Rational Design of a Block Copolymer with a High Interaction Parameter
- Daniel P. Sweat
- ,
- Myungwoong Kim
- ,
- Steven R. Larson
- ,
- Jonathan W. Choi
- ,
- Youngwoo Choo
- ,
- Chinedum O. Osuji
- , and
- Padma Gopalan
Abstract

A series of poly(4-tert-butylstyrene-block-2-vinylpyridine) [P(tBuSt-b-2VP)] block copolymers (BCPs) with varying volume fractions, molecular weights, and narrow dispersities were synthesized from the commercially available monomers by sequential living anionic polymerization. The copolymers were thoroughly characterized by 1H NMR spectroscopy, size exclusion chromatography, thermal gravimetric analysis, and differential scanning calorimetry (DSC). To examine the effect of the tert-butyl group on the effective interaction parameter (χeff) relative to poly(styrene-block-2-vinylpyridine) [(P(S-b-2VP)], the self-assembly of symmetric copolymers was studied by small-angle X-ray scattering (SAXS) and transmission electron microscopy. Order-to-disorder transitions (ODTs) were identified by both DSC and SAXS on five copolymers, to define the equation χeff(T) = (67.9 ± 1.3)/T – (0.0502 ± 0.0029), which shows a higher enthalpic contribution to χeff than P(S-b-2VP) and approximately 1.5 times larger χeff. This enables a minimum full pitch of 9.6 nm for the symmetric copolymers. Asymmetric copolymers were also examined for bulk self-assembly by SAXS and TEM, exploring both P2VP and PtBuSt cylindrical phases with diameters as small as 6 nm. Feasibility of thin film assembly by thermal annealing was demonstrated for a P2VP cylinder forming BCPs to yield parallel cylinders that were seeded with Pt ions and etched to yield Pt nanowires with diameters as small as 5.8 nm.
Cited By
This article is cited by 57 publications.
- Avnish Kumar Mishra, Jaeyong Lee, Sukwon Kang, Eunseol Kim, Chungryong Choi, Jin Kon Kim. Gallol-Based Block Copolymer with a High Flory–Huggins Interaction Parameter for Next-Generation Lithography. Macromolecules 2022, 55
(24)
, 10797-10803. https://doi.org/10.1021/acs.macromol.2c01633
- Cheng-Yen Chang, Gkreti-Maria Manesi, Apostolos Avgeropoulos, Rong-Ming Ho. Superlattice Structure from Self-Assembly of High-χ Block Copolymers via Chain Interdigitation. Macromolecules 2022, 55
(9)
, 3449-3457. https://doi.org/10.1021/acs.macromol.2c00358
- Daniel F. Sunday, Jacob L. Thelen, Chun Zhou, Jiaxing Ren, Paul. F. Nealey, R. Joseph Kline. Buried Structure in Block Copolymer Films Revealed by Soft X-ray Reflectivity. ACS Nano 2021, 15
(6)
, 9577-9587. https://doi.org/10.1021/acsnano.0c09907
- James D. Willis, Tom M. Beardsley, Mark W. Matsen. Simple and Accurate Calibration of the Flory–Huggins Interaction Parameter. Macromolecules 2020, 53
(22)
, 9973-9982. https://doi.org/10.1021/acs.macromol.0c02115
- Kohei Matsunaga, Wataru Kukai, Manabu Ishizaki, Masato Kurihara, Shunsuke Yamamoto, Masaya Mitsuishi, Hiroshi Yabu, Shusaku Nagano, Jun Matsui. Formation of Perpendicularly Aligned Sub-10 nm Nanocylinders in Poly(N-dodecylacrylamide-b-ethylene glycol) Block Copolymer Films by Hierarchical Phase Separation. Macromolecules 2020, 53
(21)
, 9601-9610. https://doi.org/10.1021/acs.macromol.0c00838
- Xuemiao Li, Hai Deng. Poly(2-vinylpyridine)-b-poly(fluorinated methacrylate) Block Copolymers Forming 5 nm Domains Containing Metallocene. ACS Applied Polymer Materials 2020, 2
(8)
, 3601-3611. https://doi.org/10.1021/acsapm.0c00608
- Michael G. Karavolias, Jack B. Elder, Emily M. Ness, Mahesh K. Mahanthappa. Order-to-Disorder Transitions in Lamellar Melt Self-Assembled Core–Shell Bottlebrush Polymers. ACS Macro Letters 2019, 8
(12)
, 1617-1622. https://doi.org/10.1021/acsmacrolett.9b00782
- Duk Man Yu, Darren M. Smith, Hyeyoung Kim, Javid Rzayev, Thomas P. Russell. Two-Step Chemical Transformation of Polystyrene-block-poly(solketal acrylate) Copolymers for Increasing χ. Macromolecules 2019, 52
(17)
, 6458-6466. https://doi.org/10.1021/acs.macromol.9b01323
- Duk Man Yu, Darren M. Smith, Hyeyoung Kim, Jose Kenneth D. Mapas, Javid Rzayev, Thomas P. Russell. Morphological Evolution of Poly(solketal methacrylate)-block-polystyrene Copolymers in Thin Films. Macromolecules 2019, 52
(10)
, 3592-3600. https://doi.org/10.1021/acs.macromol.9b00488
- Chenxu Wang, Xuemiao Li, Hai Deng. Synthesis of a Fluoromethacrylate Hydroxystyrene Block Copolymer Capable of Rapidly Forming Sub-5 nm Domains at Low Temperatures. ACS Macro Letters 2019, 8
(4)
, 368-373. https://doi.org/10.1021/acsmacrolett.9b00178
- Justin G. Kennemur. Poly(vinylpyridine) Segments in Block Copolymers: Synthesis, Self-Assembly, and Versatility. Macromolecules 2019, 52
(4)
, 1354-1370. https://doi.org/10.1021/acs.macromol.8b01661
- Wenxu Zhang, Mingjun Huang, Sarah al Abdullatif, Mao Chen, Yang Shao-Horn, Jeremiah A. Johnson. Reduction of (Meth)acrylate-Based Block Copolymers Provides Access to Self-Assembled Materials with Ultrasmall Domains. Macromolecules 2018, 51
(17)
, 6757-6763. https://doi.org/10.1021/acs.macromol.8b01588
- Koei Azuma, Jian Sun, Youngwoo Choo, Yekaterina Rokhlenko, Jonathan H. Dwyer, Beau Schweitzer, Teruaki Hayakawa, Chinedum O. Osuji, Padma Gopalan. Self-Assembly of an Ultrahigh-χ Block Copolymer with Versatile Etch Selectivity. Macromolecules 2018, 51
(16)
, 6460-6467. https://doi.org/10.1021/acs.macromol.8b01409
- Qile P. Chen, Leonel Barreda, Luis E. Oquendo, Marc A. Hillmyer, Timothy P. Lodge, J. Ilja Siepmann. Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains. ACS Nano 2018, 12
(5)
, 4351-4361. https://doi.org/10.1021/acsnano.7b09122
- Duk Man Yu, Jose Kenneth D. Mapas, Hyeyoung Kim, Jaewon Choi, Alexander E. Ribbe, Javid Rzayev, and Thomas P. Russell . Evaluation of the Interaction Parameter for Poly(solketal methacrylate)-block-polystyrene Copolymers. Macromolecules 2018, 51
(3)
, 1031-1040. https://doi.org/10.1021/acs.macromol.7b02221
- Daniel F. Sunday, Michael J. Maher, Adam F. Hannon, Christopher D. Liman, Summer Tein, Gregory Blachut, Yusuke Asano, Christopher J. Ellison, C. Grant Willson, and R. Joseph Kline . Characterizing the Interface Scaling of High χ Block Copolymers near the Order–Disorder Transition. Macromolecules 2018, 51
(1)
, 173-180. https://doi.org/10.1021/acs.macromol.7b01982
- Gajin Jeong, Duk Man Yu, Jose Kenneth D. Mapas, Zhiwei Sun, Javid Rzayev, and Thomas P. Russell . Realizing 5.4 nm Full Pitch Lamellar Microdomains by a Solid-State Transformation. Macromolecules 2017, 50
(18)
, 7148-7154. https://doi.org/10.1021/acs.macromol.7b01443
- Jongheon Kwak, Avnish Kumar Mishra, Jaeyong Lee, Kyu Seong Lee, Chungryong Choi, Sandip Maiti, Mooseong Kim, and Jin Kon Kim . Fabrication of Sub-3 nm Feature Size Based on Block Copolymer Self-Assembly for Next-Generation Nanolithography. Macromolecules 2017, 50
(17)
, 6813-6818. https://doi.org/10.1021/acs.macromol.7b00945
- Kan Yue, Chang Liu, Mingjun Huang, Jiahao Huang, Zhe Zhou, Kan Wu, Hao Liu, Zhiwei Lin, An-Chang Shi, Wen-Bin Zhang, and Stephen Z. D. Cheng . Self-Assembled Structures of Giant Surfactants Exhibit a Remarkable Sensitivity on Chemical Compositions and Topologies for Tailoring Sub-10 nm Nanostructures. Macromolecules 2017, 50
(1)
, 303-314. https://doi.org/10.1021/acs.macromol.6b02446
- Daniel F. Sunday, Michael J. Maher, Summer Tein, Matthew C. Carlson, Christopher J. Ellison, C. Grant Willson, and R. Joseph Kline . Quantifying the Interface Energy of Block Copolymer Top Coats. ACS Macro Letters 2016, 5
(12)
, 1306-1311. https://doi.org/10.1021/acsmacrolett.6b00684
- Matthew C. D. Carter, James Jennings, Frank W. Speetjens, II, David M. Lynn, and Mahesh K. Mahanthappa . A Reactive Platform Approach for the Rapid Synthesis and Discovery of High χ/Low N Block Polymers. Macromolecules 2016, 49
(17)
, 6268-6276. https://doi.org/10.1021/acs.macromol.6b01268
- Catherine Kanimozhi, Myungwoong Kim, Steven R. Larson, Jonathan W. Choi, Youngwoo Choo, Daniel P. Sweat, Chinedum O. Osuji, and Padma Gopalan . Isomeric Effect Enabled Thermally Driven Self-Assembly of Hydroxystyrene-Based Block Copolymers. ACS Macro Letters 2016, 5
(7)
, 833-838. https://doi.org/10.1021/acsmacrolett.6b00376
- Daniel F. Sunday, Adam F. Hannon, Summer Tein, and R. Joseph Kline . Thermodynamic and Morphological Behavior of Block Copolymer Blends with Thermal Polymer Additives. Macromolecules 2016, 49
(13)
, 4898-4908. https://doi.org/10.1021/acs.macromol.6b00651
- Bas van Genabeek, Bas F. M. de Waal, Mark M. J. Gosens, Louis M. Pitet, Anja R. A. Palmans, and E. W. Meijer . Synthesis and Self-Assembly of Discrete Dimethylsiloxane–Lactic Acid Diblock Co-oligomers: The Dononacontamer and Its Shorter Homologues. Journal of the American Chemical Society 2016, 138
(12)
, 4210-4218. https://doi.org/10.1021/jacs.6b00629
- Hiroki Minehara, Louis M. Pitet, Sangwon Kim, R. Helen Zha, E. W. Meijer, and Craig J. Hawker . Branched Block Copolymers for Tuning of Morphology and Feature Size in Thin Film Nanolithography. Macromolecules 2016, 49
(6)
, 2318-2326. https://doi.org/10.1021/acs.macromol.5b02649
- Yingdong Luo, Damien Montarnal, Nicolas J. Treat, Phillip D. Hustad, Matthew D. Christianson, Edward J. Kramer, Glenn H. Fredrickson, and Craig J. Hawker . Enhanced Block Copolymer Phase Separation Using Click Chemistry and Ionic Junctions. ACS Macro Letters 2015, 4
(12)
, 1332-1336. https://doi.org/10.1021/acsmacrolett.5b00767
- Morgan W. Schulze, Christophe Sinturel, and Marc A. Hillmyer . Poly(cyclohexylethylene)-block-poly(ethylene oxide) Block Polymers for Metal Oxide Templating. ACS Macro Letters 2015, 4
(9)
, 1027-1032. https://doi.org/10.1021/acsmacrolett.5b00458
- Christophe Sinturel, Frank S. Bates, and Marc A. Hillmyer . High χ–Low N Block Polymers: How Far Can We Go?. ACS Macro Letters 2015, 4
(9)
, 1044-1050. https://doi.org/10.1021/acsmacrolett.5b00472
- Timothy M. Gillard, Daniel Phelan, Chris Leighton, and Frank S. Bates . Determination of the Lamellae-to-Disorder Heat of Transition in a Short Diblock Copolymer by Relaxation Calorimetry. Macromolecules 2015, 48
(13)
, 4733-4741. https://doi.org/10.1021/acs.macromol.5b00881
- Yingdong Luo, Damien Montarnal, Sangwon Kim, Weichao Shi, Katherine P. Barteau, Christian W. Pester, Phillip D. Hustad, Matthew D. Christianson, Glenn H. Fredrickson, Edward J. Kramer, and Craig J. Hawker . Poly(dimethylsiloxane-b-methyl methacrylate): A Promising Candidate for Sub-10 nm Patterning. Macromolecules 2015, 48
(11)
, 3422-3430. https://doi.org/10.1021/acs.macromol.5b00518
- Qingsong Xu, Chunyang Yu, Lingsheng Jiang, Yuling Wang, Feng Liu, Wenfeng Jiang, Yongfeng Zhou. Coacervate‐Assisted Polymerization‐Induced Self‐Assembly of Chiral Alternating Copolymers into Hierarchical Bishell Capsules with Sub‐5 nm Ultrathin Lamellae. Small Methods 2023, 3 https://doi.org/10.1002/smtd.202300136
- Polyxeni P. Angelopoulou, Ioannis Moutsios, Gkreti-Maria Manesi, Dimitri A. Ivanov, Georgios Sakellariou, Apostolos Avgeropoulos. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Progress in Polymer Science 2022, 135 , 101625. https://doi.org/10.1016/j.progpolymsci.2022.101625
- Hai Deng, Jianuo Zhou, Xuemiao Li, Zhenyu Yang. Si containing block copolymers quickly assemble into sub-6 nm domains. Polymer Chemistry 2022, 13
(43)
, 6098-6107. https://doi.org/10.1039/D1PY01526E
- Dahye Lee, Jinwoo Kim, Kang Hee Ku, Sheng Li, Jaeman J. Shin, Bumjoon J. Kim. Poly(vinylpyridine)-containing block copolymers for smart, multicompartment particles. Polymer Chemistry 2022, 13
(18)
, 2570-2588. https://doi.org/10.1039/D2PY00150K
- Jia-Ping Wu, Bao-Hui Li, Qiang Wang. Designing a New Lattice Model to Simulate Low-molecular-weight Block Copolymers for Nanolithographic Applications. Chinese Journal of Polymer Science 2022, 40
(4)
, 413-420. https://doi.org/10.1007/s10118-022-2677-5
- Alejandro Güillen Obando, Yuwei Chen, Zhe Qiang. A simple route to prepare supramolecular block copolymers using telechelic polystyrene/polydimethylsiloxane pairs. Polymer International 2022, 71
(4)
, 470-477. https://doi.org/10.1002/pi.6312
- Zhenyu Yang, Hai Deng. Synthesis of Highly Ordered Fluorinated Copolymers with One Polyhydroxystyrene Block for Subsequent Metal Incorporation. Journal of Photopolymer Science and Technology 2021, 34
(4)
, 339-343. https://doi.org/10.2494/photopolymer.34.339
- Chia-Juei Hsu, Cheng-Wei Tu, Yu-Wen Huang, Shiao-Wei Kuo, Rong-Ho Lee, Yu-Ting Liu, Han-Yu Hsueh, Junko Aimi, Chih-Feng Huang. Synthesis of poly(styrene)-b-poly(2-vinyl pyridine) four-arm star block copolymers via ATRP and their self-assembly behaviors. Polymer 2021, 213 , 123212. https://doi.org/10.1016/j.polymer.2020.123212
- Cian Cummins, Guillaume Pino, Daniele Mantione, Guillaume Fleury. Engineering block copolymer materials for patterning ultra-low dimensions. Molecular Systems Design & Engineering 2020, 5
(10)
, 1642-1657. https://doi.org/10.1039/D0ME00118J
- Satoshi Katsuhara, Hiroaki Mamiya, Takuya Yamamoto, Kenji Tajima, Takuya Isono, Toshifumi Satoh. Metallopolymer-
block
-oligosaccharide for sub-10 nm microphase separation. Polymer Chemistry 2020, 11
(17)
, 2995-3002. https://doi.org/10.1039/D0PY00271B
- M. W. Matsen. Field theoretic approach for block polymer melts: SCFT and FTS. The Journal of Chemical Physics 2020, 152
(11)
https://doi.org/10.1063/1.5145098
- Zhe Qiang, Lingqiao Li, John M. Torkelson, Muzhou Wang. Determining order-to-disorder transitions in block copolymer thin films using a self-referencing fluorescent probe. Molecular Systems Design & Engineering 2020, 5
(1)
, 330-338. https://doi.org/10.1039/C9ME00091G
- Seung Hyun Sung, William B. Farnham, Heidi E. Burch, Yefim Brun, Kai Qi, Thomas H. Epps. Directional Self‐Assembly of Fluorinated Star Block Polymer Thin Films Using Mixed Solvent Vapor Annealing. Journal of Polymer Science Part B: Polymer Physics 2019, 57
(24)
, 1663-1672. https://doi.org/10.1002/polb.24901
- Rajeev Kumar, Wei Li, Bobby G. Sumpter, Murugappan Muthukumar. Understanding the effects of dipolar interactions on the thermodynamics of diblock copolymer melts. The Journal of Chemical Physics 2019, 151
(5)
https://doi.org/10.1063/1.5114799
- Zhilong Li, Hai Deng. Synthesis of Fluorine-containing Polyacrylamide Block Copolymer and Their Application for Rapidly Formation of Sub-10 nm Microdomains. Journal of Photopolymer Science and Technology 2019, 32
(3)
, 389-393. https://doi.org/10.2494/photopolymer.32.389
- Yasunari Yoshimura, Alvin Chandra, Yuta Nabae, Teruaki Hayakawa. Chemically tailored high-
χ
block copolymers for perpendicular lamellae
via
thermal annealing. Soft Matter 2019, 15
(17)
, 3497-3506. https://doi.org/10.1039/C9SM00128J
- Xuemiao Li, Jie Li, Chenxu Wang, Yuyun Liu, Hai Deng. Fast self-assembly of polystyrene-
b
-poly(fluoro methacrylate) into sub-5 nm microdomains for nanopatterning applications. Journal of Materials Chemistry C 2019, 7
(9)
, 2535-2540. https://doi.org/10.1039/C8TC06480F
- Takuya Isono, Nao Kawakami, Kodai Watanabe, Kohei Yoshida, Issei Otsuka, Hiroaki Mamiya, Hajime Ito, Takuya Yamamoto, Kenji Tajima, Redouane Borsali, Toshifumi Satoh. Microphase separation of carbohydrate-based star-block copolymers with sub-10 nm periodicity. Polymer Chemistry 2019, 10
(9)
, 1119-1129. https://doi.org/10.1039/C8PY01745J
- Cian Cummins, Michael A. Morris. Using block copolymers as infiltration sites for development of future nanoelectronic devices: Achievements, barriers, and opportunities. Microelectronic Engineering 2018, 195 , 74-85. https://doi.org/10.1016/j.mee.2018.04.005
- Xuemiao Li, Chenxu Wang, Jianuo Zhou, Zhenyu Yang, Yan Zhang, Hai Deng. Ultra-Fast Block Copolymers for Sub-5 nm Lithographic Patterning. Journal of Photopolymer Science and Technology 2018, 31
(4)
, 483-486. https://doi.org/10.2494/photopolymer.31.483
- Xuemiao Li, Hai Deng, Yu Peng, Jianuo Zhou, , . Fast annealing DSA materials designed for sub-5 nm resolution. 2018, 59. https://doi.org/10.1117/12.2307288
- Zhiwei Sun, Wenxu Zhang, Song Hong, Zhenbin Chen, Xiaohui Liu, Shuaigang Xiao, E. Bryan Coughlin, Thomas P. Russell. Using block copolymer architecture to achieve sub-10 nm periods. Polymer 2017, 121 , 297-303. https://doi.org/10.1016/j.polymer.2017.06.007
- Ishan Prasad, Youngmi Seo, Lisa M. Hall, Gregory M. Grason. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality. Physical Review Letters 2017, 118
(24)
https://doi.org/10.1103/PhysRevLett.118.247801
- Yingdong Luo, Bongkeun Kim, Damien Montarnal, Zoltan Mester, Christian W. Pester, Alaina J. McGrath, Glake Hill, Edward J. Kramer, Glenn H. Fredrickson, Craig J. Hawker. Improved self‐assembly of poly(dimethylsiloxane‐
b
‐ethylene oxide) using a hydrogen‐bonding additive. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54
(14)
, 2200-2208. https://doi.org/10.1002/pola.28093
- Ying Jiang, Xinghua Zhang, Bing Miao, Dadong Yan, Jeff Z. Y. Chen. Microphase separation of short wormlike diblock copolymers with a finite interaction range. Soft Matter 2016, 12
(8)
, 2481-2490. https://doi.org/10.1039/C5SM02865E
- Jonathan W. Choi, Zhaodong Li, Charles T. Black, Daniel P. Sweat, Xudong Wang, Padma Gopalan. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors. Nanoscale 2016, 8
(22)
, 11595-11601. https://doi.org/10.1039/C6NR01409G
- Jeffrey N. Murphy, Kenneth D. Harris, Jillian M. Buriak, . Automated Defect and Correlation Length Analysis of Block Copolymer Thin Film Nanopatterns. PLOS ONE 2015, 10
(7)
, e0133088. https://doi.org/10.1371/journal.pone.0133088