microchannel. Microfluidics and Nanofluidics 2018, 22 (1) https://doi.org/10.1007/s10404-017-2021-5
    26. Ramadan Abu-Rjal, Leonid Prigozhin, Isaak Rubinstein, Boris Zaltzman. Equilibrium electro-convective instability in concentration polarization: The effect of non-equal ionic diffusivities and longitudinal flow. Russian Journal of Electrochemistry 2017, 53 (9) , 903-918. https://doi.org/10.1134/S1023193517090026
    27. Leon Rosentsvit, Sinwook Park, Gilad Yossifon. Effect of advection on transient ion concentration-polarization phenomenon. Physical Review E 2017, 96 (2) https://doi.org/10.1103/PhysRevE.96.023104
    28. Hyekyung Lee, Junsuk Kim, Hyeonsoo Kim, Ho-Young Kim, Hyomin Lee, Sung Jae Kim. A concentration-independent micro/nanofluidic active diode using an asymmetric ion concentration polarization layer. Nanoscale 2017, 9 (33) , 11871-11880. https://doi.org/10.1039/C7NR02075A
    29. Ji-Hyung Han, Ramachandran Muralidhar, Rainer Waser, Martin Z. Bazant. Resistive Switching in Aqueous Nanopores by Shock Electrodeposition. Electrochimica Acta 2016, 222 , 370-375. https://doi.org/10.1016/j.electacta.2016.10.188
    30. Uri Liel, Neta Leibowitz, Jarrod Schiffbauer, Sinwook Park, Gilad Yossifon. Effect of field-focusing and ion selectivity on the extended space charge developed at the microchannel–nanochannel interface. Journal of Physics: Condensed Matter 2016, 28 (32) , 324002. https://doi.org/10.1088/0953-8984/28/32/324002
    31. Ji-Hyung Han, Miao Wang, Peng Bai, Fikile R. Brushett, Martin Z. Bazant. Dendrite Suppression by Shock Electrodeposition in Charged Porous Media. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep28054
    32. Sinwook Park, Gilad Yossifon. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel–Nafion-membrane system. Physical Review E 2016, 93 (6) https://doi.org/10.1103/PhysRevE.93.062614
    33. P. B. Peters, R. van Roij, M. Z. Bazant, P. M. Biesheuvel. Analysis of electrolyte transport through charged nanopores. Physical Review E 2016, 93 (5) https://doi.org/10.1103/PhysRevE.93.053108
    34. E. E. Licon Bernal, V. I. Kovalchuk, E. K. Zholkovskiy, A. Yaroshchuk. Hydrodynamic dispersion in long microchannels under conditions of electroosmotic circulation: II. Electrolytes. Microfluidics and Nanofluidics 2016, 20 (4) https://doi.org/10.1007/s10404-016-1718-1
    35. Yoav Green, Yaron Edri, Gilad Yossifon. Asymmetry-induced electric current rectification in permselective systems. Physical Review E 2015, 92 (3) https://doi.org/10.1103/PhysRevE.92.033018
    36. Jarrod Schiffbauer, Uri Liel, Neta Leibowitz, Sinwook Park, Gilad Yossifon. Probing space charge and resolving overlimiting current mechanisms at the microchannel-nanochannel interface. Physical Review E 2015, 92 (1) https://doi.org/10.1103/PhysRevE.92.013001
    37. Jarrod Schiffbauer, Neta Leibowitz, Gilad Yossifon. Extended space charge near nonideally selective membranes and nanochannels. Physical Review E 2015, 92 (1) https://doi.org/10.1103/PhysRevE.92.013002
    38. E. E. Licon Bernal, V. I. Kovalchuk, E. K. Zholkovskiy, A. Yaroshchuk. Hydrodynamic dispersion in long microchannels under conditions of electroosmotic circulation. I. Non-electrolytes. Microfluidics and Nanofluidics 2015, 18 (5-6) , 1139-1154. https://doi.org/10.1007/s10404-014-1506-8
    39. Sungmin Nam, Inhee Cho, Joonseong Heo, Geunbae Lim, Martin Z. Bazant, Dustin Jaesuk Moon, Gun Yong Sung, Sung Jae Kim. Experimental Verification of Overlimiting Current by Surface Conduction and Electro-Osmotic Flow in Microchannels. Physical Review Letters 2015, 114 (11) https://doi.org/10.1103/PhysRevLett.114.114501
    40. Daosheng Deng, Wassim Aouad, William A. Braff, Sven Schlumpberger, Matthew E. Suss, Martin Z. Bazant. Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection. Desalination 2015, 357 , 77-83. https://doi.org/10.1016/j.desal.2014.11.011
    41. Yoav Green, Sinwook Park, Gilad Yossifon. Bridging the gap between an isolated nanochannel and a communicating multipore heterogeneous membrane. Physical Review E 2015, 91 (1) https://doi.org/10.1103/PhysRevE.91.011002
    42. Markus Schmuck, Martin Z. Bazant. Homogenization of the Poisson--Nernst--Planck equations for Ion Transport in Charged Porous Media. SIAM Journal on Applied Mathematics 2015, 75 (3) , 1369-1401. https://doi.org/10.1137/140968082
    43. Ji-Hyung Han, Edwin Khoo, Peng Bai, Martin Z. Bazant. Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep07056
    44. Christoffer P. Nielsen, Henrik Bruus. Concentration polarization, surface currents, and bulk advection in a microchannel. Physical Review E 2014, 90 (4) https://doi.org/10.1103/PhysRevE.90.043020
    45. Ivan C. Christov, Howard A. Stone. Shear dispersion in dense granular flows. Granular Matter 2014, 16 (4) , 509-515. https://doi.org/10.1007/s10035-014-0498-0
    46. Victor V. Nikonenko, Anna V. Kovalenko, Mahamet K. Urtenov, Natalia D. Pismenskaya, Jongyoon Han, Philippe Sistat, Gérald Pourcelly. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination 2014, 342 , 85-106. https://doi.org/10.1016/j.desal.2014.01.008
    47. Ramadan abu-Rjal, Vahe Chinaryan, Martin Z. Bazant, Isaak Rubinstein, Boris Zaltzman. Effect of concentration polarization on permselectivity. Physical Review E 2014, 89 (1) https://doi.org/10.1103/PhysRevE.89.012302
    48. M.K. Urtenov, A.M. Uzdenova, A.V. Kovalenko, V.V. Nikonenko, N.D. Pismenskaya, V.I. Vasil'eva, P. Sistat, G. Pourcelly. Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells. Journal of Membrane Science 2013, 447 , 190-202. https://doi.org/10.1016/j.memsci.2013.07.033
    49. E. Victoria Dydek, Martin Z. Bazant. Nonlinear dynamics of ion concentration polarization in porous media: The leaky membrane model. AIChE Journal 2013, 59 (9) , 3539-3555. https://doi.org/10.1002/aic.14200
    50. I. Rubinstein, B. Zaltzman. Convective diffusive mixing in concentration polarization: from Taylor dispersion to surface convection. Journal of Fluid Mechanics 2013, 728 , 239-278. https://doi.org/10.1017/jfm.2013.276
    51. Andriy Yaroshchuk. Over-limiting currents and deionization “shocks” in current-induced polarization: Local-equilibrium analysis. Advances in Colloid and Interface Science 2012, 183-184 , 68-81. https://doi.org/10.1016/j.cis.2012.08.004
    52. Jarrod Schiffbauer, Gilad Yossifon. Role of electro-osmosis in the impedance response of microchannel-nanochannel interfaces. Physical Review E 2012, 86 (5) https://doi.org/10.1103/PhysRevE.86.056309
    53. Aditya S. Khair. Transient phoretic migration of a permselective colloidal particle. Journal of Colloid and Interface Science 2012, 381 (1) , 183-188. https://doi.org/10.1016/j.jcis.2012.05.038
    54. Chen Wang, JingJuan Xu, HongYuan Chen, XingHua Xia. Mass transport in nanofluidic devices. Science China Chemistry 2012, 55 (4) , 453-468. https://doi.org/10.1007/s11426-012-4542-9
    55. Andriy Yaroshchuk. What makes a nano-channel? A limiting-current criterion. Microfluidics and Nanofluidics 2012, 12 (1-4) , 615-624. https://doi.org/10.1007/s10404-011-0902-6
    56. Ali Mani, Martin Z. Bazant. Deionization shocks in microstructures. Physical Review E 2011, 84 (6) https://doi.org/10.1103/PhysRevE.84.061504

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect