Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Self-Assembly and Transport Limitations in Confined Nafion Films
My Activity
    Article

    Self-Assembly and Transport Limitations in Confined Nafion Films
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
    § Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
    National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
    Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Other Access OptionsSupporting Information (1)

    Macromolecules

    Cite this: Macromolecules 2013, 46, 3, 867–873
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma301999a
    Published January 23, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ion-conducting polymers are important materials for a variety of electrochemical applications. Perfluorinated ionomers, such as Nafion, are the benchmark materials for proton conduction and are widely used in fuel cells and other electrochemical devices including solar-fuel generators, chlor-alkali cells, and redox flow batteries. While the behavior of Nafion in bulk membranes (10 to 100s μm thick) has been studied extensively, understanding its properties under thin-film confinement is limited. Elucidating the behavior of thin Nafion films is particularly important for the optimization of fuel-cell catalyst layers or vapor-operated solar-fuel generators, where a thin film of ionomer is responsible for the transport of ions to and from the active electrocatalytic centers. Using a combination of transport-property measurements and structural characterization, this work demonstrates that confinement of Nafion in thin films induced thickness-dependent proton conductivity and ionic-domain structure. Confining Nafion films to thicknesses below 50 nm on a silicon substrate results in a loss of microphase separation of the hydrophilic and hydrophobic domains, which drastically increases the material’s water uptake while in turn decreasing its ionic conductivity.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Substrate preparation procedures, sample impedance spectra, ionic conductivity data, QCM mass-uptake data, TEM chemical maps, and characterization of films cast from water diluted solutions. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 194 publications.

    1. Kwang Ho Ahn, Kyung-Lim Jang, Jae-Han Kim, Taek-Soo Kim. Unraveling the Intrinsic Thermal Behavior of Freestanding Ionomer Films Depending on Thickness from Commercial Membrane to Nanofilm. Langmuir 2024, 40 (35) , 18503-18511. https://doi.org/10.1021/acs.langmuir.4c01730
    2. Shuo Yang, Hui Li, Wenhao Zou, Rene Ling, Xinchi Ma, Siyu Chen, Zhengjin Yang, Tongwen Xu. Sulfonated Microporous Polyxanthene Binder for High-Temperature Hydrogen Fuel Cells. JACS Au 2024, 4 (8) , 3277-3283. https://doi.org/10.1021/jacsau.4c00565
    3. Oghenetega Allen Obewhere, Shudipto Konika Dishari. Engineering Ionomer–Substrate Interface to Improve Thin-Film Proton Conductivity in Proton Exchange Membrane Fuel Cells. ACS Applied Polymer Materials 2024, 6 (8) , 4535-4546. https://doi.org/10.1021/acsapm.3c03218
    4. Dong Wook Lee, Jonghyun Hyun, Euntaek Oh, Kyunghwa Seok, Hanmin Bae, Jeesoo Park, Hee-Tak Kim. Potential-Dependent Ionomer Rearrangement on the Pt Surface in Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces 2024, 16 (4) , 4637-4647. https://doi.org/10.1021/acsami.3c15827
    5. Tamar Zelovich, Dario R. Dekel, Mark E. Tuckerman. Electrostatic Potential of Functional Cations as a Predictor of Hydroxide Diffusion Pathways in Nanoconfined Environments of Anion Exchange Membranes. The Journal of Physical Chemistry Letters 2024, 15 (2) , 408-415. https://doi.org/10.1021/acs.jpclett.3c02800
    6. Peter Mardle, Binyu Chen, Steven Holdcroft. Opportunities of Ionomer Development for Anion-Exchange Membrane Water Electrolysis. ACS Energy Letters 2023, 8 (8) , 3330-3342. https://doi.org/10.1021/acsenergylett.3c01040
    7. Yue Zhao, Kimio Yoshimura, Shinichi Sawada, Akihiro Hiroki, Aurel Radulescu, Yasunari Maekawa. Microscopic Determination of the Local Hydration Number of Polymer Electrolyte Membranes Using SANS Partial Scattering Function Analysis. ACS Macro Letters 2023, 12 (4) , 481-486. https://doi.org/10.1021/acsmacrolett.3c00019
    8. Zhuoran Long, Mark E. Tuckerman. Hydroxide Diffusion in Functionalized Cylindrical Nanopores as Idealized Models of Anion Exchange Membrane Environments: An Ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry C 2023, 127 (6) , 2792-2804. https://doi.org/10.1021/acs.jpcc.2c05747
    9. Hamideh Eskandari, Vinayaraj Ozhukil Kollath, Kunal Karan. Conductivity and Hygroscopic Expansion of Ionomer Thin Films: Effect of Cobalt Exchange and Thermal/Aqueous Treatment. The Journal of Physical Chemistry C 2022, 126 (42) , 17862-17874. https://doi.org/10.1021/acs.jpcc.2c05629
    10. Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari. Molecular-Level Control over Ionic Conduction and Ionic Current Direction by Designing Macrocycle-Based Ionomers. JACS Au 2022, 2 (5) , 1144-1159. https://doi.org/10.1021/jacsau.2c00143
    11. Tamar Zelovich, Mark E. Tuckerman. Controlling Hydronium Diffusivity in Model Proton Exchange Membranes. The Journal of Physical Chemistry Letters 2022, 13 (9) , 2245-2253. https://doi.org/10.1021/acs.jpclett.1c04071
    12. Tamar Zelovich, Leslie Vogt-Maranto, Cataldo Simari, Isabella Nicotera, Michael A. Hickner, Stephen J. Paddison, Chulsung Bae, Dario R. Dekel, Mark E. Tuckerman. Non-Monotonic Temperature Dependence of Hydroxide Ion Diffusion in Anion Exchange Membranes. Chemistry of Materials 2022, 34 (5) , 2133-2145. https://doi.org/10.1021/acs.chemmater.1c03594
    13. Sheetal K. Jain, Dakota Rawlings, Ségolène Antoine, Rachel A. Segalman, Songi Han. Confinement Promotes Hydrogen Bond Network Formation and Grotthuss Proton Hopping in Ion-Conducting Block Copolymers. Macromolecules 2022, 55 (2) , 615-622. https://doi.org/10.1021/acs.macromol.1c01808
    14. Nora C. Buggy, Yifeng Du, Mei-Chen Kuo, Soenke Seifert, Ryan J. Gasvoda, Sumit Agarwal, E. Bryan Coughlin, Andrew M. Herring. Designing Anion-Exchange Ionomers with Oriented Nanoscale Phase Separation at a Silver Interface. The Journal of Physical Chemistry C 2021, 125 (37) , 20592-20605. https://doi.org/10.1021/acs.jpcc.1c06036
    15. Anamika Chowdhury, Ashley Bird, Jiangjin Liu, Iryna V. Zenyuk, Ahmet Kusoglu, Clayton J. Radke, Adam Z. Weber. Linking Perfluorosulfonic Acid Ionomer Chemistry and High-Current Density Performance in Fuel-Cell Electrodes. ACS Applied Materials & Interfaces 2021, 13 (36) , 42579-42589. https://doi.org/10.1021/acsami.1c07611
    16. Seefat Farzin, Ehsan Zamani, Shudipto K. Dishari. Unraveling Depth-Specific Ionic Conduction and Stiffness Behavior across Ionomer Thin Films and Bulk Membranes. ACS Macro Letters 2021, 10 (7) , 791-798. https://doi.org/10.1021/acsmacrolett.1c00110
    17. Xiao Gao, Kentaro Yamamoto, Tomoyasu Hirai, Noboru Ohta, Tomoki Uchiyama, Toshiki Watanabe, Hideto Imai, Seiho Sugawara, Kazuhiko Shinohara, Yoshiharu Uchimoto. Impact of the Composition of Alcohol/Water Dispersion on the Proton Transport and Morphology of Cast Perfluorinated Sulfonic Acid Ionomer Thin Films. ACS Omega 2021, 6 (22) , 14130-14137. https://doi.org/10.1021/acsomega.1c00607
    18. A. Peltonen, J. Etula, J. Seitsonen, P. Engelhardt, T. Laurila. Three-Dimensional Fine Structure of Nanometer-Scale Nafion Thin Films. ACS Applied Polymer Materials 2021, 3 (2) , 1078-1086. https://doi.org/10.1021/acsapm.0c01318
    19. Fan Zhang, Tiantian Li, Wanting Chen, Xiaoming Yan, Xuemei Wu, Xiaobin Jiang, Yang Zhang, Xiaozhou Wang, Gaohong He. High-Performance Anion Exchange Membranes with Para-Type Cations on Electron-Withdrawing C═O Links Free Backbone. Macromolecules 2020, 53 (24) , 10988-10997. https://doi.org/10.1021/acs.macromol.0c01710
    20. Adlai Katzenberg, Debdyuti Mukherjee, Peter J. Dudenas, Yoshiyuki Okamoto, Ahmet Kusoglu, Miguel A. Modestino. Dynamic Emergence of Nanostructure and Transport Properties in Perfluorinated Sulfonic Acid Ionomers. Macromolecules 2020, 53 (19) , 8519-8528. https://doi.org/10.1021/acs.macromol.0c01213
    21. Haisu Kang, Sung Hyun Kwon, Robin Lawler, Ji Hye Lee, Gisu Doo, Hee-Tak Kim, Sung-Dae Yim, Seung Soon Jang, Seung Geol Lee. Nanostructures of Nafion Film at Platinum/Carbon Surface in Catalyst Layer of PEMFC: Molecular Dynamics Simulation Approach. The Journal of Physical Chemistry C 2020, 124 (39) , 21386-21395. https://doi.org/10.1021/acs.jpcc.0c03651
    22. Tamar Zelovich, Mark E. Tuckerman. Water Layering Affects Hydroxide Diffusion in Functionalized Nanoconfined Environments. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5087-5091. https://doi.org/10.1021/acs.jpclett.0c01141
    23. Zhongyang Wang, Mrinmay Mandal, Shrihari Sankarasubramanian, Garrett Huang, Paul A. Kohl, Vijay K. Ramani. Influence of Water Transport Across Microscale Bipolar Interfaces on the Performance of Direct Borohydride Fuel Cells. ACS Applied Energy Materials 2020, 3 (5) , 4449-4456. https://doi.org/10.1021/acsaem.0c00145
    24. Adlai Katzenberg, Cesar Muñoz Davila, Brian Chen, Tana Siboonruang, Miguel A. Modestino. Acid-Doped Hydrogel Electrolytes for Electrocatalyst Interfaces. ACS Applied Polymer Materials 2020, 2 (5) , 2046-2054. https://doi.org/10.1021/acsapm.0c00214
    25. Adlai Katzenberg, Anamika Chowdhury, Minfeng Fang, Adam Z. Weber, Yoshiyuki Okamoto, Ahmet Kusoglu, Miguel A. Modestino. Highly Permeable Perfluorinated Sulfonic Acid Ionomers for Improved Electrochemical Devices: Insights into Structure–Property Relationships. Journal of the American Chemical Society 2020, 142 (8) , 3742-3752. https://doi.org/10.1021/jacs.9b09170
    26. Matthias Wieland, Carsten Dingler, Rotraut Merkle, Joachim Maier, Sabine Ludwigs. Humidity-Controlled Water Uptake and Conductivities in Ion and Electron Mixed Conducting Polythiophene Films. ACS Applied Materials & Interfaces 2020, 12 (5) , 6742-6751. https://doi.org/10.1021/acsami.9b21181
    27. Seefat Farzin, Anandakumar Sarella, Michael A. Yandrasits, Shudipto K. Dishari. Fluorocarbon-Based Ionomers with Single Acid and Multiacid Side Chains at Nanothin Interfaces. The Journal of Physical Chemistry C 2019, 123 (51) , 30871-30884. https://doi.org/10.1021/acs.jpcc.9b10015
    28. Ohad Silberbush, Maor Engel, Ido Sivron, Subhasish Roy, Nurit Ashkenasy. Self-Assembled Peptide Nanotube Films with High Proton Conductivity. The Journal of Physical Chemistry B 2019, 123 (46) , 9882-9888. https://doi.org/10.1021/acs.jpcb.9b07555
    29. Kunal Karan. Interesting Facets of Surface, Interfacial, and Bulk Characteristics of Perfluorinated Ionomer Films. Langmuir 2019, 35 (42) , 13489-13520. https://doi.org/10.1021/acs.langmuir.8b03721
    30. Ziyi Han, Yuki Motoishi, Tsuyohiko Fujigaya. Alkaline Stability of Anion-Conductive Ionomer Coated on a Carbon Surface. ACS Omega 2019, 4 (17) , 17134-17139. https://doi.org/10.1021/acsomega.9b01466
    31. Zihang Su, Subarna Kole, Leigh C. Harden, Varada M. Palakkal, ChulOong Kim, Greshma Nair, Christopher G. Arges, Julie N. Renner. Peptide-Modified Electrode Surfaces for Promoting Anion Exchange Ionomer Microphase Separation and Ionic Conductivity. ACS Materials Letters 2019, 1 (4) , 467-475. https://doi.org/10.1021/acsmaterialslett.9b00173
    32. Tamar Zelovich, Leslie Vogt-Maranto, Michael A. Hickner, Stephen J. Paddison, Chulsung Bae, Dario R. Dekel, Mark E. Tuckerman. Hydroxide Ion Diffusion in Anion-Exchange Membranes at Low Hydration: Insights from Ab Initio Molecular Dynamics. Chemistry of Materials 2019, 31 (15) , 5778-5787. https://doi.org/10.1021/acs.chemmater.9b01824
    33. Tamar Zelovich, Zhuoran Long, Michael Hickner, Stephen J. Paddison, Chulsung Bae, Mark E. Tuckerman. Ab Initio Molecular Dynamics Study of Hydroxide Diffusion Mechanisms in Nanoconfined Structural Mimics of Anion Exchange Membranes. The Journal of Physical Chemistry C 2019, 123 (8) , 4638-4653. https://doi.org/10.1021/acs.jpcc.8b10298
    34. Christopher G. Arges, Le Zhang. Anion Exchange Membranes’ Evolution toward High Hydroxide Ion Conductivity and Alkaline Resiliency. ACS Applied Energy Materials 2018, 1 (7) , 2991-3012. https://doi.org/10.1021/acsaem.8b00387
    35. Soumyadipta Sengupta, Alexey V. Lyulin. Molecular Dynamics Simulations of Substrate Hydrophilicity and Confinement Effects in Capped Nafion Films. The Journal of Physical Chemistry B 2018, 122 (22) , 6107-6119. https://doi.org/10.1021/acs.jpcb.8b03257
    36. Yutaro Ono, Ryosuke Goto, Mitsuo Hara, Shusaku Nagano, Takashi Abe, Yuki Nagao. High Proton Conduction of Organized Sulfonated Polyimide Thin Films with Planar and Bent Backbones. Macromolecules 2018, 51 (9) , 3351-3359. https://doi.org/10.1021/acs.macromol.8b00301
    37. Vinayaraj Ozhukil Kollath, Ying Liang, Francis D. Mayer, Xinyou Ma, Carol Korzeniewski, Kunal Karan. Model-Based Analyses of Confined Polymer Electrolyte Nanothin Films Experimentally Probed by Polarized ATR–FTIR Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (17) , 9578-9585. https://doi.org/10.1021/acs.jpcc.8b02473
    38. Shudipto K. Dishari, Christopher A. Rumble, Mark Maroncelli, Joseph A. Dura, and Michael A. Hickner . Unraveling the Complex Hydration Behavior of Ionomers under Thin Film Confinement. The Journal of Physical Chemistry C 2018, 122 (6) , 3471-3481. https://doi.org/10.1021/acs.jpcc.7b11888
    39. Yuki Nagao . Proton-Conductivity Enhancement in Polymer Thin Films. Langmuir 2017, 33 (44) , 12547-12558. https://doi.org/10.1021/acs.langmuir.7b01484
    40. Prity Bengani-Lutz, Elisha Converse, Peggy Cebe, and Ayse Asatekin . Self-Assembling Zwitterionic Copolymers as Membrane Selective Layers with Excellent Fouling Resistance: Effect of Zwitterion Chemistry. ACS Applied Materials & Interfaces 2017, 9 (24) , 20859-20872. https://doi.org/10.1021/acsami.7b04884
    41. Douglas I. Kushner and Michael A. Hickner . Water Sorption in Electron-Beam Evaporated SiO2 on QCM Crystals and Its Influence on Polymer Thin Film Hydration Measurements. Langmuir 2017, 33 (21) , 5261-5268. https://doi.org/10.1021/acs.langmuir.7b00759
    42. Ahmet Kusoglu and Adam Z. Weber . New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chemical Reviews 2017, 117 (3) , 987-1104. https://doi.org/10.1021/acs.chemrev.6b00159
    43. G. Dorenbos . Dependence of Solvent Diffusion on Hydrophobic Block Length within Amphiphilic–Hydrophobic Block Copolymer Membranes. The Journal of Physical Chemistry B 2016, 120 (51) , 13102-13111. https://doi.org/10.1021/acs.jpcb.6b10913
    44. Bradley R. Frieberg, Kirt A. Page, Joshua R. Graybill, Marlon L. Walker, Christopher M. Stafford, Gery R. Stafford, and Christopher L. Soles . Mechanical Response of Thermally Annealed Nafion Thin Films. ACS Applied Materials & Interfaces 2016, 8 (48) , 33240-33249. https://doi.org/10.1021/acsami.6b12423
    45. Christopher G. Arges, Yu Kambe, Hyo Seon Suh, Leonidas E. Ocola, and Paul F. Nealey . Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films. Chemistry of Materials 2016, 28 (5) , 1377-1389. https://doi.org/10.1021/acs.chemmater.5b04452
    46. Yutaro Ono and Yuki Nagao . Interfacial Structure and Proton Conductivity of Nafion at the Pt-Deposited Surface. Langmuir 2016, 32 (1) , 352-358. https://doi.org/10.1021/acs.langmuir.5b02623
    47. David Novitski and Steven Holdcroft . Determination of O2 Mass Transport at the Pt | PFSA Ionomer Interface under Reduced Relative Humidity. ACS Applied Materials & Interfaces 2015, 7 (49) , 27314-27323. https://doi.org/10.1021/acsami.5b08720
    48. Hyun Ki (Key) Shim, Devproshad K. Paul, Kunal Karan. Resolving the Contradiction between Anomalously High Water Uptake and Low Conductivity of Nanothin Nafion films on SiO2 Substrate. Macromolecules 2015, 48 (22) , 8394-8397. https://doi.org/10.1021/acs.macromol.5b02093
    49. Yanglu Guo, Yutaro Ono, and Yuki Nagao . Modification for Uniform Surface of Nafion Ultrathin Film Deposited by Inkjet Printing. Langmuir 2015, 31 (37) , 10137-10144. https://doi.org/10.1021/acs.langmuir.5b02395
    50. Kirt A. Page, Jae Wook Shin, Scott A. Eastman, Brandon W. Rowe, Sangcheol Kim, Ahmet Kusoglu, Kevin G. Yager, and Gery R. Stafford . In Situ Method for Measuring the Mechanical Properties of Nafion Thin Films during Hydration Cycles. ACS Applied Materials & Interfaces 2015, 7 (32) , 17874-17883. https://doi.org/10.1021/acsami.5b04080
    51. W. Peter Kalisvaart, Helmut Fritzsche, and Walter Mérida . Water Uptake and Swelling Hysteresis in a Nafion Thin Film Measured with Neutron Reflectometry. Langmuir 2015, 31 (19) , 5416-5422. https://doi.org/10.1021/acs.langmuir.5b00764
    52. Nicole E. De Almeida, Devproshad K. Paul, Kunal Karan, and Gillian R. Goward . 1H Solid-State NMR Study of Nanothin Nafion Films. The Journal of Physical Chemistry C 2015, 119 (3) , 1280-1285. https://doi.org/10.1021/jp5086747
    53. Frances I. Allen, Luis R. Comolli, Ahmet Kusoglu, Miguel A. Modestino, Andrew M. Minor, and Adam Z. Weber . Morphology of Hydrated As-Cast Nafion Revealed through Cryo Electron Tomography. ACS Macro Letters 2015, 4 (1) , 1-5. https://doi.org/10.1021/mz500606h
    54. Daiane Damasceno Borges, Gerard Gebel, Alejandro A. Franco, Kourosh Malek, and Stefano Mossa . Morphology of Supported Polymer Electrolyte Ultrathin Films: A Numerical Study. The Journal of Physical Chemistry C 2015, 119 (2) , 1201-1216. https://doi.org/10.1021/jp507598h
    55. Eric M. Davis, Christopher M. Stafford, and Kirt A. Page . Elucidating Water Transport Mechanisms in Nafion Thin Films. ACS Macro Letters 2014, 3 (10) , 1029-1035. https://doi.org/10.1021/mz500515b
    56. Kevin B. Daly, Jay B. Benziger, Athanassios Z. Panagiotopoulos, and Pablo G. Debenedetti . Molecular Dynamics Simulations of Water Permeation across Nafion Membrane Interfaces. The Journal of Physical Chemistry B 2014, 118 (29) , 8798-8807. https://doi.org/10.1021/jp5024718
    57. Kirt A. Page, Ahmet Kusoglu, Christopher M. Stafford, Sangcheol Kim, R. Joseph Kline, and Adam Z. Weber . Confinement-Driven Increase in Ionomer Thin-Film Modulus. Nano Letters 2014, 14 (5) , 2299-2304. https://doi.org/10.1021/nl501233g
    58. Devproshad K. Paul and Kunal Karan . Conductivity and Wettability Changes of Ultrathin Nafion Films Subjected to Thermal Annealing and Liquid Water Exposure. The Journal of Physical Chemistry C 2014, 118 (4) , 1828-1835. https://doi.org/10.1021/jp410510x
    59. Yudai Ogata, Daisuke Kawaguchi, Norifumi L. Yamada, and Keiji Tanaka . Multistep Thickening of Nafion Thin Films in Water. ACS Macro Letters 2013, 2 (10) , 856-859. https://doi.org/10.1021/mz400322q
    60. Daiane Damasceno Borges, Alejandro A. Franco, Kourosh Malek, Gerard Gebel, and Stefano Mossa . Inhomogeneous Transport in Model Hydrated Polymer Electrolyte Supported Ultrathin Films. ACS Nano 2013, 7 (8) , 6767-6773. https://doi.org/10.1021/nn401624p
    61. Devproshad K. Paul, Kunal Karan, Aristides Docoslis, Javier B. Giorgi, and Joshua Pearce . Characteristics of Self-Assembled Ultrathin Nafion Films. Macromolecules 2013, 46 (9) , 3461-3475. https://doi.org/10.1021/ma4002319
    62. Hannes Liepold, Ashley Bird, Philipp A. Heizmann, Hassan Fadlullah, Hien Nguyen, Carolin Klose, Steven Holdcroft, Ahmet Kusoglu, Severin Vierrath, Andreas Münchinger. High protonic resistance of hydrocarbon-based cathodes in PEM fuel cells under low humidity conditions: Origin, implication, and mitigation. Journal of Power Sources 2024, 624 , 235537. https://doi.org/10.1016/j.jpowsour.2024.235537
    63. Ashley Bird, Matthew Lindell, Douglas I. Kushner, Andrew Haug, Michael Yandrasits, Ahmet Kusoglu. Modulating Perfluorinated Ionomer Functionality via Sidechain Chemistry. Advanced Functional Materials 2024, 34 (27) https://doi.org/10.1002/adfm.202311073
    64. Rui Cui, Zongwei Zhang, Chunyang Yu, Yongfeng Zhou. The nanostructure of ion channels of thin PFSA membrane in the catalyst layer: A molecular dynamics simulation study combined with unsupervised machine learning. Journal of Membrane Science 2024, 705 , 122904. https://doi.org/10.1016/j.memsci.2024.122904
    65. Velislava Yonkova, Nikolai Utsch, Julian Borowec, Rüdiger-A. Eichel, Florian Hausen, Fabian Scheepers, Steffen Brinckmann, Ruth Schwaiger. Comparative Analysis and Error Assessment of Nanoindentation Evaluation Techniques for NafionTM117. JOM 2024, 76 (5) , 2315-2325. https://doi.org/10.1007/s11837-024-06485-7
    66. Fengman Sun, Qian Di, Ming Chen, Haijun Liu, Haijiang Wang. Exploring local oxygen transport in low-Pt loading proton exchange membrane fuel cells: A comprehensive review. eTransportation 2024, 20 , 100327. https://doi.org/10.1016/j.etran.2024.100327
    67. Marie‐Thérèse El Kfoury, Olga V. Chub, Daria C. Boffito, Gregory S. Patience. tert ‐butanol and hydrogen peroxide react over Amberlyst‐15 to form tert ‐butyl hydroperoxide. The Canadian Journal of Chemical Engineering 2024, 102 (4) , 1583-1591. https://doi.org/10.1002/cjce.25136
    68. Miao Ma, Lixiao Shen, Zigang Zhao, Pan Guo, Jing Liu, Bin Xu, Ziyu Zhang, Yunlong Zhang, Lei Zhao, Zhenbo Wang. Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer. eScience 2024, 2 , 100254. https://doi.org/10.1016/j.esci.2024.100254
    69. Justin M. Stine, Katie L. Ruland, Luke A. Beardslee, Joshua A. Levy, Hossein Abianeh, Santiago Botasini, Pankaj J. Pasricha, Reza Ghodssi. Miniaturized Capsule System Toward Real‐Time Electrochemical Detection of H 2 S in the Gastrointestinal Tract. Advanced Healthcare Materials 2024, 13 (5) https://doi.org/10.1002/adhm.202302897
    70. Pablo A. García-Salaberri, Iryna V. Zenyuk. A General-Purpose Tool for Modeling Multifunctional Thin Porous Media (POREnet): From Pore Network To Effective Property Tensors. Heliyon 2024, , e26253. https://doi.org/10.1016/j.heliyon.2024.e26253
    71. Oghenetega Allen Obewhere, Karen Acurio-Cerda, Sourav Sutradhar, Moses Dike, Rajesh Keloth, Shudipto Konika Dishari. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chemical Communications 2024, 6 https://doi.org/10.1039/D4CC03221G
    72. Karthik Arunagiri, Andrew Jark-Wah Wong, Luis Briceno-Mena, Hania Mohamed Gaber Hassan Elsayed, José A. Romagnoli, Michael J. Janik, Christopher G. Arges. Deconvoluting charge-transfer, mass transfer, and ohmic resistances in phosphonic acid–sulfonic acid ionomer binders used in electrochemical hydrogen pumps. Energy & Environmental Science 2023, 16 (12) , 5916-5932. https://doi.org/10.1039/D3EE01776A
    73. Yu Seung Kim. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. Advanced Science 2023, 10 (34) https://doi.org/10.1002/advs.202303914
    74. Anamika Chowdhury, Clayton J. Radke, Adam Zev Weber. Relative-Humidity Dependence of Electrochemically Active Surface Area in Porous Carbon Catalyst Layers. Journal of The Electrochemical Society 2023, https://doi.org/10.1149/1945-7111/ad09fc
    75. Qingnuan Zhang, Bo Wang. Development and Challenges of Electrode Ionomers Used in the Catalyst Layer of Proton-Exchange Membrane Fuel Cells: A Review. Transactions of Tianjin University 2023, 29 (5) , 360-386. https://doi.org/10.1007/s12209-023-00371-0
    76. Yevgeniy Sgibnev, Peter Tananaev, Artem Shelaev, Georgiy Yankovskii, Alexander Baryshev. Relative Humidity Optical Sensor Based on Self-Assembled Gold Nanoparticles Covered with Nafion. Photonics 2023, 10 (9) , 975. https://doi.org/10.3390/photonics10090975
    77. Ky V. Nguyen, Jan G. Gluschke, A. Bernardus Mostert, Andrew Nelson, Gregory Burwell, Roman W. Lyttleton, Hamish Cavaye, Rebecca J.L. Welbourn, Jakob Seidl, Maxime Lagier, Marta Sanchez Miranda, James D. McGettrick, Trystan Watson, Paul Meredith, Adam P. Micolich. The Effect of Direct Electron Beam Patterning on the Water Uptake and Ionic Conductivity of Nafion Thin Films. Advanced Electronic Materials 2023, 9 (8) https://doi.org/10.1002/aelm.202300199
    78. Tamar Zelovich, Dario R. Dekel, Mark E. Tuckerman. Functional groups in anion exchange membranes: Insights from Ab initio molecular dynamics. Journal of Membrane Science 2023, 678 , 121638. https://doi.org/10.1016/j.memsci.2023.121638
    79. Fadong Chen, Siguo Chen, Aoxue Wang, Meng Wang, Lin Guo, Zidong Wei. Blocking the sulfonate group in Nafion to unlock platinum’s activity in membrane electrode assemblies. Nature Catalysis 2023, 6 (5) , 392-401. https://doi.org/10.1038/s41929-023-00949-w
    80. Yuanchao Li, Natalie Linnell Schwab, Robert M. Briber, Joseph A. Dura, Trung Van Nguyen. Modification of Nafion's nanostructure for the water management of PEM fuel cells. Journal of Polymer Science 2023, 61 (8) , 709-722. https://doi.org/10.1002/pol.20220774
    81. M. Grandi, S. Rohde, D.J. Liu, B. Gollas, V. Hacker. Recent advancements in high performance polymer electrolyte fuel cell electrode fabrication – Novel materials and manufacturing processes. Journal of Power Sources 2023, 562 , 232734. https://doi.org/10.1016/j.jpowsour.2023.232734
    82. Huiyuan Li, Jiabin You, Xiaojing Cheng, Xiaohui Yan, Shuiyun Shen, Junliang Zhang. New insight into the effect of Co2+ contamination on local oxygen transport in PEMFCs. Chemical Engineering Journal 2023, 453 , 139945. https://doi.org/10.1016/j.cej.2022.139945
    83. Shiqing Liu, Shu Yuan, Yuwei Liang, Huiyuan Li, Zhiling Xu, Qian Xu, Jiewei Yin, Shuiyun Shen, Xiaohui Yan, Junliang Zhang. Engineering the catalyst layers towards enhanced local oxygen transport of Low-Pt proton exchange membrane fuel cells: Materials, designs, and methods. International Journal of Hydrogen Energy 2023, 48 (11) , 4389-4417. https://doi.org/10.1016/j.ijhydene.2022.10.249
    84. David Vokoun, Sneha Samal, Ivo Stachiv. Impact of Initial Cyclic Loading on Mechanical Properties and Performance of Nafion. Sensors 2023, 23 (3) , 1488. https://doi.org/10.3390/s23031488
    85. Shyambo Chatterjee, Oghenetega Allen Obewhere, Ehsan Zamani, Rajesh Keloth, Seefat Farzin, Martha D. Morton, Anandakumar Sarella, Shudipto Konika Dishari. Advancing ionomer design to boost interfacial and thin-film proton conductivity via styrene-calix[4]arene-based ionomers. Cell Reports Physical Science 2023, 4 (2) , 101282. https://doi.org/10.1016/j.xcrp.2023.101282
    86. Yogesh Kumar, Vishakha Nirbhaya, Dipti Chauhan, Saurav Shankar, Ramesh Chandra, Suveen Kumar. Nanostructured zirconia embedded porous carbon based ultrasensitive electrochemical biosensor for SAA biomarker detection. Materials Chemistry and Physics 2023, 294 , 126983. https://doi.org/10.1016/j.matchemphys.2022.126983
    87. Hamish Cavaye, Rebecca J. L. Welbourn, Jan G. Gluschke, Paul Hughes, Ky V. Nguyen, Adam P. Micolich, Paul Meredith, A. Bernardus Mostert. Systematic in situ hydration neutron reflectometry study on Nafion thin films. Physical Chemistry Chemical Physics 2022, 24 (46) , 28554-28563. https://doi.org/10.1039/D2CP03067E
    88. Yuanchao Li, Trung Van Nguyen. A One-Dimensional Model of a PEM Fuel Cell with the Cathode Catalyst Layer Hydrophobically Treated for Water Management. Journal of The Electrochemical Society 2022, 169 (11) , 114505. https://doi.org/10.1149/1945-7111/ac9bdf
    89. Ji Hee Lee, Haisu Kang, Sung-Dae Yim, Young-Jun Sohn, Seung Geol Lee. Revelation of transport properties of ultra-thin ionomer films in catalyst layer of polymer electrolyte membrane fuel cells using molecular dynamics. Applied Surface Science 2022, 598 , 153815. https://doi.org/10.1016/j.apsusc.2022.153815
    90. Hong Wang, Shiyang Hua, Rui Lin, Shengchu Liu, Xin Cai, Weichen Ji, Jiayin Tian. Ionomer distribution control by self-assembled monolayers for high-power and low Pt-loaded proton exchange membrane fuel cells. Journal of Power Sources 2022, 542 , 231793. https://doi.org/10.1016/j.jpowsour.2022.231793
    91. Corey R. Randall, Steven C. DeCaluwe. Predicted Impacts of Pt and Ionomer Distributions on Low-Pt-Loaded PEMFC Performance. Journal of The Electrochemical Society 2022, 169 (9) , 094512. https://doi.org/10.1149/1945-7111/ac8cb4
    92. Xiaojing Cheng, Shuiyun Shen, Guanghua Wei, Chao Wang, Liuxuan Luo, Junliang Zhang. Perspectives on Challenges and Achievements in Local Oxygen Transport of Low Pt Proton Exchange Membrane Fuel Cells. Advanced Materials Technologies 2022, 7 (8) https://doi.org/10.1002/admt.202200228
    93. Xiaohui Yan, Zhiling Xu, Shu Yuan, Aidi Han, Yuanting Shen, Xiaojing Cheng, Yuwei Liang, Shuiyun Shen, Junliang Zhang. Structural and transport properties of ultrathin perfluorosulfonic acid ionomer film in proton exchange membrane fuel cell catalyst layer: A review. Journal of Power Sources 2022, 536 , 231523. https://doi.org/10.1016/j.jpowsour.2022.231523
    94. Xuetong Cai, Andi Hu, Fude Feng. Synthesis of a sulfonated methylene blue-backboned polymer for biodetections. Dyes and Pigments 2022, 203 , 110360. https://doi.org/10.1016/j.dyepig.2022.110360
    95. Tamar Zelovich, Cataldo Simari, Isabella Nicotera, Dario R. Dekel, Mark E. Tuckerman. The impact of carbonation on hydroxide diffusion in nano-confined anion exchange membranes. Journal of Materials Chemistry A 2022, 10 (20) , 11137-11149. https://doi.org/10.1039/D2TA00830K
    96. A.L. Rangel-Cárdenas, S.J. Picken, G.J.M. Koper. Anomalous water sorption kinetics in supported Nafion thin-films as membrane-electrode assemblies. Journal of Membrane Science 2022, 650 , 120368. https://doi.org/10.1016/j.memsci.2022.120368
    97. Seung Jae Moon, Hyo Jun Min, Chang Soo Lee, Du Ru Kang, Jong Hak Kim. Adhesive, free-standing, partially fluorinated comb copolymer electrolyte films for solid flexible supercapacitors. Chemical Engineering Journal 2022, 429 , 132240. https://doi.org/10.1016/j.cej.2021.132240
    98. Marc Secanell, Jeff Gostick, Pablo A. Garcia-Salaberri. Porous Electrode Components in Polymer Electrolyte Fuel Cells and Electrolyzers. 2022, 290-298. https://doi.org/10.1016/B978-0-12-819723-3.00113-X
    99. Ryosuke Jinnouchi, Kenji Kudo, Kensaku Kodama, Naoki Kitano, Takahisa Suzuki, Saori Minami, Kazuma Shinozaki, Naoki Hasegawa, Akihiro Shinohara. The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25301-3
    100. Ramchandra Gawas, Rui Sun, Yawei Li, Kenneth C. Neyerlin, Yossef A. Elabd, Maureen Tang, Joshua Snyder. Characterization of a Sulfonated Poly(Ionic Liquid) Block Copolymer as an Ionomer for Proton Exchange Membrane Fuel Cells using Rotating Disk Electrode. Journal of The Electrochemical Society 2021, 168 (12) , 124511. https://doi.org/10.1149/1945-7111/ac4375
    Load all citations

    Macromolecules

    Cite this: Macromolecules 2013, 46, 3, 867–873
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma301999a
    Published January 23, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    4708

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.