ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Enhanced Spreading of Aqueous Films Containing Ethoxylated Alcohol Surfactants on Solid Substrates

View Author Information
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, the University of Minnesota NSF Center for Interfacial Engineering, and the Dow Corning Corporation, 2200 West Salzburg Road, Midland, Michigan 48686-0994
Cite this: Langmuir 1997, 13, 26, 7270–7275
Publication Date (Web):December 24, 1997
https://doi.org/10.1021/la970702a
Copyright © 1997 American Chemical Society

    Article Views

    559

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The spreading behavior of aqueous solutions containing the ethoxylated alcohol surfactants CH3(CH2)9(OCH2CH2)3OH and CH3(CH2)11(OCH2)n−OH (n = 3−6) on solid substrates has been investigated at different surfactant concentrations and substrate surface energies. The trends in the dynamic spreading behavior differ from those expected on the basis of the thermodynamic spreading coefficients calculated from static surface tensions. The data demonstrate that the spreading rates do not depend upon any identifiable aqueous phase surfactant microstructure. However, the spreading rate dependence upon the length of the hydrophilic poly(oxyethylene) chain suggests an interplay between surfactant adsorption on the substrate surface and the aggregation of this surfactant. The results suggest that the onset of turbidity, and an optimal surfactant hydrophilic/hydrophobic balance, are important for achieving high spreading rates.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Department of Chemical Engineering and Materials Science, University of Minnesota.

     Dow Corning Corporation.

    *

     Authors to whom correspondence should be addressed.

     Abstract published in Advance ACS Abstracts, November 15, 1997.

    Cited By

    This article is cited by 91 publications.

    1. Yaxun Fan, Yilin Wang. Deposition and Spread of Aqueous Pesticide Droplets on Hydrophobic/Superhydrophobic Surfaces by Fast Aggregation of Surfactants. Langmuir 2023, 39 (16) , 5631-5640. https://doi.org/10.1021/acs.langmuir.3c00282
    2. Omid Arjmandi-Tash, Nina M. Kovalchuk, Anna Trybala, Igor V. Kuchin, and Victor Starov . Kinetics of Wetting and Spreading of Droplets over Various Substrates. Langmuir 2017, 33 (18) , 4367-4385. https://doi.org/10.1021/acs.langmuir.6b04094
    3. Xiang Wang, Longquan Chen, Elmar Bonaccurso, and Joachim Venzmer . Dynamic Wetting of Hydrophobic Polymers by Aqueous Surfactant and Superspreader Solutions. Langmuir 2013, 29 (48) , 14855-14864. https://doi.org/10.1021/la403994y
    4. Wuguo Bi, Xiangyang Wu, and Edwin K. L. Yeow . Unconventional Multiple Ring Structure Formation from Evaporation-Induced Self-Assembly of Polymers. Langmuir 2012, 28 (30) , 11056-11063. https://doi.org/10.1021/la300697w
    5. Constantinos Spandagos, Thomas B. Goudoulas, Paul F. Luckham, and Omar K. Matar . Surface Tension-Induced Gel Fracture. Part 1. Fracture of Agar Gels. Langmuir 2012, 28 (18) , 7197-7211. https://doi.org/10.1021/la205163n
    6. Jovana Radulovic, Khellil Sefiane and Martin E. R. Shanahan . Dynamics of Trisiloxane Wetting: Effects of Diffusion and Surface Hydrophobicity. The Journal of Physical Chemistry C 2010, 114 (32) , 13620-13629. https://doi.org/10.1021/jp910729c
    7. D. R. Beacham and O. K. Matar, R. V. Craster. Surfactant-Enhanced Rapid Spreading of Drops on Solid Surfaces. Langmuir 2009, 25 (24) , 14174-14181. https://doi.org/10.1021/la9019469
    8. R. V. Craster and, O. K. Matar. On Autophobing in Surfactant-Driven Thin Films. Langmuir 2007, 23 (5) , 2588-2601. https://doi.org/10.1021/la0629936
    9. Yongfu Wu and, Milton J. Rosen. Synergism in the Spreading of Hydrocarbon-Chain Surfactants on Polyethylene FilmAnionic and Cationic Mixtures by a Two-Step Procedure. Langmuir 2005, 21 (6) , 2342-2348. https://doi.org/10.1021/la047786p
    10. Jinping Dong and, Guangzhao Mao, , Randal M. Hill. Nanoscale Aggregate Structures of Trisiloxane Surfactants at the Solid−Liquid Interface. Langmuir 2004, 20 (7) , 2695-2700. https://doi.org/10.1021/la036059b
    11. Qiong Zhou,, Yongfu Wu, and, Milton J. Rosen. Surfactant−Surfactant Molecular Interactions in Mixed Monolayers at a Highly Hydrophobic Solid/Aqueous Solution Interface and Their Relationship to Enhanced Spreading on the Solid Substrate. Langmuir 2003, 19 (19) , 7955-7962. https://doi.org/10.1021/la030157f
    12. Abia B. Afsar-Siddiqui,, Paul F. Luckham, and, Omar K. Matar. Unstable Spreading of Aqueous Anionic Surfactant Solutions on Liquid Films. Part 1. Sparingly Soluble Surfactant. Langmuir 2003, 19 (3) , 696-702. https://doi.org/10.1021/la0258502
    13. Abia B. Afsar-Siddiqui,, Paul F. Luckham, and, Omar K. Matar. Unstable Spreading of Aqueous Anionic Surfactant Solutions on Liquid Films. 2. Highly Soluble Surfactant. Langmuir 2003, 19 (3) , 703-708. https://doi.org/10.1021/la025851u
    14. Yongfu Wu and, Milton J. Rosen. Superspreading of Trisiloxane Surfactant Mixtures on Hydrophobic Surfaces 2. Interaction and Spreading of Aqueous Trisiloxane Surfactant−N-Alkyl-Pyrrolidinone Mixtures in Contact with Polyethylene. Langmuir 2002, 18 (6) , 2205-2215. https://doi.org/10.1021/la0113318
    15. Milton J. Rosen and, Yongfu Wu. Superspreading of Trisiloxane Surfactant Mixtures on Hydrophobic Surfaces. 1. Interfacial Adsorption of Aqueous Trisiloxane Surfactant−N-Alkyl Pyrrolidinone Mixtures on Polyethylene. Langmuir 2001, 17 (23) , 7296-7305. https://doi.org/10.1021/la010466a
    16. Barry B. Luokkala,, Stephen Garoff,, Robert D. Tilton, and, Robert M. Suter. Interfacial Structure and Rearrangement of Nonionic Surfactants near a Moving Contact Line. Langmuir 2001, 17 (19) , 5917-5923. https://doi.org/10.1021/la010365c
    17. M. Voué,, S. Rovillard, and, J. De Coninck, , M. P. Valignat and, A. M. Cazabat. Spreading of Liquid Mixtures at the Microscopic Scale: A Molecular Dynamics Study of the Surface-Induced Segregation Process. Langmuir 2000, 16 (3) , 1428-1435. https://doi.org/10.1021/la990770s
    18. Maria von Bahr,, Fredrik Tiberg, and, Boris V. Zhmud. Spreading Dynamics of Surfactant Solutions. Langmuir 1999, 15 (20) , 7069-7075. https://doi.org/10.1021/la990276o
    19. M. Cachile and, A. M. Cazabat. Spontaneous Spreading of Surfactant Solutions on Hydrophilic Surfaces:  CnEm in Ethylene and Diethylene Glycol. Langmuir 1999, 15 (4) , 1515-1521. https://doi.org/10.1021/la980840f
    20. R. Wagner, , R. Strey. Phase Behavior of Binary Water−Trimethylsilane Surfactant Systems:  Origin of the Dilute Lamellar Phase. Langmuir 1999, 15 (4) , 902-905. https://doi.org/10.1021/la9814687
    21. M. Voué,, M. P. Valignat,, G. Oshanin,, A. M. Cazabat, and, J. De Coninck. Dynamics of Spreading of Liquid Microdroplets on Substrates of Increasing Surface Energies. Langmuir 1998, 14 (20) , 5951-5958. https://doi.org/10.1021/la9714115
    22. T. Stoebe,, Randal M. Hill,, Michael D. Ward, and, H. Ted Davis. Enhanced Spreading of Aqueous Films Containing Ionic Surfactants on Solid Substrates. Langmuir 1997, 13 (26) , 7276-7281. https://doi.org/10.1021/la9707033
    23. Xuyang Bai, Shaoqi Kong, Jiawei Zhang, Gang Li, Jiajun Li, Pengcheng Wen, Guochao Yan. Molecular mechanism study of nonionic surfactant enhanced anionic surfactant to improve the wetting ability of anthracite dust. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 686 , 133455. https://doi.org/10.1016/j.colsurfa.2024.133455
    24. Junqing Meng, Junkai Xia, Hanxie Meng, Jiaxing Niu. Effects of Surfactant Compounding on the Wettability Characteristics of Zhaozhuang Coal: Experiment and Molecular Simulation. Tenside Surfactants Detergents 2020, 57 (5) , 390-400. https://doi.org/10.3139/113.110704
    25. Xueyuan Liu, Kailiang Huang, Miao Zhao, Fan Li, Honggang Liu. A modified wrinkle-free MoS 2 film transfer method for large area high mobility field-effect transistor. Nanotechnology 2020, 31 (5) , 055707. https://doi.org/10.1088/1361-6528/ab49b8
    26. Panagiotis E. Theodorakis, Edward R. Smith, Richard V. Craster, Erich A. Müller, Omar K. Matar. Molecular Dynamics Simulation of the Superspreading of Surfactant-Laden Droplets. A Review. Fluids 2019, 4 (4) , 176. https://doi.org/10.3390/fluids4040176
    27. Hsien-Hung Wei. Marangoni-enhanced capillary wetting in surfactant-driven superspreading. Journal of Fluid Mechanics 2018, 855 , 181-209. https://doi.org/10.1017/jfm.2018.626
    28. Ali Talha Badra, Hanane Zahaf, Hocine Alla, Thibault Roques-Carmes. A numerical model of superspreading surfactants on hydrophobic surface. Physics of Fluids 2018, 30 (9) https://doi.org/10.1063/1.5041804
    29. N.A. Ivanova, N.S. Kubochkin, V.M. Starov. Wetting of hydrophobic substrates by pure surfactants at continuously increasing humidity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 519 , 71-77. https://doi.org/10.1016/j.colsurfa.2016.07.096
    30. Nina Kovalchuk, Anna Trybala, Faiz Mahdi, Victor Starov. Kinetics of spreading of synergetic surfactant mixtures in the case of partial wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 505 , 23-28. https://doi.org/10.1016/j.colsurfa.2015.11.026
    31. N.M. Kovalchuk, A. Trybala, O. Arjmandi-Tash, V. Starov. Surfactant-enhanced spreading: Experimental achievements and possible mechanisms. Advances in Colloid and Interface Science 2016, 233 , 155-160. https://doi.org/10.1016/j.cis.2015.08.001
    32. Courtney A. E. Peirce, Craig Priest, Therese M. McBeath, Mike J. McLaughlin. Uptake of phosphorus from surfactant solutions by wheat leaves: spreading kinetics, wetted area, and drying time. Soft Matter 2016, 12 (1) , 209-218. https://doi.org/10.1039/C5SM01380A
    33. N. M. Kovalchuk, O. K. Matar, R. V. Craster, R. Miller, V. M. Starov. The effect of adsorption kinetics on the rate of surfactant-enhanced spreading. Soft Matter 2016, 12 (4) , 1009-1013. https://doi.org/10.1039/C5SM02493E
    34. N.M. Kovalchuk, A. Barton, A. Trybala, V. Starov. Mixtures of catanionic surfactants can be superspreaders: Comparison with trisiloxane superspreader. Journal of Colloid and Interface Science 2015, 459 , 250-256. https://doi.org/10.1016/j.jcis.2015.08.024
    35. Alex Nikolov, Darsh Wasan. Current opinion in superspreading mechanisms. Advances in Colloid and Interface Science 2015, 222 , 517-529. https://doi.org/10.1016/j.cis.2014.03.006
    36. Joachim Venzmer. Superspreading. 2015, 71-84. https://doi.org/10.1016/B978-0-12-800722-8.00006-0
    37. Panagiotis E. Theodorakis, Erich A. Müller, Richard V. Craster, Omar K. Matar. Insights into surfactant-assisted superspreading. Current Opinion in Colloid & Interface Science 2014, 19 (4) , 283-289. https://doi.org/10.1016/j.cocis.2014.04.007
    38. N.M. Kovalchuk, A. Barton, A. Trybala, V. Starov. Surfactant Enhanced Spreading: Catanionic Mixture. Colloids and Interface Science Communications 2014, 1 , 1-5. https://doi.org/10.1016/j.colcom.2014.05.003
    39. Prashant R. Waghmare, Siddhartha Das, Sushanta K. Mitra. Under-water superoleophobic Glass: Unexplored role of the surfactant-rich solvent. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01862
    40. Jun-Yue Zhu, Yuan-Yuan Duan, Xiao-Dong Wang, Qi Min. Forced Wetting Dynamics of Sodium Dodecyl Sulfate Glycerol Solution on Solid Substrates. International Journal of Thermophysics 2013, 34 (12) , 2286-2296. https://doi.org/10.1007/s10765-012-1295-9
    41. Zhenxiang Li, Jianxi Zhao. Aqueous solution-chemical derived NiAl2O3 solar selective absorbing coatings. 2. Wetting agents and spreading of aqueous solutions on aluminum substrate. Applied Surface Science 2013, 268 , 231-236. https://doi.org/10.1016/j.apsusc.2012.12.067
    42. Chong Cao, Lu Zhang, Xiao-Xi Zhang, Feng-Pei Du. Effect of gum arabic on the surface tension and surface dilational rheology of trisiloxane surfactant. Food Hydrocolloids 2013, 30 (1) , 456-462. https://doi.org/10.1016/j.foodhyd.2012.07.006
    43. N.A. Ivanova, Zh.B. Zhantenova, V.M. Starov. Wetting dynamics of polyoxyethylene alkyl ethers and trisiloxanes in respect of polyoxyethylene chains and properties of substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 413 , 307-313. https://doi.org/10.1016/j.colsurfa.2012.04.054
    44. Wanxu Wang, Shujun Wang, Zhiping Du, Guoyong Wang, Liang Wang. Properties of Glucosamide-Based Tetrasiloxane Surfactants. Journal of Dispersion Science and Technology 2012, 33 (5) , 654-659. https://doi.org/10.1080/01932691.2011.579824
    45. . Wetting and Its Modification by Surfactants. 2012, 272-307. https://doi.org/10.1002/9781118228920.ch6
    46. George Karapetsas, Richard V. Craster, Omar K. Matar. Surfactant-driven dynamics of liquid lenses. Physics of Fluids 2011, 23 (12) https://doi.org/10.1063/1.3670009
    47. Joachim Venzmer. Superspreading — 20 years of physicochemical research. Current Opinion in Colloid & Interface Science 2011, 16 (4) , 335-343. https://doi.org/10.1016/j.cocis.2010.11.006
    48. N.A. Ivanova, V.M. Starov. Wetting of low free energy surfaces by aqueous surfactant solutions. Current Opinion in Colloid & Interface Science 2011, 16 (4) , 285-291. https://doi.org/10.1016/j.cocis.2011.06.008
    49. A. Nikolov, D. Wasan. Superspreading mechanisms: An overview. The European Physical Journal Special Topics 2011, 197 (1) , 325-341. https://doi.org/10.1140/epjst/e2011-01476-1
    50. GEORGE KARAPETSAS, RICHARD V. CRASTER, OMAR K. MATAR. On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces. Journal of Fluid Mechanics 2011, 670 , 5-37. https://doi.org/10.1017/S0022112010005495
    51. Jovana Radulovica, Khellil Sefianea, Martin E. R. Shanahanb. The Role of Diffusion in Superspreading. Journal of Adhesion Science and Technology 2011, 25 (12) , 1361-1370. https://doi.org/10.1163/016942411X555944
    52. Victor Starov, Natalia Ivanova, Ramon G. Rubio. Why do aqueous surfactant solutions spread over hydrophobic substrates?. Advances in Colloid and Interface Science 2010, 161 (1-2) , 153-162. https://doi.org/10.1016/j.cis.2010.04.001
    53. J. Radulovic, Khellil Sefiane, Martin E.R. Shanahan. Spreading Exponents: Dynamics of Trisiloxane Wetting of Hydrophobic Surfaces. Defect and Diffusion Forum 2010, 303-304 , 139-145. https://doi.org/10.4028/www.scientific.net/DDF.303-304.139
    54. Thibault Roques-Carmes, Vincent Mathieu, Alexandra Gigante. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: Effect of volume, viscosity and surfactant. Journal of Colloid and Interface Science 2010, 344 (1) , 180-197. https://doi.org/10.1016/j.jcis.2009.12.039
    55. Zhongli Peng, Caifeng Lu, Minling Xu. Influence of Substructures on the Spreading Ability and Hydrolysis Resistance of Double‐Tail Trisiloxane Surfactants. Journal of Surfactants and Detergents 2010, 13 (1) , 75-81. https://doi.org/10.1007/s11743-009-1144-4
    56. Jonathan D. Halverson, Charles Maldarelli, Alexander Couzis, Joel Koplik. Wetting of hydrophobic substrates by nanodroplets of aqueous trisiloxane and alkyl polyethoxylate surfactant solutions. Chemical Engineering Science 2009, 64 (22) , 4657-4667. https://doi.org/10.1016/j.ces.2009.05.010
    57. Yue Zhang, Fu Han. The spreading behaviour and spreading mechanism of new glucosamide-based trisiloxane on polystyrene surfaces. Journal of Colloid and Interface Science 2009, 337 (1) , 211-217. https://doi.org/10.1016/j.jcis.2009.04.074
    58. K. S. Lee, V. M. Starov, T. J. P. Muchatuta, S. I. R. Srikantha. Spreading of trisiloxanes over thin aqueous layers. Colloid Journal 2009, 71 (3) , 365-369. https://doi.org/10.1134/S1061933X09030119
    59. O. K. Matar, R. V. Craster. Dynamics of surfactant-assisted spreading. Soft Matter 2009, 5 (20) , 3801. https://doi.org/10.1039/b908719m
    60. K.S. Lee, N. Ivanova, V.M. Starov, N. Hilal, V. Dutschk. Kinetics of wetting and spreading by aqueous surfactant solutions. Advances in Colloid and Interface Science 2008, 144 (1-2) , 54-65. https://doi.org/10.1016/j.cis.2008.08.005
    61. Hye-Young Kim, Yong Qin, Kristen A. Fichthorn. Molecular dynamics simulation of nanodroplet spreading enhanced by linear surfactants. The Journal of Chemical Physics 2006, 125 (17) https://doi.org/10.1063/1.2364484
    62. Richard C. Daniel, John C. Berg. Spreading on and penetration into thin, permeable print media: Application to ink-jet printing. Advances in Colloid and Interface Science 2006, 123-126 , 439-469. https://doi.org/10.1016/j.cis.2006.05.012
    63. R.V. Craster, O.K. Matar. On the dynamics of liquid lenses. Journal of Colloid and Interface Science 2006, 303 (2) , 503-516. https://doi.org/10.1016/j.jcis.2006.08.009
    64. Srinivas Nageswaran Moorkanikkara, Daniel Blankschtein. New methodology to determine the rate-limiting adsorption kinetics mechanism from experimental dynamic surface tension data. Journal of Colloid and Interface Science 2006, 302 (1) , 1-19. https://doi.org/10.1016/j.jcis.2006.06.022
    65. Michele Ferrari, Francesca Ravera, Silvia Rao, Libero Liggieri. Surfactant adsorption at superhydrophobic surfaces. Applied Physics Letters 2006, 89 (5) https://doi.org/10.1063/1.2226771
    66. J. Fred Gadberry, Richard Otterson, Randal M. Hill, Guido Bognolo, Richard R. Thomas. Other Types of Surfactants. 2006, 153-235. https://doi.org/10.1002/9780470988596.ch6
    67. Yue Zhang, Gaoyong Zhang, Fu Han. The spreading and superspeading behavior of new glucosamide-based trisiloxane surfactants on hydrophobic foliage. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 276 (1-3) , 100-106. https://doi.org/10.1016/j.colsurfa.2005.10.024
    68. Thomas C. Kaufmann, Andreas Engel, Hervé-W. Rémigy. A Novel Method for Detergent Concentration Determination. Biophysical Journal 2006, 90 (1) , 310-317. https://doi.org/10.1529/biophysj.105.070193
    69. R. Wagner, Y. Wu, G. Czichocki, H. V. Berlepsch, B. Weiland, F. Rexin, L. Perepelittchenko. What “Super” Spreads? — An Analysis of the Spreading Performance of the Single Components of the Trisiloxane Superspreader Type M 2 D*‐(CH 2 )3–(OCH 2 CH 2 ) n ‐OCH 3. 2005, 683-689. https://doi.org/10.1002/9783527620777.ch110c
    70. Kit Yan Chan, Ali Borhan. Surfactant-assisted spreading of a liquid drop on a smooth solid surface. Journal of Colloid and Interface Science 2005, 287 (1) , 233-248. https://doi.org/10.1016/j.jcis.2005.01.086
    71. A. Hamraoui, M. Cachile, C. Poulard, A.M. Cazabat. Fingering phenomena during spreading of surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 250 (1-3) , 215-221. https://doi.org/10.1016/j.colsurfa.2003.12.035
    72. Doo‐Won Kim, Si‐Tae Noh. Synthesis and surface‐active properties of a trisiloxane‐modified oligo(propylene oxide‐ block ‐ethylene oxide) wetting agent. Journal of Applied Polymer Science 2004, 92 (5) , 3292-3302. https://doi.org/10.1002/app.20284
    73. Abia B. Afsar-Siddiqui, Paul F. Luckham, Omar K. Matar. The spreading of surfactant solutions on thin liquid films. Advances in Colloid and Interface Science 2003, 106 (1-3) , 183-236. https://doi.org/10.1016/S0001-8686(03)00111-8
    74. Nitin Kumar, Alexander Couzis, Charles Maldarelli. Measurement of the kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading. Journal of Colloid and Interface Science 2003, 267 (2) , 272-285. https://doi.org/10.1016/S0021-9797(03)00530-7
    75. Victoria Dutschk, Konstantin G Sabbatovskiy, Martin Stolz, Karina Grundke, Victor M Rudoy. Unusual wetting dynamics of aqueous surfactant solutions on polymer surfaces. Journal of Colloid and Interface Science 2003, 267 (2) , 456-462. https://doi.org/10.1016/S0021-9797(03)00723-9
    76. Anoop Chengara, Alex Nikolov, Darsh Wasan. Surface tension gradient driven spreading of trisiloxane surfactant solution on hydrophobic solid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 206 (1-3) , 31-39. https://doi.org/10.1016/S0927-7757(02)00060-2
    77. T.D Blake, J De Coninck. The influence of solid–liquid interactions on dynamic wetting. Advances in Colloid and Interface Science 2002, 96 (1-3) , 21-36. https://doi.org/10.1016/S0001-8686(01)00073-2
    78. M Cachile, M Schneemilch, A Hamraoui, A.M Cazabat. Films driven by surface tension gradients. Advances in Colloid and Interface Science 2002, 96 (1-3) , 59-74. https://doi.org/10.1016/S0001-8686(01)00075-6
    79. Alex D Nikolov, Darsh T Wasan, Anoop Chengara, Kalman Koczo, George A Policello, Istvan Kolossvary. Superspreading driven by Marangoni flow. Advances in Colloid and Interface Science 2002, 96 (1-3) , 325-338. https://doi.org/10.1016/S0001-8686(01)00087-2
    80. Maria von Bahr, Fredrik Tiberg, Vassili Yaminsky. Spreading dynamics of liquids and surfactant solutions on partially wettable hydrophobic substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 193 (1-3) , 85-96. https://doi.org/10.1016/S0927-7757(01)00756-7
    81. Victor M. Starov, Serguei R. Kosvintsev, Manuel G. Velarde. Spreading of Surfactant Solutions over Hydrophobic Substrates. Journal of Colloid and Interface Science 2000, 227 (1) , 185-190. https://doi.org/10.1006/jcis.2000.6851
    82. R. Wagner, Y. Wu, H. v. Berlepsch, L. Perepelittchenko. Silicon-modified surfactants and wetting: IV. Spreading behaviour of trisiloxane surfactants on energetically different solid surfaces. Applied Organometallic Chemistry 2000, 14 (4) , 177-188. https://doi.org/10.1002/(SICI)1099-0739(200004)14:4<177::AID-AOC974>3.0.CO;2-P
    83. Paul E. Luner. Wetting Properties of Bile Salt Solutions and Dissolution Media. Journal of Pharmaceutical Sciences 2000, 89 (3) , 382-395. https://doi.org/10.1002/(SICI)1520-6017(200003)89:3<382::AID-JPS9>3.0.CO;2-H
    84. R. Wagner, Y. Wu, G. Czichocki, H. V. Berlepsch, B. Weiland, F. Rexin, L. Perepelittchenko. What “Super” Spreads? — An Analysis of the Spreading Performance of the Single Components of the Trisiloxane Superspreader Type M 2 D*‐(CH 2 )3–(OCH 2 CH 2 ) n ‐OCH 3. 2000, 683-689. https://doi.org/10.1002/9783527619917.ch110
    85. R. Wagner, Y. Wu, H. V. Berlepsch, H. Zastrow, B. Weiland, L. Perepelittchenko. Silicon-modified surfactants and wetting: V. The spreading behaviour of trimethylsilane surfactants on energetically different solid surfaces. Applied Organometallic Chemistry 1999, 13 (11) , 845-855. https://doi.org/10.1002/(SICI)1099-0739(199911)13:11<845::AID-AOC888>3.0.CO;2-P
    86. M. Cachile, A.M. Cazabat, S. Bardon, M.P. Valignat, F. Vandenbrouck. Spontaneous spreading of surfactant solutions on hydrophilic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 159 (1) , 47-56. https://doi.org/10.1016/S0927-7757(99)00161-2
    87. R. Wagner, Y. Wu, G. Czichocki, H. v. Berlepsch, B. Weiland, F. Rexin, L. Perepelittchenko. Silicon-modified surfactants and wetting: I. Synthesis of the single components of Silwet L77 and their spreading performance on a low-energy solid surface. Applied Organometallic Chemistry 1999, 13 (9) , 611-620. https://doi.org/10.1002/(SICI)1099-0739(199909)13:9<611::AID-AOC884>3.0.CO;2-E
    88. R. Wagner, Y. Wu, H. v. Berlepsch, F. Rexin, T. Rexin, L. Perepelittchenko. Silicon-modified surfactants and wetting: III. The spreading behaviour of equimolar mixtures of nonionic trisiloxane surfactants on a low-energy solid surface. Applied Organometallic Chemistry 1999, 13 (9) , 621-630. https://doi.org/10.1002/(SICI)1099-0739(199909)13:9<621::AID-AOC885>3.0.CO;2-A
    89. R. Wagner, Y. Wu, G. Czichocki, H. v. Berlepsch, F. Rexin, L. Perepelittchenko. Silicon-modified surfactants and wetting: II. Temperature-dependent spreading behaviour of oligoethylene glycol derivatives of heptamethyltrisiloxane. Applied Organometallic Chemistry 1999, 13 (3) , 201-208. https://doi.org/10.1002/(SICI)1099-0739(199903)13:3<201::AID-AOC858>3.0.CO;2-5
    90. Roland Wagner, Yuling Wu, Hans V. Berlepsch. Zum Spreitverhalten von Mischungen definierter Trisiloxantenside auf niederenergetischen Oberflächen. 1999, 237-241. https://doi.org/10.1007/978-3-7091-6357-3_25
    91. Randal M Hill. Superspreading. Current Opinion in Colloid & Interface Science 1998, 3 (3) , 247-254. https://doi.org/10.1016/S1359-0294(98)80068-X

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect