ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Superstructures and Order−Disorder Transition of Sulfate Adlayers on Pt(111) in Sulfuric Acid Solution

View Author Information
Institut für Physik und Physikalische Technologien, TU Clausthal, Leibnizstrasse 4, D-38678 Clausthal-Zellerfeld, Germany
*To whom correspondence should be addressed. E-mail: [email protected]
Cite this: Langmuir 2009, 25, 18, 11112–11120
Publication Date (Web):May 21, 2009
https://doi.org/10.1021/la901399j
Copyright © 2009 American Chemical Society

    Article Views

    1107

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The surface structure of Pt(111) in a 0.1 M H2SO4 electrolyte was investigated in the potential range of sulfate adsorption with electrochemical scanning tunneling microscopy (STM) and cyclic voltammetry. Two ordered anion structures were observed coexisting in the potential range between 0.49 and 0.79 V (vs RHE): the well-known (√3 × √7)R19.1° superstructure with an anion coverage of 0.20 monolayer and a new, high-density (3 × 1) superstructure with a coverage of 0.33 monolayer. Both superstructures undergo a reversible order−disorder transition at 0.8 V. Simultaneous imaging of the adsorbed ions and of topographic details of the Pt substrate lattice allows us to study the local adsorption geometry of the sulfate. In the (√3 × √7)R19.1°, structure the sulfate ions are adsorbed close to depressions in the STM image of the Pt substrate which may be identified with face-centered cubic (fcc) hollow sites. In addition to the sulfate ions, a coadsorbed species, possibly water molecules, is observed in the unit cell of the (√3 × √7)R19.1° superstructure. Preliminary potentiodynamic STM data indicate that the transformation of the ordered sulfate adlayer into a disordered structure at 0.8 V is not directly related to adsorption/desorption features in the voltammogram commonly attributed to the adsorption/desorption of OH, and that the sulfate adlayer remains on the surface for potentials well above the adsorption potentials of OH.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 58 publications.

    1. Xinyu You, Yuqiang Xu, Jiaxing Han, Yanan Chang, Vinicius Del Colle, Chen Ji, Changwei Pan, Jiujun Zhang, Qingyu Gao. Effect of Adsorbed Sulfate on the Product Selectivity of Ethanol Oxidation on Pt Nanoparticles in Acidic Solution. The Journal of Physical Chemistry C 2023, 127 (12) , 5743-5753. https://doi.org/10.1021/acs.jpcc.2c08881
    2. Ramchandra Gawas, Joshua Snyder, Maureen Tang. Modifying Interface Solvation and Oxygen Reduction Electrocatalysis with Hydrophobic Species. The Journal of Physical Chemistry C 2022, 126 (34) , 14509-14517. https://doi.org/10.1021/acs.jpcc.2c05169
    3. Xinyu You, Mingshuang Niu, Vinicius Del Colle, Xiao Sun, Jiaxing Han, Chen Ji, Changwei Pan, Jiujun Zhang, Qingyu Gao. Enhancement Effect of Chemisorbed Sulfate toward Electrochemical Oxidation of Ethanol on Platinum Electrodes. The Journal of Physical Chemistry C 2022, 126 (7) , 3397-3403. https://doi.org/10.1021/acs.jpcc.1c09960
    4. Yifan Ye Zhi Liu . APXPS of Solid/Liquid Interfaces. , 67-92. https://doi.org/10.1021/bk-2021-1396.ch004
    5. Tomoaki Kumeda, Nagahiro Hoshi, Masashi Nakamura. Effect of Hydrophobic Cations on the Inhibitors for the Oxygen Reduction Reaction on Anions and Ionomers Adsorbed on Single-Crystal Pt Electrodes. ACS Applied Materials & Interfaces 2021, 13 (13) , 15866-15871. https://doi.org/10.1021/acsami.1c01421
    6. Cheng Hao Wu, Tod A. Pascal, Artem Baskin, Huixin Wang, Hai-Tao Fang, Yi-Sheng Liu, Yi-Hsien Lu, Jinghua Guo, David Prendergast, Miquel B. Salmeron. Molecular-Scale Structure of Electrode–Electrolyte Interfaces: The Case of Platinum in Aqueous Sulfuric Acid. Journal of the American Chemical Society 2018, 140 (47) , 16237-16244. https://doi.org/10.1021/jacs.8b09743
    7. Honami Nishikawa, Hiroshi Yano, Junji Inukai, Donald A. Tryk, Akihiro Iiyama, Hiroyuki Uchida. Effects of Sulfate on the Oxygen Reduction Reaction Activity on Stabilized Pt Skin/PtCo Alloy Catalysts from 30 to 80 °C. Langmuir 2018, 34 (45) , 13558-13564. https://doi.org/10.1021/acs.langmuir.8b02945
    8. Toshihiro Kondo, Takuya Masuda, Nana Aoki, and Kohei Uosaki . Potential-Dependent Structures and Potential-Induced Structure Changes at Pt(111) Single-Crystal Electrode/Sulfuric and Perchloric Acid Interfaces in the Potential Region between Hydrogen Underpotential Deposition and Surface Oxide Formation by In Situ Surface X-ray Scattering. The Journal of Physical Chemistry C 2016, 120 (29) , 16118-16131. https://doi.org/10.1021/acs.jpcc.5b12766
    9. Jakub Tymoczko, Federico Calle-Vallejo, Viktor Colic, Marc T. M. Koper, Wolfgang Schuhmann, and Aliaksandr S. Bandarenka . Oxygen Reduction at a Cu-Modified Pt(111) Model Electrocatalyst in Contact with Nafion Polymer. ACS Catalysis 2014, 4 (10) , 3772-3778. https://doi.org/10.1021/cs501037y
    10. Stefan Schernich, Dmytro Kostyshyn, Valentin Wagner, Nicola Taccardi, Mathias Laurin, Peter Wasserscheid, and Jörg Libuda . Interactions Between the Room-Temperature Ionic Liquid [C2C1Im][OTf] and Pd(111), Well-Ordered Al2O3, and Supported Pd Model Catalysts from IR Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (6) , 3188-3193. https://doi.org/10.1021/jp5006692
    11. Joshua Snyder, Nemanja Danilovic, Arvydas P. Paulikas, Dusan Tripkovic, Dusan Strmcnik, Nenad M. Markovic, and Vojislav R. Stamenkovic . Thin Film Approach to Single Crystalline Electrochemistry. The Journal of Physical Chemistry C 2013, 117 (45) , 23790-23796. https://doi.org/10.1021/jp4078272
    12. Balázs B. Berkes, György Inzelt, Wolfgang Schuhmann, and Alexander S. Bondarenko . Influence of Cs+ and Na+ on Specific Adsorption of *OH, *O, and *H at Platinum in Acidic Sulfuric Media. The Journal of Physical Chemistry C 2012, 116 (20) , 10995-11003. https://doi.org/10.1021/jp300863z
    13. Björn Braunschweig, Prabuddha Mukherjee, Dana D. Dlott, and Andrzej Wieckowski. Real-Time Investigations of Pt(111) Surface Transformations in Sulfuric Acid Solutions. Journal of the American Chemical Society 2010, 132 (40) , 14036-14038. https://doi.org/10.1021/ja106618z
    14. Tomoaki Kumeda, Ken Sakaushi. Recent advances in probing electrode processes at well-defined electrified solid–liquid interfaces. 2024, 124-135. https://doi.org/10.1016/B978-0-323-85669-0.00088-X
    15. Xiaoyu Gong, Zuohuan Chen, Lijuan Zhu, Yifan Ye. Using ambient pressure X-ray photoelectron spectroscopy to characterize electrode/electrolyte interfaces in situ and operando. 2024, 266-282. https://doi.org/10.1016/B978-0-323-85669-0.00145-8
    16. Mohammad Hasibul Hasan, Ian T. McCrum. Understanding the role of near-surface solvent in electrochemical adsorption and electrocatalysis with theory and experiment. Current Opinion in Electrochemistry 2022, 33 , 100937. https://doi.org/10.1016/j.coelec.2022.100937
    17. Valderi Pacheco Santos, Giuseppe Abiola Camara. Platinum single crystal electrodes: Prediction of the surface structures of low and high Miller indexes faces. Results in Surfaces and Interfaces 2021, 3 , 100006. https://doi.org/10.1016/j.rsurfi.2021.100006
    18. Jarek P. Sabawa, Aliaksandr S. Bandarenka. Investigation of degradation mechanisms in PEM fuel cells caused by low-temperature cycles. International Journal of Hydrogen Energy 2021, 46 (29) , 15951-15964. https://doi.org/10.1016/j.ijhydene.2021.02.088
    19. Víctor Climent, Juan Feliu. Single Crystal Electrochemistry as an In Situ Analytical Characterization Tool. Annual Review of Analytical Chemistry 2020, 13 (1) , 201-222. https://doi.org/10.1146/annurev-anchem-061318-115541
    20. Xiaoting Chen, Laura P. Granda-Marulanda, Ian T. McCrum, Marc T. M. Koper. Adsorption processes on a Pd monolayer-modified Pt(111) electrode. Chemical Science 2020, 11 (6) , 1703-1713. https://doi.org/10.1039/C9SC05307G
    21. Victor Climent, Enrique Herrero. Electrochemical Behavior of Single Crystal Electrodes on Model Processes. 2020, 1117-1158. https://doi.org/10.1007/978-3-030-46906-1_34
    22. Juan A. Santana, Yasuyuki Ishikawa. DFT Calculations of the Electrochemical Adsorption of Sulfuric Acid Anions on the Pt(110) and Pt(100) Surfaces. Electrocatalysis 2020, 11 (1) , 86-93. https://doi.org/10.1007/s12678-019-00574-x
    23. Jarek P. Sabawa, Aliaksandr S. Bandarenka. Degradation mechanisms in polymer electrolyte membrane fuel cells caused by freeze-cycles: Investigation using electrochemical impedance spectroscopy. Electrochimica Acta 2019, 311 , 21-29. https://doi.org/10.1016/j.electacta.2019.04.102
    24. Gregor Zwaschka, Martin Wolf, R. Kramer Campen, Yujin Tong. A Microscopic Model of the Electrochemical Vibrational Stark Effect: Understanding VSF Spectroscopy of (bi)Sulfate on Pt(111). Surface Science 2018, 678 , 78-85. https://doi.org/10.1016/j.susc.2018.05.009
    25. E.A. Heider, T. Jacob, L.A. Kibler. Platinum overlayers on Pt Ru1−(111) electrodes: Tailoring the ORR activity by lateral strain and ligand effects. Journal of Electroanalytical Chemistry 2018, 819 , 289-295. https://doi.org/10.1016/j.jelechem.2017.10.063
    26. Francisco J. Sarabia, Victor Climent, Juan M. Feliu. Underpotential deposition of Nickel on platinum single crystal electrodes. Journal of Electroanalytical Chemistry 2018, 819 , 391-400. https://doi.org/10.1016/j.jelechem.2017.11.033
    27. Ludwig A. Kibler, Khaled A. Soliman, Alan Plumer, Christopher S. Wildi, Eric Bringley, Jonathan E. Mueller, Timo Jacob. Electrodeposition of Ag Overlayers onto Pt(111): Structural, Electrochemical and Electrocatalytic Properties. Electrocatalysis 2017, 8 (6) , 605-615. https://doi.org/10.1007/s12678-017-0386-6
    28. Jakub Drnec, David A. Harrington, Olaf M. Magnussen. Electrooxidation of Pt(111) in acid solution. Current Opinion in Electrochemistry 2017, 4 (1) , 69-75. https://doi.org/10.1016/j.coelec.2017.09.021
    29. Victor Climent, Juan M. Feliu. Surface Electrochemistry with Pt Single‐Crystal Electrodes. 2017, 1-57. https://doi.org/10.1002/9783527340934.ch1
    30. Tamás Pajkossy, Rafal Jurczakowski. Electrochemical impedance spectroscopy in interfacial studies. Current Opinion in Electrochemistry 2017, 1 (1) , 53-58. https://doi.org/10.1016/j.coelec.2017.01.006
    31. Manuel J.S. Farias, Gisele A.B. Mello, Auro A. Tanaka, Juan M. Feliu. Site-specific catalytic activity of model platinum surfaces in different electrolytic environments as monitored by the CO oxidation reaction. Journal of Catalysis 2017, 345 , 216-227. https://doi.org/10.1016/j.jcat.2016.11.031
    32. B. Madry, K. Wandelt, M. Nowicki. Sulfate structures on copper deposits on Au(111): In situ STM investigations. Electrochimica Acta 2016, 217 , 249-261. https://doi.org/10.1016/j.electacta.2016.09.061
    33. B. Madry, K. Wandelt, M. Nowicki. Deposition of copper multilayers on Au(111) in sulfuric acid solution: An electrochemical scanning tunneling microscopy study. Surface Science 2015, 637-638 , 77-84. https://doi.org/10.1016/j.susc.2015.03.017
    34. Hiroshi Yano, Takayuki Uematsu, Jun Omura, Masahiro Watanabe, Hiroyuki Uchida. Effect of adsorption of sulfate anions on the activities for oxygen reduction reaction on Nafion®-coated Pt/carbon black catalysts at practical temperatures. Journal of Electroanalytical Chemistry 2015, 747 , 91-96. https://doi.org/10.1016/j.jelechem.2015.04.007
    35. Jakub Tymoczko, Viktor Colic, Alberto Ganassin, Wolfgang Schuhmann, Aliaksandr S. Bandarenka. Influence of the alkali metal cations on the activity of Pt(111) towards model electrocatalytic reactions in acidic sulfuric media. Catalysis Today 2015, 244 , 96-102. https://doi.org/10.1016/j.cattod.2014.07.007
    36. Jakub Tymoczko, Viktor Colic, Aliaksandr S. Bandarenka, Wolfgang Schuhmann. Detection of 2D phase transitions at the electrode/electrolyte interface using electrochemical impedance spectroscopy. Surface Science 2015, 631 , 81-87. https://doi.org/10.1016/j.susc.2014.04.014
    37. Cheng Hao Wu, Robert S. Weatherup, Miquel B. Salmeron. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks. Physical Chemistry Chemical Physics 2015, 17 (45) , 30229-30239. https://doi.org/10.1039/C5CP04058B
    38. Yumin Qian, Tamio Ikeshoji, Yuan‐yuan Zhao, Minoru Otani. Vibrational Dynamics of Sulfate Anion Adsorption on Pt(111) Surface: Ab Initio Molecular Dynamics Simulations. ChemElectroChem 2014, 1 (10) , 1632-1635. https://doi.org/10.1002/celc.201402205
    39. Björn Braunschweig, Andrzej Wieckowski. Surface spectroscopy of Pt(1 1 1) single-crystal electrolyte interfaces with broadband sum-frequency generation. Journal of Electroanalytical Chemistry 2014, 716 , 136-144. https://doi.org/10.1016/j.jelechem.2013.10.019
    40. Jakub Tymoczko, Wolfgang Schuhmann, Aliaksandr S. Bandarenka. Position of Cu Atoms at the Pt(111) Electrode Surfaces Controls Electrosorption of (H)SO 4 (2)− from H 2 SO 4 Electrolytes. ChemElectroChem 2014, 1 (1) , 213-219. https://doi.org/10.1002/celc.201300107
    41. Björn Braunschweig, Prabuddha Mukherjee, Robert B. Kutz, Armin Rumpel, Kathrin Engelhardt, Wolfgang Peukert, Dana D. Dlott, Andrzej Wieckowski. Spectroscopy of Electrified Interfaces with Broadband Sum Frequency Generation: From Electrocatalysis to Protein Foams. 2013, 120-150. https://doi.org/10.1002/9781118658871.ch4
    42. Ryosuke Jinnouchi, Tatsuya Hatanaka, Yu Morimoto, Masatoshi Osawa. Stark effect on vibration frequencies of sulfate on Pt(111) electrode. Electrochimica Acta 2013, 101 , 254-261. https://doi.org/10.1016/j.electacta.2012.12.104
    43. O. A. Petrii. Zero charge potentials of platinum metals and electron work functions (Review). Russian Journal of Electrochemistry 2013, 49 (5) , 401-422. https://doi.org/10.1134/S1023193513050145
    44. Kuan-Yu Yeh, Nicholas A. Restaino, Monica R. Esopi, Janna K. Maranas, Michael J. Janik. The adsorption of bisulfate and sulfate anions over a Pt(111) electrode: A first principle study of adsorption configurations, vibrational frequencies and linear sweep voltammogram simulations. Catalysis Today 2013, 202 , 20-35. https://doi.org/10.1016/j.cattod.2012.03.011
    45. Jakub Tymoczko, Wolfgang Schuhmann, Aliaksandr S. Bandarenka. The constant phase element reveals 2D phase transitions in adsorbate layers at the electrode/electrolyte interfaces. Electrochemistry Communications 2013, 27 , 42-45. https://doi.org/10.1016/j.elecom.2012.11.001
    46. Ling Wen Liao, Ming Fang Li, Jing Kang, Dong Chen, Yan-Xia Chen, Shen Ye. Electrode reaction induced pH change at the Pt electrode/electrolyte interface and its impact on electrode processes. Journal of Electroanalytical Chemistry 2013, 688 , 207-215. https://doi.org/10.1016/j.jelechem.2012.08.031
    47. Aleix Comas-Vives, Jochen Bandlow, Timo Jacob. Ab initio study of the electrochemical H 2 SO 4 /Pt(111) interface. Phys. Chem. Chem. Phys. 2013, 15 (3) , 992-997. https://doi.org/10.1039/C2CP43054A
    48. Aliaksandr S. Bandarenka. Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy. The Analyst 2013, 138 (19) , 5540. https://doi.org/10.1039/c3an00791j
    49. Ryosuke Jinnouchi, Tatsuya Hatanaka, Yu Morimoto, Masatoshi Osawa. First principles study of sulfuric acid anion adsorption on a Pt(111) electrode. Physical Chemistry Chemical Physics 2012, 14 (9) , 3208. https://doi.org/10.1039/c2cp23172g
    50. Carol Korzeniewski, Victor Climent, Juan Feliu. Electrochemistry at Platinum Single Crystal Electrodes. 2011, 75-170. https://doi.org/10.1201/b11480-3
    51. Alexander Björling, Juan M. Feliu. Electrochemical surface reordering of Pt(111): A quantification of the place-exchange process. Journal of Electroanalytical Chemistry 2011, 662 (1) , 17-24. https://doi.org/10.1016/j.jelechem.2011.01.045
    52. V. Climent, Juan M. Feliu. Thirty years of platinum single crystal electrochemistry. Journal of Solid State Electrochemistry 2011, 15 (7-8) , 1297-1315. https://doi.org/10.1007/s10008-011-1372-1
    53. Björn Braunschweig, Alexej Mitin, Winfried Daum. Pt(111) thin-layer electrodes on α-Al2O3(0001): Morphology and atomic structure. Surface Science 2011, 605 (11-12) , 1082-1089. https://doi.org/10.1016/j.susc.2011.03.009
    54. Svetlana Strbac. The effect of pH on oxygen and hydrogen peroxide reduction on polycrystalline Pt electrode. Electrochimica Acta 2011, 56 (3) , 1597-1604. https://doi.org/10.1016/j.electacta.2010.10.057
    55. Jorge Mostany, Víctor Climent, Enrique Herrero, Juan M. Feliu. Surface excesses at very low concentrations from extrapolation of thermodynamic data: A way to explore beyond practical limits from reliable experimental data. Journal of Electroanalytical Chemistry 2010, 649 (1-2) , 119-125. https://doi.org/10.1016/j.jelechem.2010.02.014
    56. Holger Wolfschmidt, Daniel Weingarth, Ulrich Stimming. Enhanced Reactivity for Hydrogen Reactions at Pt Nanoislands on Au(111). ChemPhysChem 2010, 11 (7) , 1533-1541. https://doi.org/10.1002/cphc.201000148
    57. Nuria Garcia-Araez, Victor Climent, Paramaconi Rodriguez, Juan M. Feliu. Thermodynamic evidence for K+–SO42− ion pair formation on Pt(111). New insight into cation specific adsorption. Physical Chemistry Chemical Physics 2010, 12 (38) , 12146. https://doi.org/10.1039/c0cp00247j
    58. Zhangfei Su, Victor Climent, Jay Leitch, Vlad Zamlynny, Juan M. Feliu, Jacek Lipkowski. Quantitative SNIFTIRS studies of (bi)sulfate adsorption at the Pt(111) electrode surface. Physical Chemistry Chemical Physics 2010, 12 (46) , 15231. https://doi.org/10.1039/c0cp00860e

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect