ACS Publications. Most Trusted. Most Cited. Most Read
Dynamical Arrest, Percolation, Gelation, and Glass Formation in Model Nanoparticle Dispersions with Thermoreversible Adhesive Interactions
My Activity
    Article

    Dynamical Arrest, Percolation, Gelation, and Glass Formation in Model Nanoparticle Dispersions with Thermoreversible Adhesive Interactions
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Neutron Science, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
    NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
    § División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103 37150 León, Mexico
    *E-mail: [email protected]. Tel: 302-831-8079. Fax: 302-831-1048.
    Other Access Options

    Langmuir

    Cite this: Langmuir 2012, 28, 3, 1866–1878
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la2035054
    Published December 9, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report an experimental study of the dynamical arrest transition for a model system consisting of octadecyl coated silica suspended in n-tetradecane from dilute to concentrated conditions spanning the state diagram. The dispersion’s interparticle potential is tuned by temperature affecting the brush conformation leading to a thermoreversible model system. The critical temperature for dynamical arrest, T*, is determined as a function of dispersion volume fraction by small-amplitude dynamic oscillatory shear rheology. We corroborate this transition temperature by measuring a power-law decay of the autocorrelation function and a loss of ergodicity via fiber-optic quasi-elastic light scattering. The structure at T* is measured using small-angle neutron scattering. The scattering intensity is fit to extract the interparticle pair-potential using the Ornstein–Zernike equation with the Percus–Yevick closure approximation, assuming a square-well interaction potential with a short-range interaction (1% of particle diameter). (1) The strength of attraction is characterized using the Baxter temperature (2) and mapped onto the adhesive hard sphere state diagram. The experiments show a continuous dynamical arrest transition line that follows the predicted dynamical percolation line until ϕ ≈ 0.41 where it subtends the predictions toward the mode coupling theory attractive-driven glass line. An alternative analysis of the phase transition through the reduced second virial coefficient B2* shows a change in the functional dependence of B2* on particle concentration around ϕ ≈ 0.36. We propose this signifies the location of a gel-to-glass transition. The results presented herein differ from those observed for depletion flocculated dispersion of micrometer-sized particles in polymer solutions, where dynamical arrest is a consequence of multicomponent phase separation, suggesting dynamical arrest is sensitive to the physical mechanism of attraction.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 107 publications.

    1. Florence J. Müller, Shivaprakash N. Ramakrishna, Lucio Isa, Jan Vermant. Tuning Colloidal Gel Properties: The Influence of Central and Noncentral Forces. Langmuir 2025, 41 (5) , 3098-3107. https://doi.org/10.1021/acs.langmuir.4c03602
    2. Nikhil S. Chellam, Heather A. Calcaterra, Qinsi Xiong, George C. Schatz, Chad A. Mirkin. Organic Modulators Enable Morphological Diversity in Colloidal Crystals Engineered with DNA. ACS Nano 2025, Article ASAP.
    3. Alessandro Gulotta, Marco Polimeni, Samuel Lenton, Charles G. Starr, Anna Stradner, Emanuela Zaccarelli, Peter Schurtenberger. Combining Scattering Experiments and Colloid Theory to Characterize Charge Effects in Concentrated Antibody Solutions. Molecular Pharmaceutics 2024, 21 (5) , 2250-2271. https://doi.org/10.1021/acs.molpharmaceut.3c01023
    4. S. Kumar, R. Ganguly, S. Nath, V. K. Aswal. Pluronic Induced Interparticle Attraction and Re-entrant Liquid–Liquid Phase Separation in Charged Silica Nanoparticle Suspensions. Langmuir 2023, 39 (23) , 8109-8119. https://doi.org/10.1021/acs.langmuir.3c00491
    5. Lucille Chambon, Mohan Das, Evangelia Vasilaki, George Petekidis, Maria Vamvakaki. Colloidal Rod-Like Particles with Temperature-Driven Tunable Interactions. Langmuir 2022, 38 (45) , 13674-13685. https://doi.org/10.1021/acs.langmuir.2c01716
    6. Satish Mishra, Rosa Maria Badani Prado, Santanu Kundu. Concentration-Dependent Mechanical Behavior of Physically Assembled Triblock Copolymer Gels. ACS Applied Polymer Materials 2020, 2 (12) , 5388-5397. https://doi.org/10.1021/acsapm.0c00583
    7. Li-Chiun Cheng, Zachary M. Sherman, James W. Swan, Patrick S. Doyle. Colloidal Gelation through Thermally Triggered Surfactant Displacement. Langmuir 2019, 35 (29) , 9464-9473. https://doi.org/10.1021/acs.langmuir.9b00596
    8. Yilan Ye, Han Xiao, Kelley Reaves, Billy McCulloch, Jared F. Mike, Jodie L. Lutkenhaus. Effect of Nanorod Aspect Ratio on Shear Thickening Electrolytes for Safety-Enhanced Batteries. ACS Applied Nano Materials 2018, 1 (6) , 2774-2784. https://doi.org/10.1021/acsanm.8b00457
    9. Di Jia, He Cheng, Charles C. Han. Interplay between Caging and Bonding in Binary Concentrated Colloidal Suspensions. Langmuir 2018, 34 (9) , 3021-3029. https://doi.org/10.1021/acs.langmuir.7b03965
    10. Ryan P. Murphy, Kunlun Hong, and Norman J. Wagner . Thermoreversible Gels Composed of Colloidal Silica Rods with Short-Range Attractions. Langmuir 2016, 32 (33) , 8424-8435. https://doi.org/10.1021/acs.langmuir.6b02107
    11. Jooyoung Lee, Seong Jae Lee, Kyung Hyun Ahn, and Seung Jong Lee . Nanoparticle-Induced Gelation of Bimodal Slurries with Highly Size-Asymmetric Particles: Effect of Surface Chemistry and Concentration. Langmuir 2015, 31 (51) , 13639-13646. https://doi.org/10.1021/acs.langmuir.5b03752
    12. Céline Schmitt Pauly, Anne-Caroline Genix, Johan G. Alauzun, Gilles Guerrero, Marie-Sousai Appavou, Javier Pérez, Julian Oberdisse, and P. Hubert Mutin . Simultaneous Phase Transfer and Surface Modification of TiO2 Nanoparticles Using Alkylphosphonic Acids: Optimization and Structure of the Organosols. Langmuir 2015, 31 (40) , 10966-10974. https://doi.org/10.1021/acs.langmuir.5b02833
    13. Chuanzhuang Zhao, Guangcui Yuan, and Charles C. Han . Stabilization, Aggregation, and Gelation of Microsphere Induced by Thermosensitive Microgel. Macromolecules 2012, 45 (23) , 9468-9474. https://doi.org/10.1021/ma301747s
    14. Maxime J. Bergman, Tommy Garting, Cristiano De Michele, Peter Schurtenberger, Anna Stradner. Dynamical arrest for globular proteins with patchy attractions. Soft Matter 2025, 21 (6) , 1152-1161. https://doi.org/10.1039/D4SM01275E
    15. Philippe Martinoty, Antoni Sánchez-Ferrer. Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations. Advances in Colloid and Interface Science 2025, 335 , 103335. https://doi.org/10.1016/j.cis.2024.103335
    16. Michio Tateno, Yinqiao Wang, Hajime Tanaka. Void Connectivity and Criticality in the Compression-Induced Gel-to-Glass Transition of Short-Range Attractive Colloids. Physical Review Letters 2025, 134 (4) https://doi.org/10.1103/PhysRevLett.134.048201
    17. Yujie Jiang, Yang Cui, Yankai Li, Zhiwei Liu, Christopher Ness, Ryohei Seto. Filled colloidal gel rheology: Strengthening, stiffening, and tunability. Journal of Rheology 2025, 69 (1) , 35-44. https://doi.org/10.1122/8.0000878
    18. Haesoo Lee, Khushboo Suman, David Moglia, Ryan P. Murphy, Norman J. Wagner. Thermoreversible gels of hollow silica nanorod dispersions. Journal of Colloid and Interface Science 2024, 661 , 219-227. https://doi.org/10.1016/j.jcis.2024.01.148
    19. Khushboo Suman, Norm Wagner. Thermoreversible Gels of Hollow Silica Nanorod Dispersions. Neutron News 2024, 35 (2) , 16-17. https://doi.org/10.1080/10448632.2024.2355857
    20. Subhasish Chaki, Kenneth S. Schweizer. Theoretical study of kinetic arrest, shear elastic modulus, and yielding in simple biphasic colloidal mixtures. The Journal of Chemical Physics 2024, 160 (4) https://doi.org/10.1063/5.0177412
    21. Javier A. S. Gallegos, Jaime Martínez-Rivera, Néstor E. Valadez-Pérez, Ramón Castañeda-Priego. Patchy colloidal gels under the influence of gravity. The Journal of Chemical Physics 2023, 158 (11) https://doi.org/10.1063/5.0130796
    22. Yihao Chen, Qingteng Zhang, Subramanian Ramakrishnan, Robert L. Leheny. Memory in aging colloidal gels with time-varying attraction. The Journal of Chemical Physics 2023, 158 (2) https://doi.org/10.1063/5.0126432
    23. Jan Hansen, Carolyn J. Moll, Leticia López Flores, Ramón Castañeda-Priego, Magdaleno Medina-Noyola, Stefan U. Egelhaaf, Florian Platten. Phase separation and dynamical arrest of protein solutions dominated by short-range attractions. The Journal of Chemical Physics 2023, 158 (2) https://doi.org/10.1063/5.0128643
    24. Taejin Kwon, Tanner A. Wilcoxson, Delia J. Milliron, Thomas M. Truskett. Dynamics of equilibrium-linked colloidal networks. The Journal of Chemical Physics 2022, 157 (18) https://doi.org/10.1063/5.0125125
    25. Khushboo Suman, Norman J. Wagner. Anomalous rheological aging of a model thermoreversible colloidal gel following a thermal quench. The Journal of Chemical Physics 2022, 157 (2) https://doi.org/10.1063/5.0094237
    26. Jan Hansen, Jannik N. Pedersen, Jan Skov Pedersen, Stefan U. Egelhaaf, Florian Platten. Universal effective interactions of globular proteins close to liquid–liquid phase separation: Corresponding-states behavior reflected in the structure factor. The Journal of Chemical Physics 2022, 156 (24) https://doi.org/10.1063/5.0088601
    27. Brian K. Ryu, Scott M. Fenton, Tuan T. D. Nguyen, Matthew E. Helgeson, Roseanna N. Zia. Modeling colloidal interactions that predict equilibrium and non-equilibrium states. The Journal of Chemical Physics 2022, 156 (22) https://doi.org/10.1063/5.0086650
    28. Lise Morlet-Decarnin, Thibaut Divoux, Sébastien Manneville. Slow dynamics and time–composition superposition in gels of cellulose nanocrystals. The Journal of Chemical Physics 2022, 156 (21) https://doi.org/10.1063/5.0085660
    29. Alexis Torres-Carbajal, Pedro E Ramírez-González. On the dynamically arrested states of equilibrium and non-equilibrium gels: a comprehensive Brownian dynamics study. Journal of Physics: Condensed Matter 2022, 34 (22) , 224002. https://doi.org/10.1088/1361-648X/ac5c23
    30. Román Perdomo-Pérez, Jaime Martínez-Rivera, Norma C Palmero-Cruz, Miguel A Sandoval-Puentes, Javier A S Gallegos, Edilio Lázaro-Lázaro, Néstor E Valadez-Pérez, Alexis Torres-Carbajal, Ramón Castañeda-Priego. Thermodynamics, static properties and transport behaviour of fluids with competing interactions. Journal of Physics: Condensed Matter 2022, 34 (14) , 144005. https://doi.org/10.1088/1361-648X/ac4b29
    31. Alireza Heidari. Study of DNA/RNA Aggregation Linked to Cadmium Oxide (CdO) Nanoparticles by Aryl Mercaptanes with Various Chain Length. Earthline Journal of Chemical Sciences 2022, , 13-34. https://doi.org/10.34198/ejcs.8122.1334
    32. Natalia B. Nedelsky, J. Paul Taylor. Pathological phase transitions in ALS-FTD impair dynamic RNA–protein granules. RNA 2022, 28 (1) , 97-113. https://doi.org/10.1261/rna.079001.121
    33. Javier A. S. Gallegos, Román Perdomo-Pérez, Néstor Enrique Valadez-Pérez, Ramón Castañeda-Priego. Location of the gel-like boundary in patchy colloidal dispersions: Rigidity percolation, structure, and particle dynamics. Physical Review E 2021, 104 (6) https://doi.org/10.1103/PhysRevE.104.064606
    34. Jan Hansen, Rajeevann Uthayakumar, Jan Skov Pedersen, Stefan U. Egelhaaf, Florian Platten. Interactions in protein solutions close to liquid–liquid phase separation: ethanol reduces attractions via changes of the dielectric solution properties. Physical Chemistry Chemical Physics 2021, 23 (39) , 22384-22394. https://doi.org/10.1039/D1CP03210K
    35. D. Zeb Rocklin, Lilian Hsiao, Megan Szakasits, Michael J. Solomon, Xiaoming Mao. Elasticity of colloidal gels: structural heterogeneity, floppy modes, and rigidity. Soft Matter 2021, 17 (29) , 6929-6934. https://doi.org/10.1039/D0SM00053A
    36. Esmaeel Moghimi, Andrew B Schofield, George Petekidis. Yielding and resolidification of colloidal gels under constant stress. Journal of Physics: Condensed Matter 2021, 33 (28) , 284002. https://doi.org/10.1088/1361-648X/abfb8d
    37. George Petekidis, Norman J. Wagner. Rheology of Colloidal Glasses and Gels. 2021, 173-226. https://doi.org/10.1017/9781108394826.006
    38. Zhe Fan, Li Zhang, Wenwen Di, Kuncheng Li, Gongrang Li, Dejun Sun. Methyl-grafted silica nanoparticle stabilized water-in-oil Pickering emulsions with low-temperature stability. Journal of Colloid and Interface Science 2021, 588 , 501-509. https://doi.org/10.1016/j.jcis.2020.12.095
    39. Yingkang Dai, Runlin Zhang, Weixiang Sun, Tao Wang, Yunhua Chen, Zhen Tong. Dynamical heterogeneity in the gelation process of a polymer solution with a lower critical solution temperature. Soft Matter 2021, 17 (11) , 3222-3233. https://doi.org/10.1039/D0SM02159H
    40. Khushboo Suman, Sachin Shanbhag, Yogesh M. Joshi. Phenomenological model of viscoelasticity for systems undergoing sol–gel transition. Physics of Fluids 2021, 33 (3) https://doi.org/10.1063/5.0038830
    41. Jae Hyung Cho, Irmgard Bischofberger. Two modes of cluster dynamics govern the viscoelasticity of colloidal gels. Physical Review E 2021, 103 (3) https://doi.org/10.1103/PhysRevE.103.032609
    42. Melissa B. Gordon, Christopher J. Kloxin, Norman J. Wagner. Structural and rheological aging in model attraction-driven glasses by Rheo-SANS. Soft Matter 2021, 17 (4) , 924-935. https://doi.org/10.1039/D0SM01373K
    43. Edwin Bedolla, Luis Carlos Padierna, Ramón Castañeda-Priego. Machine learning for condensed matter physics. Journal of Physics: Condensed Matter 2021, 33 (5) , 053001. https://doi.org/10.1088/1361-648X/abb895
    44. Eric M. Schwen, Meera Ramaswamy, Chieh-Min Cheng, Linda Jan, Itai Cohen. Embedding orthogonal memories in a colloidal gel through oscillatory shear. Soft Matter 2020, 16 (15) , 3746-3752. https://doi.org/10.1039/C9SM02222H
    45. Ryan Poling-Skutvik, Xiaojun Di, Chinedum O. Osuji. Correlation of droplet elasticity and volume fraction effects on emulsion dynamics. Soft Matter 2020, 16 (10) , 2574-2580. https://doi.org/10.1039/C9SM02394A
    46. Li-Chiun Cheng, Seyed Meysam Hashemnejad, Brady Zarket, Sivaramakrishnan Muthukrishnan, Patrick S. Doyle. Thermally and pH-responsive gelation of nanoemulsions stabilized by weak acid surfactants. Journal of Colloid and Interface Science 2020, 563 , 229-240. https://doi.org/10.1016/j.jcis.2019.12.054
    47. Ryan P. Murphy, Harold W. Hatch, Nathan A. Mahynski, Vincent K. Shen, Norman J. Wagner. Dynamic arrest of adhesive hard rod dispersions. Soft Matter 2020, 16 (5) , 1279-1286. https://doi.org/10.1039/C9SM01877H
    48. Fabian Matter, Ana Laura Luna, Markus Niederberger. From colloidal dispersions to aerogels: How to master nanoparticle gelation. Nano Today 2020, 30 , 100827. https://doi.org/10.1016/j.nantod.2019.100827
    49. Anna Stradner, Peter Schurtenberger. Potential and limits of a colloid approach to protein solutions. Soft Matter 2020, 16 (2) , 307-323. https://doi.org/10.1039/C9SM01953G
    50. Luis F. Elizondo-Aguilera, Ernesto C. Cortés-Morales, Pablo F. Zubieta Rico, Magdaleno Medina-Noyola, Ramón Castañeda-Priego, Thomas Voigtmann, Gabriel Pérez-Ángel. Arrested dynamics of the dipolar hard sphere model. Soft Matter 2020, 16 (1) , 170-190. https://doi.org/10.1039/C9SM00687G
    51. Nina M. Gasbarro, Michael J. Solomon. Yield stress and rheology of a self-associating chitosan solution. Rheologica Acta 2019, 58 (11-12) , 729-739. https://doi.org/10.1007/s00397-019-01173-9
    52. Lilian C. Hsiao, Shravan Pradeep. Experimental synthesis and characterization of rough particles for colloidal and granular rheology. Current Opinion in Colloid & Interface Science 2019, 43 , 94-112. https://doi.org/10.1016/j.cocis.2019.04.003
    53. Divya Bahadur, Qingteng Zhang, Eric M. Dufresne, Pawel Grybos, Piotr Kmon, Robert L. Leheny, Piotr Maj, Suresh Narayanan, Robert Szczygiel, James W. Swan, Alec Sandy, Subramanian Ramakrishnan. Evolution of structure and dynamics of thermo-reversible nanoparticle gels—A combined XPCS and rheology study. The Journal of Chemical Physics 2019, 151 (10) https://doi.org/10.1063/1.5111521
    54. Gang Wang, James W. Swan. Surface heterogeneity affects percolation and gelation of colloids: dynamic simulations with random patchy spheres. Soft Matter 2019, 15 (25) , 5094-5108. https://doi.org/10.1039/C9SM00607A
    55. Julie B. Hipp, Jeffrey J. Richards, Norman J. Wagner. Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements. Journal of Rheology 2019, 63 (3) , 423-436. https://doi.org/10.1122/1.5071470
    56. Gang Wang, Andrew M. Fiore, James W. Swan. On the viscosity of adhesive hard sphere dispersions: Critical scaling and the role of rigid contacts. Journal of Rheology 2019, 63 (2) , 229-245. https://doi.org/10.1122/1.5063362
    57. Zhiyuan Wang, Hongyu Guo, Yun Liu, Xuewu Wang. Investigating the effective interaction between silica colloidal particles near the critical point of a binary solvent by small angle neutron scattering. The Journal of Chemical Physics 2018, 149 (8) https://doi.org/10.1063/1.5038937
    58. David Richard, C. Patrick Royall, Thomas Speck. Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?. The Journal of Chemical Physics 2018, 148 (24) https://doi.org/10.1063/1.5037680
    59. Jorge L. C. Domingos, François M. Peeters, W. P. Ferreira, . Self-assembly and clustering of magnetic peapod-like rods with tunable directional interaction. PLOS ONE 2018, 13 (4) , e0195552. https://doi.org/10.1371/journal.pone.0195552
    60. Yoon Se Jung, Joo Young Lee, Kyung Hyun Ahn, Seung Jong Lee. Effect of affinity on the structure formation in highly size asymmetric bimodal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 538 , 481-487. https://doi.org/10.1016/j.colsurfa.2017.11.042
    61. Lilian C. Johnson, Benjamin J. Landrum, Roseanna N. Zia. Yield of reversible colloidal gels during flow start-up: release from kinetic arrest. Soft Matter 2018, 14 (24) , 5048-5068. https://doi.org/10.1039/C8SM00109J
    62. Li-Chiun Cheng, P. Douglas Godfrin, James W. Swan, Patrick S. Doyle. Thermal processing of thermogelling nanoemulsions as a route to tune material properties. Soft Matter 2018, 14 (27) , 5604-5614. https://doi.org/10.1039/C8SM00814K
    63. Elnaz Hajizadeh, Shi Yu, Shihu Wang, Ronald G. Larson. A novel hybrid population balance—Brownian dynamics method for simulating the dynamics of polymer-bridged colloidal latex particle suspensions. Journal of Rheology 2018, 62 (1) , 235-247. https://doi.org/10.1122/1.4996064
    64. Guangcui Yuan, He Cheng, Charles C. Han. The glass formation of a repulsive system with also a short range attractive potential: A re-interpretation of the free volume theory. Polymer 2017, 131 , 272-286. https://doi.org/10.1016/j.polymer.2017.02.066
    65. Qingteng Zhang, Divya Bahadur, Eric M. Dufresne, Pawel Grybos, Piotr Kmon, Robert L. Leheny, Piotr Maj, Suresh Narayanan, Robert Szczygiel, Subramanian Ramakrishnan, Alec Sandy. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations. Physical Review Letters 2017, 119 (17) https://doi.org/10.1103/PhysRevLett.119.178006
    66. Theyencheri Narayanan, Hanna Wacklin, Oleg Konovalov, Reidar Lund. Recent applications of synchrotron radiation and neutrons in the study of soft matter. Crystallography Reviews 2017, 23 (3) , 160-226. https://doi.org/10.1080/0889311X.2016.1277212
    67. Francesco Sciortino, Emanuela Zaccarelli. Equilibrium gels of limited valence colloids. Current Opinion in Colloid & Interface Science 2017, 30 , 90-96. https://doi.org/10.1016/j.cocis.2017.06.001
    68. Jingsi Gao, Paul M. Mwasame, Norman J. Wagner. Thermal rheology and microstructure of shear thickening suspensions of silica nanoparticles dispersed in the ionic liquid [C 4 mim][BF 4 ]. Journal of Rheology 2017, 61 (3) , 525-535. https://doi.org/10.1122/1.4979685
    69. Takayuki Narumi, Michio Tokuyama. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory. Physical Review E 2017, 95 (3) https://doi.org/10.1103/PhysRevE.95.032601
    70. Felix Rechberger, Markus Niederberger. Synthesis of aerogels: from molecular routes to 3-dimensional nanoparticle assembly. Nanoscale Horizons 2017, 2 (1) , 6-30. https://doi.org/10.1039/C6NH00077K
    71. N. Mahmoudi, A. Stradner. Structural arrest and dynamic localization in biocolloidal gels. Soft Matter 2017, 13 (26) , 4629-4635. https://doi.org/10.1039/C7SM00496F
    72. Melissa B. Gordon, Christopher J. Kloxin, Norman J. Wagner. The rheology and microstructure of an aging thermoreversible colloidal gel. Journal of Rheology 2017, 61 (1) , 23-34. https://doi.org/10.1122/1.4966039
    73. Jason Haaga, Elizabeth Pemberton, J. D. Gunton, J. M. Rickman. Phase diagram of a model of the protein amelogenin. The Journal of Chemical Physics 2016, 145 (8) https://doi.org/10.1063/1.4961597
    74. Yiwu Zong, Guangcui Yuan, Charles C. Han. Asymmetrical phase separation and gelation in binary mixtures of oppositely charged colloids. The Journal of Chemical Physics 2016, 145 (1) https://doi.org/10.1063/1.4954993
    75. Yong-jin Peng, Chen-ting Cai, Rong-chun Zhang, Tie-hong Chen, Ping-chuan Sun, Bao-hui Li, Xiao-liang Wang, Gi Xue, An-Chang Shi. Probing the two-stage transition upon crossing the glass transition of polystyrene by solid-state NMR. Chinese Journal of Polymer Science 2016, 34 (4) , 446-456. https://doi.org/10.1007/s10118-016-1762-z
    76. Junhua Luo, Guangcui Yuan, Charles C. Han. Tuning the bridging attraction between large hard particles by the softness of small microgels. Soft Matter 2016, 12 (37) , 7863-7872. https://doi.org/10.1039/C6SM01519K
    77. Sarathi Kundu, Kaushik Das, S. Mehan, V.K. Aswal, Joachim Kohlbrecher. Structure and interaction among protein and nanoparticle mixture in solution: Effect of temperature. Chemical Physics Letters 2015, 641 , 68-73. https://doi.org/10.1016/j.cplett.2015.10.039
    78. Jooyoung Lee, Seong Jae Lee, Kyung Hyun Ahn, Seung Jong Lee. Bimodal colloid gels of highly size-asymmetric particles. Physical Review E 2015, 92 (1) https://doi.org/10.1103/PhysRevE.92.012313
    79. Jiachen Wei, Limei Xu, Fan Song. Range effect on percolation threshold and structural properties for short-range attractive spheres. The Journal of Chemical Physics 2015, 142 (3) https://doi.org/10.1063/1.4906084
    80. Trystan Domenech, Sachin S. Velankar. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction. Soft Matter 2015, 11 (8) , 1500-1516. https://doi.org/10.1039/C4SM02053G
    81. Junhua Luo, Guangcui Yuan, Chuanzhuang Zhao, Charles. C. Han, Jie Chen, Yun Liu. Gelation of large hard particles with short-range attraction induced by bridging of small soft microgels. Soft Matter 2015, 11 (12) , 2494-2503. https://doi.org/10.1039/C4SM02165G
    82. Céline Schmitt Pauly, Anne-Caroline Genix, Johan G. Alauzun, Michael Sztucki, Julian Oberdisse, P. Hubert Mutin. Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions. Physical Chemistry Chemical Physics 2015, 17 (29) , 19173-19182. https://doi.org/10.1039/C5CP01925G
    83. Malin Zackrisson Oskolkova, Anna Stradner, Jeanette Ulama, Johan Bergenholtz. Concentration-dependent effective attractions between PEGylated nanoparticles. RSC Advances 2015, 5 (32) , 25149-25155. https://doi.org/10.1039/C5RA00731C
    84. Lilian C. Hsiao, Patrick S. Doyle. Celebrating Soft Matter's 10th Anniversary: Sequential phase transitions in thermoresponsive nanoemulsions. Soft Matter 2015, 11 (43) , 8426-8431. https://doi.org/10.1039/C5SM01581B
    85. Matthew A. Lohr, Tim Still, Raman Ganti, Matthew D. Gratale, Zoey S. Davidson, Kevin B. Aptowicz, Carl P. Goodrich, Daniel M. Sussman, A. G. Yodh. Vibrational and structural signatures of the crossover between dense glassy and sparse gel-like attractive colloidal packings. Physical Review E 2014, 90 (6) https://doi.org/10.1103/PhysRevE.90.062305
    86. Michael C. Rogers, Kui Chen, Lukasz Andrzejewski, Suresh Narayanan, Subramanian Ramakrishnan, Robert L. Leheny, James L. Harden. Echoes in x-ray speckles track nanometer-scale plastic events in colloidal gels under shear. Physical Review E 2014, 90 (6) https://doi.org/10.1103/PhysRevE.90.062310
    87. Ryan B. Jadrich, Kenneth S. Schweizer. Directing Colloidal Assembly and a Metal-Insulator Transition Using a Quench-Disordered Porous Rod Template. Physical Review Letters 2014, 113 (20) https://doi.org/10.1103/PhysRevLett.113.208302
    88. Jung Min Kim, Aaron P. R. Eberle, A. Kate Gurnon, Lionel Porcar, Norman J. Wagner. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS). Journal of Rheology 2014, 58 (5) , 1301-1328. https://doi.org/10.1122/1.4878378
    89. A. Zaccone, H. H. Winter, M. Siebenbürger, M. Ballauff. Linking self-assembly, rheology, and gel transition in attractive colloids. Journal of Rheology 2014, 58 (5) , 1219-1244. https://doi.org/10.1122/1.4878838
    90. Juntae Kim, Dimitri Merger, Manfred Wilhelm, Matthew E. Helgeson. Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. Journal of Rheology 2014, 58 (5) , 1359-1390. https://doi.org/10.1122/1.4882019
    91. Ajay Singh Negi, Carissa G. Redmon, Subramanian Ramakrishnan, Chinedum O. Osuji. Viscoelasticity of a colloidal gel during dynamical arrest: Evolution through the critical gel and comparison with a soft colloidal glass. Journal of Rheology 2014, 58 (5) , 1557-1579. https://doi.org/10.1122/1.4883675
    92. Aaron P. R. Eberle, Nicos Martys, Lionel Porcar, Steven R. Kline, William L. George, Jung M. Kim, Paul D. Butler, Norman J. Wagner. Shear viscosity and structural scalings in model adhesive hard-sphere gels. Physical Review E 2014, 89 (5) https://doi.org/10.1103/PhysRevE.89.050302
    93. Vagner A. Rigo, Lucas S. de Lara, Caetano R. Miranda. Energetics of formation and hydration of functionalized silica nanoparticles: An atomistic computational study. Applied Surface Science 2014, 292 , 742-749. https://doi.org/10.1016/j.apsusc.2013.12.042
    94. Sarathi Kundu, Akshay J. Chinchalikar, Kaushik Das, V.K. Aswal, Joachim Kohlbrecher. Mono-, di- and tri-valent ion induced protein gelation: Small-angle neutron scattering study. Chemical Physics Letters 2014, 593 , 140-144. https://doi.org/10.1016/j.cplett.2013.12.068
    95. Zdeněk Preisler, Teun Vissers, Gianmarco Munaò, Frank Smallenburg, Francesco Sciortino. Equilibrium phases of one-patch colloids with short-range attractions. Soft Matter 2014, 10 (28) , 5121-5128. https://doi.org/10.1039/C4SM00505H
    96. Matthew E. Helgeson, Yongxiang Gao, Shannon E. Moran, Jinkee Lee, Michael Godfrin, Anubhav Tripathi, Arijit Bose, Patrick S. Doyle. Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels. Soft Matter 2014, 10 (17) , 3122. https://doi.org/10.1039/c3sm52951g
    97. Néstor E. Valadez-Pérez, Yun Liu, Aaron P. R. Eberle, Norman J. Wagner, Ramón Castañeda-Priego. Dynamical arrest in adhesive hard-sphere dispersions driven by rigidity percolation. Physical Review E 2013, 88 (6) https://doi.org/10.1103/PhysRevE.88.060302
    98. Sarathi Kundu, Akshay J. Chinchalikar, Kaushik Das, V.K. Aswal, Joachim Kohlbrecher. Fe+3 ion induced protein gelation: Small-angle neutron scattering study. Chemical Physics Letters 2013, 584 , 172-176. https://doi.org/10.1016/j.cplett.2013.08.056
    99. Salvador Herrera-Velarde, Edith C Euán-Díaz, Fidel Córdoba-Valdés, Ramón Castañeda-Priego. Hydrodynamic correlations in three-particle colloidal systems in harmonic traps. Journal of Physics: Condensed Matter 2013, 25 (32) , 325102. https://doi.org/10.1088/0953-8984/25/32/325102
    100. Mei Zhang, Lu Li, Jian Xu, Dejun Sun. Effect of polyisobutylenesuccinimide on low-temperature rheology and dispersibility of clay particles in mineral oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 431 , 133-141. https://doi.org/10.1016/j.colsurfa.2013.04.034
    Load all citations

    Langmuir

    Cite this: Langmuir 2012, 28, 3, 1866–1878
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la2035054
    Published December 9, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2612

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.