Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Study of Wild-Type α-Synuclein Binding and Orientation on Gold Nanoparticles

View Author Information
Department of Chemistry and Department of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
*(J.M.G.) E-mail: [email protected]. Tel: +44 (0) 20 7882 4922. Fax: +44 (0) 20 7882 7732. (C.J.M.) E-mail: [email protected]. Tel: +1 217 333 7680. Fax: +1 217 244 3186.
Cite this: Langmuir 2013, 29, 14, 4603–4615
Publication Date (Web):March 11, 2013
https://doi.org/10.1021/la400266u
Copyright © 2013 American Chemical Society

    Article Views

    2530

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The disruption of α-synuclein (α-syn) homeostasis in neurons is a potential cause of Parkinson’s disease, which is manifested pathologically by the appearance of α-syn aggregates, or Lewy bodies. Treatments for neurological diseases are extremely limited. To study the potential use of gold nanoparticles (Au NPs) to limit α-syn misfolding, the binding and orientation of α-syn on Au NPs were investigated. α-Syn was determined to interact with 20 and 90 nm Au NPs via multilayered adsorption: a strong electrostatic interaction between α-syn and Au NPs in the hard corona and a weaker noncovalent protein–protein interaction in the soft corona. Spectroscopic and light-scattering titrations led to the determinations of binding constants for the Au NP α-syn coronas: for the hard corona on 20 nm Au NPs, the equilibrium association constant was 2.9 ± 1.1 × 109 M–1 (for 360 ± 70 α-syn/NP), and on 90 nm Au NPs, the hard corona association constant was 9.5 ± 0.8 × 1010 M–1 (for 5300 ± 700 α-syn/NP). The binding of the soft corona was thermodynamically unfavorable and kinetically driven and was in constant exchange with “free” α-syn in solution. A protease digestion method was used to deduce the α-syn orientation and structure on Au NPs, revealing that α-syn absorbs onto negatively charged Au NPs via its N-terminus while apparently retaining its natively unstructured conformation. These results suggest that Au NPs could be used to sequester and regulate α-syn homeostasis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Cryoelectron imaging of α-syn on Au NP. Kd analysis from fluorescence quenching. Reproducibility of trypsin digestion of α-syn on Au NP. Sample MS spectra from the Au NP surface and supernatant. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 86 publications.

    1. Khoi Nguyen L. Hoang, Catherine J. Murphy. Adsorption and Molecular Display of a Redox-Active Protein on Gold Nanoparticle Surfaces. Langmuir 2023, 39 (45) , 15974-15985. https://doi.org/10.1021/acs.langmuir.3c01983
    2. Sophia M. McClain, Moses H. Milchberg, Chad M. Rienstra, Catherine J. Murphy. Biologically Representative Lipid-Coated Gold Nanoparticles and Phospholipid Vesicles for the Study of Alpha-Synuclein/Membrane Interactions. ACS Nano 2023, 17 (20) , 20387-20401. https://doi.org/10.1021/acsnano.3c06606
    3. Anupam Maity, Animesh Mondal, Shubham Kundu, Gourav Shome, Rajdip Misra, Aakriti Singh, Uttam Pal, Atin Kumar Mandal, Kaushik Bera, Nakul C. Maiti. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. Langmuir 2023, 39 (21) , 7231-7248. https://doi.org/10.1021/acs.langmuir.2c03259
    4. Paul R. Handali, Lauren J. Webb. Gold Nanoparticles Are an Immobilization Platform for Active and Stable Acetylcholinesterase: Demonstration of a General Surface Protein Functionalization Strategy. ACS Applied Bio Materials 2023, 6 (1) , 209-217. https://doi.org/10.1021/acsabm.2c00834
    5. Aisling Fleming, Lorenzo Cursi, James A. Behan, Yan Yan, Zengchun Xie, Laurent Adumeau, Kenneth A. Dawson. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjugate Chemistry 2022, 33 (3) , 429-443. https://doi.org/10.1021/acs.bioconjchem.1c00546
    6. Nasrin Hooshmand, Akshaya Thoutam, Max Anikovskiy, Hagar I. Labouta, Mostafa El-Sayed. Localized Surface Plasmon Resonance as a Tool to Study Protein Corona Formation on Nanoparticles. The Journal of Physical Chemistry C 2021, 125 (45) , 24765-24776. https://doi.org/10.1021/acs.jpcc.1c07409
    7. Flávia E. Galdino, Agustin S. Picco, Larissa B. Capeletti, Jefferson Bettini, Mateus B. Cardoso. Inside the Protein Corona: From Binding Parameters to Unstained Hard and Soft Coronas Visualization. Nano Letters 2021, 21 (19) , 8250-8257. https://doi.org/10.1021/acs.nanolett.1c02416
    8. Joanna Xiuzhu Xu, Md. Siddik Alom, Nicholas C. Fitzkee. Quantitative Measurement of Multiprotein Nanoparticle Interactions Using NMR Spectroscopy. Analytical Chemistry 2021, 93 (35) , 11982-11990. https://doi.org/10.1021/acs.analchem.1c01911
    9. Ghibom Bhak, Alejandro Méndez-Ardoy, Albert Escobedo, Xavier Salvatella, Javier Montenegro. An Adhesive Peptide from the C-Terminal Domain of α-Synuclein for Single-Layer Adsorption of Nanoparticles onto Substrates. Bioconjugate Chemistry 2020, 31 (12) , 2759-2766. https://doi.org/10.1021/acs.bioconjchem.0c00544
    10. Sophia M. McClain, Adedolapo M. Ojoawo, Wayne Lin, Chad M. Rienstra, Catherine J. Murphy. Interaction of Alpha-Synuclein and Its Mutants with Rigid Lipid Vesicle Mimics of Varying Surface Curvature. ACS Nano 2020, 14 (8) , 10153-10167. https://doi.org/10.1021/acsnano.0c03420
    11. Kaushik Bera, Animesh Mondal, Uttam Pal, Nakul C. Maiti. Porphyrin-Armored Gold Nanospheres Modulate the Secondary Structure of α-Synuclein and Arrest Its Fibrillation. The Journal of Physical Chemistry C 2020, 124 (11) , 6418-6434. https://doi.org/10.1021/acs.jpcc.9b11503
    12. Daniel J. Boehmler, Zachary J. O’Dell, Christopher Chung, Kathryn R. Riley. Bovine Serum Albumin Enhances Silver Nanoparticle Dissolution Kinetics in a Size- and Concentration-Dependent Manner. Langmuir 2020, 36 (4) , 1053-1061. https://doi.org/10.1021/acs.langmuir.9b03251
    13. Meghna Suvarna, Sathish Dyawanapelly, Bharat Kansara, Prajakta Dandekar, Ratnesh Jain. Understanding the Stability of Nanoparticle–Protein Interactions: Effect of Particle Size on Adsorption, Conformation and Thermodynamic Properties of Serum Albumin Proteins. ACS Applied Nano Materials 2018, 1 (10) , 5524-5535. https://doi.org/10.1021/acsanm.8b01019
    14. Ju-Yi Mao, Han-Wei Li, Shih-Chun Wei, Scott G. Harroun, Ming-Ying Lee, Hung-Yun Lin, Chih-Yu Chung, Chun-Hua Hsu, Yet-Ran Chen, Han-Jia Lin, and Chih-Ching Huang . DNA Modulates the Interaction of Genetically Engineered DNA-Binding Proteins and Gold Nanoparticles: Diagnosis of High-Risk HPV Infection. ACS Applied Materials & Interfaces 2017, 9 (51) , 44307-44315. https://doi.org/10.1021/acsami.7b13873
    15. Yunzhi Zhang, Hui Xu, Austin M. Parsons, and Leah B. Casabianca . Examining Binding to Nanoparticle Surfaces Using Saturation Transfer Difference (STD)-NMR Spectroscopy. The Journal of Physical Chemistry C 2017, 121 (44) , 24678-24686. https://doi.org/10.1021/acs.jpcc.7b08828
    16. Jordan M. Dennison, Jennifer M. Zupancic, Wayne Lin, Jonathan H. Dwyer, and Catherine J. Murphy . Protein Adsorption to Charged Gold Nanospheres as a Function of Protein Deformability. Langmuir 2017, 33 (31) , 7751-7761. https://doi.org/10.1021/acs.langmuir.7b01909
    17. Sirimuvva Tadepalli, Zheyu Wang, Keng-Ku Liu, Qisheng Jiang, Joseph Slocik, Rajesh R. Naik, and Srikanth Singamaneni . Influence of Surface Charge of the Nanostructures on the Biocatalytic Activity. Langmuir 2017, 33 (26) , 6611-6619. https://doi.org/10.1021/acs.langmuir.6b04490
    18. Eric S. Melby, Samuel E. Lohse, Ji Eun Park, Ariane M. Vartanian, Rebecca A. Putans, Hannah B. Abbott, Robert J. Hamers, Catherine J. Murphy, and Joel A. Pedersen . Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes. ACS Nano 2017, 11 (6) , 5489-5499. https://doi.org/10.1021/acsnano.7b00231
    19. Ghibom Bhak, Junghee Lee, Chang-Hyun Kim, Dong Young Chung, Jin Hyoun Kang, Soojung Oh, Jungsup Lee, Jin Soo Kang, Ji Mun Yoo, Jee Eun Yang, Kun Yil Rhoo, Sunghak Park, Somin Lee, Ki Tae Nam, Noo Li Jeon, Jyongsik Jang, Byung Hee Hong, Yung-Eun Sung, Myung-Han Yoon, and Seung R. Paik . High-Density Single-Layer Coating of Gold Nanoparticles onto Multiple Substrates by Using an Intrinsically Disordered Protein of α-Synuclein for Nanoapplications. ACS Applied Materials & Interfaces 2017, 9 (10) , 8519-8532. https://doi.org/10.1021/acsami.6b16411
    20. Chang-Hyun Kim, Ghibom Bhak, Junghee Lee, Sujin Sung, Sungjun Park, Seung R. Paik, and Myung-Han Yoon . Controlled Charge Trapping and Retention in Large-Area Monodisperse Protein Metal-Nanoparticle Conjugates. ACS Applied Materials & Interfaces 2016, 8 (19) , 11898-11903. https://doi.org/10.1021/acsami.6b02268
    21. Nardine S. Abadeer, Gergő Fülöp, Si Chen, Mikael Käll, and Catherine J. Murphy . Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing. ACS Applied Materials & Interfaces 2015, 7 (44) , 24915-24925. https://doi.org/10.1021/acsami.5b08440
    22. Wayne Lin, Thomas Insley, Marcus D. Tuttle, Lingyang Zhu, Deborah A. Berthold, Petr Král, Chad M. Rienstra, and Catherine J. Murphy . Control of Protein Orientation on Gold Nanoparticles. The Journal of Physical Chemistry C 2015, 119 (36) , 21035-21043. https://doi.org/10.1021/acs.jpcc.5b07701
    23. Charles B. Nettles, II, Juan Hu, and Dongmao Zhang . Using Water Raman Intensities To Determine the Effective Excitation and Emission Path Lengths of Fluorophotometers for Correcting Fluorescence Inner Filter Effect. Analytical Chemistry 2015, 87 (9) , 4917-4924. https://doi.org/10.1021/acs.analchem.5b00513
    24. Dongmao Zhang and Charles B. Nettles, II . A Generalized Model on the Effects of Nanoparticles on Fluorophore Fluorescence in Solution. The Journal of Physical Chemistry C 2015, 119 (14) , 7941-7948. https://doi.org/10.1021/acs.jpcc.5b00597
    25. Shanghao Li, Lingyu Wang, Charles C. Chusuei, Valentina M. Suarez, Patrica L. Blackwelder, Miodrag Micic, Jhony Orbulescu, and Roger M. Leblanc . Nontoxic Carbon Dots Potently Inhibit Human Insulin Fibrillation. Chemistry of Materials 2015, 27 (5) , 1764-1771. https://doi.org/10.1021/cm504572b
    26. Loganathan Bhavani Devi, Sujoy K Das, and Asit Baran Mandal . Impact of Surface Functionalization of AgNPs on Binding and Conformational Change of Hemoglobin (Hb) and Hemolytic Behavior. The Journal of Physical Chemistry C 2014, 118 (51) , 29739-29749. https://doi.org/10.1021/jp5075048
    27. Rai S. Kookana, Alistair B. A. Boxall, Philip T. Reeves, Roman Ashauer, Sabine Beulke, Qasim Chaudhry, Geert Cornelis, Teresa F. Fernandes, Jay Gan, Melanie Kah, Iseult Lynch, James Ranville, Chris Sinclair, David Spurgeon, Karen Tiede, and Paul J. Van den Brink . Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. Journal of Agricultural and Food Chemistry 2014, 62 (19) , 4227-4240. https://doi.org/10.1021/jf500232f
    28. Jie An Yang, Wayne Lin, Wendy S. Woods, Julia M. George, and Catherine J. Murphy . α-Synuclein’s Adsorption, Conformation, and Orientation on Cationic Gold Nanoparticle Surfaces Seeds Global Conformation Change. The Journal of Physical Chemistry B 2014, 118 (13) , 3559-3571. https://doi.org/10.1021/jp501114h
    29. Yanina D. Álvarez, Jonathan A. Fauerbach, Jésica V. Pellegrotti, Thomas M. Jovin, Elizabeth A. Jares-Erijman, and Fernando D. Stefani . Influence of Gold Nanoparticles on the Kinetics of α-Synuclein Aggregation. Nano Letters 2013, 13 (12) , 6156-6163. https://doi.org/10.1021/nl403490e
    30. Stefano P. Boulos, Tyler A. Davis, Jie An Yang, Samuel E. Lohse, Alaaldin M. Alkilany, Lisa A. Holland, and Catherine J. Murphy . Nanoparticle–Protein Interactions: A Thermodynamic and Kinetic Study of the Adsorption of Bovine Serum Albumin to Gold Nanoparticle Surfaces. Langmuir 2013, 29 (48) , 14984-14996. https://doi.org/10.1021/la402920f
    31. Christine A. Falaschetti, Tatjana Paunesku, Jasmina Kurepa, Dhaval Nanavati, Stanley S. Chou, Mrinmoy De, MinHa Song, Jung-tak Jang, Aiguo Wu, Vinayak P. Dravid, Jinwoo Cheon, Jan Smalle, and Gayle E. Woloschak . Negatively Charged Metal Oxide Nanoparticles Interact with the 20S Proteasome and Differentially Modulate Its Biologic Functional Effects. ACS Nano 2013, 7 (9) , 7759-7772. https://doi.org/10.1021/nn402416h
    32. Siddhartha Shrivastava, Scott A. McCallum, Joseph H. Nuffer, Xi Qian, Richard W. Siegel, and Jonathan S. Dordick . Identifying Specific Protein Residues That Guide Surface Interactions and Orientation on Silica Nanoparticles. Langmuir 2013, 29 (34) , 10841-10849. https://doi.org/10.1021/la401985d
    33. Andreas Tapia-Arellano, Pablo Cabrera, Elizabeth Cortés-Adasme, Ana Riveros, Natalia Hassan, Marcelo J. Kogan. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. Journal of Nanobiotechnology 2024, 22 (1) https://doi.org/10.1186/s12951-024-02526-0
    34. Yuqi Zhang, Lie Wu, Xiue Jiang. Revealing the Regulation Effect of Surface Charge at Aromatic Interface to Dynamic Conformational Changes of α‐Synuclein at Early Aggregation Stage. Chinese Journal of Chemistry 2024, 10 https://doi.org/10.1002/cjoc.202400155
    35. Vijay Bhooshan Kumar, Vijay Kumar, Sourav Kumar, Daniel Segal, Ehud Gazit. Ultra‐Small ATP‐Decorated Gold Nanoparticles for Targeting Amyloid Fibrils in Neurodegenerative Diseases. Advanced Functional Materials 2024, 34 (17) https://doi.org/10.1002/adfm.202313806
    36. Samanta Raboni, Francesco Fumagalli, Giacomo Ceccone, Rita La Spina, Jessica Ponti, Dora Mehn, Giuditta Guerrini, Stefano Bettati, Andrea Mozzarelli, Mario D'Acunto, Gianluca Presciuttini, Caterina Cristallini, Edi Gabellieri, Patrizia Cioni. Conjugation to gold nanoparticles of methionine gamma-lyase, a cancer-starving enzyme. Physicochemical characterization of the nanocomplex for prospective nanomedicine applications. International Journal of Pharmaceutics 2024, 653 , 123882. https://doi.org/10.1016/j.ijpharm.2024.123882
    37. Amin Sahraei, Ahmad Ehsanfar, Fakhrossadat Mohammadi. Interaction of gallium, indium and vanadyl diacetylcurcumin complexes with lysozyme: mechanistic aspects and evaluation of antiamyloidogenic activity. Royal Society Open Science 2023, 10 (11) https://doi.org/10.1098/rsos.230443
    38. Giovanna Viola, Fulvio Floriani, Carlo Giorgio Barracchia, Francesca Munari, Mariapina D'Onofrio, Michael Assfalg. Ultrasmall Gold Nanoparticles as Clients of Biomolecular Condensates. Chemistry – A European Journal 2023, 29 (46) https://doi.org/10.1002/chem.202301274
    39. Atefeh Mottaghi, Maryam Nikkhah, Mohammad Javad Masroor. Lable-Free LSPR-Based Colorimetric Detection of α-Synuclein, a Biomarker of Parkinson’s Disease, in Saliva. IEEE Sensors Journal 2023, 23 (6) , 5713-5719. https://doi.org/10.1109/JSEN.2023.3239887
    40. Joanna Xiuzhu Xu, Md. Siddik Alom, Rahul Yadav, Nicholas C. Fitzkee. Predicting protein function and orientation on a gold nanoparticle surface using a residue-based affinity scale. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34749-w
    41. Akriti Mishra, Puspendu Kumar Das. Thermodynamics of multilayer protein adsorption on a gold nanoparticle surface. Physical Chemistry Chemical Physics 2022, 24 (37) , 22464-22476. https://doi.org/10.1039/D2CP02439J
    42. Sonali Jena, Sonali Mohanty, Monalisha Ojha, Kumari Subham, Suman Jha. Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics. 2022, 177-207. https://doi.org/10.1007/978-981-16-2516-9_11
    43. Ajit Singh, Sandeep Kumar Maharana, Rahul Shukla, Prashant Kesharwani. Nanotherapeutics approaches for targeting alpha synuclien protein in the management of Parkinson disease. Process Biochemistry 2021, 110 , 181-194. https://doi.org/10.1016/j.procbio.2021.08.008
    44. Joanna Xiuzhu Xu, Nicholas C. Fitzkee. Solution NMR of Nanoparticles in Serum: Protein Competition Influences Binding Thermodynamics and Kinetics. Frontiers in Physiology 2021, 12 https://doi.org/10.3389/fphys.2021.715419
    45. Alioscka A. Sousa, Peter Schuck, Sergio A. Hassan. Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters. Nanoscale Advances 2021, 3 (11) , 2995-3027. https://doi.org/10.1039/D1NA00086A
    46. Heping Wang, Xi Chen, Mingxing Mao, Xue Xue. Multifaceted Therapy of Nanocatalysts in Neurological Diseases. Journal of Biomedical Nanotechnology 2021, 17 (5) , 711-743. https://doi.org/10.1166/jbn.2021.3063
    47. Muhammad Yaseen, Muhammad Humayun, Abbas Khan, Muhammad Usman, Habib Ullah, Asif Ali Tahir, Habib Ullah. Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. Energies 2021, 14 (5) , 1278. https://doi.org/10.3390/en14051278
    48. Paula M. Castillo, Francisco J. Fernández-Acejo, Jose M. Carnerero, Rafael Prado-Gotor, Aila Jimenez-Ruiz. Colorimetric, Naked-Eye Detection of Lysozyme in Human Urine with Gold Nanoparticles. Nanomaterials 2021, 11 (3) , 612. https://doi.org/10.3390/nano11030612
    49. Narayanaperumal Pravin, Rakesh Kumar, Shalini Tripathi, Pardeep Kumar, Ganesh M Mohite, Ambuja Navalkar, Rajlaxmi Panigrahi, Namrata Singh, Laxmikant G. Gadhe, Shaffi Manchanda, Makoto Shimozawa, Per Nilsson, Jan Johansson, Ashutosh Kumar, Samir K. Maji, Maheswaran Shanmugam. Benzimidazole‐based fluorophores for the detection of amyloid fibrils with higher sensitivity than Thioflavin‐T. Journal of Neurochemistry 2021, 156 (6) , 1003-1019. https://doi.org/10.1111/jnc.15138
    50. Munmun Bardhan, Sandip Dolui, Siddhi Chaudhuri, Uttam Paul, Gaurav Bhattacharjee, Manorama Ghosal, Nakul C. Maiti, Debashis Mukhopadhyay, Dulal Senapati. Impact of porous nanomaterials on inhibiting protein aggregation behaviour. RSC Advances 2021, 11 (6) , 3354-3362. https://doi.org/10.1039/D0RA10927D
    51. Amin Shiralizadeh Dezfuli, Elmira Kohan, Sepand Tehrani Fateh, Neda Alimirzaei, Hamidreza Arzaghi, Michael R. Hamblin. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Advances 2021, 11 (4) , 2253-2291. https://doi.org/10.1039/D0RA08041A
    52. Maria Elena Piersimoni, Xiangyu Teng, Anthony E. G. Cass, Liming Ying. Antioxidant lipoic acid ligand-shell gold nanoconjugates against oxidative stress caused by α-synuclein aggregates. Nanoscale Advances 2020, 2 (12) , 5666-5681. https://doi.org/10.1039/D0NA00688B
    53. Mariapina D’Onofrio, Francesca Munari, Michael Assfalg. Alpha-Synuclein—Nanoparticle Interactions: Understanding, Controlling and Exploiting Conformational Plasticity. Molecules 2020, 25 (23) , 5625. https://doi.org/10.3390/molecules25235625
    54. Roberto Tira, Elena De Cecco, Valentina Rigamonti, Carlo Santambrogio, Carlo Giorgio Barracchia, Francesca Munari, Alessandro Romeo, Giuseppe Legname, Davide Prosperi, Rita Grandori, Michael Assfalg. Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. International Journal of Biological Macromolecules 2020, 154 , 206-216. https://doi.org/10.1016/j.ijbiomac.2020.03.118
    55. J.M. Carnerero, A. Sánchez-Coronilla, A. Jimenez-Ruiz, R. Prado-Gotor. Factors that control the gold nanoparticles' aggregation induced by adenine molecules: New insights through a combined experimental and theoretical study. Journal of Molecular Liquids 2020, 310 , 113136. https://doi.org/10.1016/j.molliq.2020.113136
    56. Angela Zapata, Mai-Loan Nguyen, Caleb Ling, Jacqueline Rogers, Sangeetha Domiano, Clive Hayzelden, Korin E. Wheeler. The role of human serum and solution chemistry in fibrinogen peptide–nanoparticle interactions. Nanoscale Advances 2020, 2 (6) , 2429-2440. https://doi.org/10.1039/C9NA00793H
    57. Jiangjiang Zhang, Lei Mou, Xingyu Jiang. Surface chemistry of gold nanoparticles for health-related applications. Chemical Science 2020, 11 (4) , 923-936. https://doi.org/10.1039/C9SC06497D
    58. Kazushige Yokoyama, Kieran Brown, Peter Shevlin, Jack Jenkins, Elizabeth D’Ambrosio, Nicole Ralbovsky, Jessica Battaglia, Ishan Deshmukh, Akane Ichiki. Examination of Adsorption Orientation of Amyloidogenic Peptides Over Nano-Gold Colloidal Particle Surfaces. International Journal of Molecular Sciences 2019, 20 (21) , 5354. https://doi.org/10.3390/ijms20215354
    59. Zhenhui Kang, Shuit-Tong Lee. Carbon dots: advances in nanocarbon applications. Nanoscale 2019, 11 (41) , 19214-19224. https://doi.org/10.1039/C9NR05647E
    60. Ziqiang Xu, Hang He, Shuyuan Zhang, Beibei Wang, Jiancheng Jin, Cao Li, Xueqin Chen, Bingbing Jiang, Yi Liu. Mechanistic studies on the antibacterial behavior of Ag nanoparticles decorated with carbon dots having different oxidation degrees. Environmental Science: Nano 2019, 6 (4) , 1168-1179. https://doi.org/10.1039/C8EN01090K
    61. Parth Sarathi Nayak, Sapna M. Borah, Himanshu Gogoi, Shreyasi Asthana, Rakesh Bhatnagar, Anupam Nath Jha, Suman Jha. Lactoferrin adsorption onto silver nanoparticle interface: Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity. Chemical Engineering Journal 2019, 361 , 470-484. https://doi.org/10.1016/j.cej.2018.12.084
    62. André L. Lira, Rodrigo S. Ferreira, Ricardo J. S. Torquato, Maria Luiza V. Oliva, Peter Schuck, Alioscka A. Sousa. Allosteric inhibition of α-thrombin enzymatic activity with ultrasmall gold nanoparticles. Nanoscale Advances 2019, 1 (1) , 378-388. https://doi.org/10.1039/C8NA00081F
    63. Manuel Ahumada, Caitlin Lazurko, Emilio I. Alarcon. Fundamental concepts on surface chemistry of nanomaterials. 2019, 1-19. https://doi.org/10.1016/B978-0-12-814531-9.00001-4
    64. Torsten John, Anika Gladytz, Clemens Kubeil, Lisandra L. Martin, Herre Jelger Risselada, Bernd Abel. Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. Nanoscale 2018, 10 (45) , 20894-20913. https://doi.org/10.1039/C8NR04506B
    65. Michele Vitali, Valentina Rigamonti, Antonino Natalello, Barbara Colzani, Svetlana Avvakumova, Stefania Brocca, Carlo Santambrogio, Joanna Narkiewicz, Giuseppe Legname, Miriam Colombo, Davide Prosperi, Rita Grandori. Conformational properties of intrinsically disordered proteins bound to the surface of silica nanoparticles. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (7) , 1556-1564. https://doi.org/10.1016/j.bbagen.2018.03.026
    66. Hanh T.M. Phan, Jason C. Bartz, Jacob Ayers, Benoit I. Giasson, Mathias Schubert, Keith B. Rodenhausen, Negin Kananizadeh, Yusong Li, Shannon L. Bartelt-Hunt. Adsorption and decontamination of α-synuclein from medically and environmentally-relevant surfaces. Colloids and Surfaces B: Biointerfaces 2018, 166 , 98-107. https://doi.org/10.1016/j.colsurfb.2018.03.011
    67. Alioscka A. Sousa. Biophysical Characterization of Nanoparticle-Protein Interactions by Fluorescence Quenching Titration: Limitations, Pitfalls, and Application of a Model-Free Approach for Data Analysis. 2018, 53-73. https://doi.org/10.1007/978-3-030-01569-5_3
    68. Joanna Xiuzhu Xu, Buddhini C. N. Vithanage, Sumudu A. Athukorale, Dongmao Zhang. Scattering and absorption differ drastically in their inner filter effects on fluorescence, resonance synchronous, and polarized resonance synchronous spectroscopic measurements. The Analyst 2018, 143 (14) , 3382-3389. https://doi.org/10.1039/C8AN00790J
    69. Xiaolin Zheng, Zhenzhen Xu, Haiyang Li, Hongbing Fu. A sensitive probe for amyloid fibril detection with strong fluorescence and early response. RSC Advances 2018, 8 (29) , 15870-15875. https://doi.org/10.1039/C8RA00751A
    70. Cristina Cantarutti, Paolo Bertoncin, Paola Posocco, Yamanappa Hunashal, Sofia Giorgetti, Vittorio Bellotti, Federico Fogolari, Gennaro Esposito. The interaction of β2-microglobulin with gold nanoparticles: impact of coating, charge and size. Journal of Materials Chemistry B 2018, 6 (37) , 5964-5974. https://doi.org/10.1039/C8TB01129J
    71. Francesca Pederzoli, Giovanni Tosi, Maria Angela Vandelli, Daniela Belletti, Flavio Forni, Barbara Ruozi. Protein corona and nanoparticles: how can we investigate on?. WIREs Nanomedicine and Nanobiotechnology 2017, 9 (6) https://doi.org/10.1002/wnan.1467
    72. Zhili Peng, Xu Han, Shanghao Li, Abdulrahman O. Al-Youbi, Abdulaziz S. Bashammakh, Mohammad S. El-Shahawi, Roger M. Leblanc. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coordination Chemistry Reviews 2017, 343 , 256-277. https://doi.org/10.1016/j.ccr.2017.06.001
    73. Soheila Mohammadi, Maryam Nikkhah. TiO2 Nanoparticles as Potential Promoting Agents of Fibrillation of α-Synuclein, a Parkinson’s Disease-Related Protein. Iranian Journal of Biotechnology 2017, 15 (2) , 87-94. https://doi.org/10.15171/ijb.1519
    74. Manuel Ahumada, Eduardo Lissi, Ana Maria Montagut, Francisco Valenzuela-Henríquez, Natalia L. Pacioni, Emilio I. Alarcon. Association models for binding of molecules to nanostructures. The Analyst 2017, 142 (12) , 2067-2089. https://doi.org/10.1039/C7AN00288B
    75. Suradip Das, Alejandro Carnicer-Lombarte, James W. Fawcett, Utpal Bora. Bio-inspired nano tools for neuroscience. Progress in Neurobiology 2016, 142 , 1-22. https://doi.org/10.1016/j.pneurobio.2016.04.008
    76. Musa Ozboyaci, Daria B. Kokh, Stefano Corni, Rebecca C. Wade. Modeling and simulation of protein–surface interactions: achievements and challenges. Quarterly Reviews of Biophysics 2016, 49 https://doi.org/10.1017/S0033583515000256
    77. Hossein Mohammad-Beigi, Dina Morshedi, Seyed Abbas Shojaosadati, Jannik Nedergaard Pedersen, Amir Tayaranian Marvian, Farhang Aliakbari, Gunna Christiansen, Jan Skov Pedersen, Daniel E. Otzen. Gallic acid loaded onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) stabilizes α-synuclein in the unfolded conformation and inhibits aggregation. RSC Advances 2016, 6 (88) , 85312-85323. https://doi.org/10.1039/C6RA08502D
    78. Alioscka A. Sousa. A Note on the use of Steady–State Fluorescence Quenching to Quantify Nanoparticle–Protein Interactions. Journal of Fluorescence 2015, 25 (6) , 1567-1575. https://doi.org/10.1007/s10895-015-1665-3
    79. A. R. Timerbaev. Role of mass spectrometry in the development and medicinal implementation of metal-based nanoparticles. Journal of Analytical Chemistry 2015, 70 (9) , 1031-1046. https://doi.org/10.1134/S1061934815090166
    80. Junghee Lee, Ghibom Bhak, Ji‐Hye Lee, Woohyun Park, Minwoo Lee, Daekyun Lee, Noo Li Jeon, Dae H. Jeong, Kookheon Char, Seung R. Paik. Free‐Standing Gold‐Nanoparticle Monolayer Film Fabricated by Protein Self‐Assembly of α‐Synuclein. Angewandte Chemie International Edition 2015, 54 (15) , 4571-4576. https://doi.org/10.1002/anie.201412461
    81. Junghee Lee, Ghibom Bhak, Ji‐Hye Lee, Woohyun Park, Minwoo Lee, Daekyun Lee, Noo Li Jeon, Dae H. Jeong, Kookheon Char, Seung R. Paik. Free‐Standing Gold‐Nanoparticle Monolayer Film Fabricated by Protein Self‐Assembly of α‐Synuclein. Angewandte Chemie 2015, 127 (15) , 4654-4659. https://doi.org/10.1002/ange.201412461
    82. Chris Wai Tung Leung, Feng Guo, Yuning Hong, Engui Zhao, Ryan Tsz Kin Kwok, Nelson Lik Ching Leung, Sijie Chen, Nishant N. Vaikath, Omar Mukhtar El-Agnaf, Youhong Tang, Wei-Ping Gai, Ben Zhong Tang. Detection of oligomers and fibrils of α-synuclein by AIEgen with strong fluorescence. Chemical Communications 2015, 51 (10) , 1866-1869. https://doi.org/10.1039/C4CC07911F
    83. R. Prado-Gotor, A. Jimenez-Ruiz, J. M. Carnerero, E. Grueso, I. Villa. CIELab chromaticity evolution to measure the binding free energy of non-colored biomolecules to gold nanoparticles. RSC Advances 2015, 5 (103) , 85039-85045. https://doi.org/10.1039/C5RA15119H
    84. Hua-Li Yue, Yan-Jun Hu, Hong-Gui Huang, Shan Jiang, Bao Tu. Development of morin-conjugated Au nanoparticles: Exploring the interaction efficiency with BSA using spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 130 , 402-410. https://doi.org/10.1016/j.saa.2014.04.022
    85. Anna Laura Capriotti, Giulio Caracciolo, Chiara Cavaliere, Valentina Colapicchioni, Susy Piovesana, Daniela Pozzi, Aldo Laganà. Analytical Methods for Characterizing the Nanoparticle–Protein Corona. Chromatographia 2014, 77 (11-12) , 755-769. https://doi.org/10.1007/s10337-014-2677-x
    86. K. A. Rumyantsev, A. A. Shemetov, I. R. Nabiev, A. V. Sukhanova. Structural and functional aspects of the interaction of proteins and peptides with nanoparticles. Nanotechnologies in Russia 2013, 8 (11-12) , 700-720. https://doi.org/10.1134/S1995078013060116