ACS Publications. Most Trusted. Most Cited. Most Read
Heat Capacity of Silk Fibroin Based on the Vibrational Motion of Poly(amino acid)s in the Presence and Absence of Water
My Activity

Figure 1Loading Img
    Article

    Heat Capacity of Silk Fibroin Based on the Vibrational Motion of Poly(amino acid)s in the Presence and Absence of Water
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, The University of Technology, Rzeszow, 35959 Rzeszow, Poland; ATHAS-MP, 1608 Bexhill Dr., Knoxville, Tennessee 37922; and Department of Physics and Astronomy, Tufts University, STC-208, 4 Colby Street, Medford, Massachusetts 02155
    * Corresponding authors. E-mail: [email protected]; [email protected]
    †The University of Technology.
    ‡ATHAS-MP.
    §Tufts University.
    Other Access Options

    Macromolecules

    Cite this: Macromolecules 2008, 41, 13, 4786–4793
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma8003357
    Published June 11, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The heat capacities in the solid state, below the glass transition, of Bombyx mori silk fibroin with and without water have been determined based on the contribution of vibrational motions of the components: poly(amino acid)s and water. These vibrational heat capacities were constructed using the Advanced Thermal Analysis System (ATHAS) Data Bank. The heat capacities, Cp, of dry silk and silk−water were linked to their vibrational spectra based on the group and skeletal vibration contributions. For dry silk, the experimental and calculated Cp agree to better than ±3% between 200 and 435 K. The heat capacity of the solid silk−water system, below the glass transition, was estimated from a sum of linear combinations of the molar fractions of the vibrational heat capacities of dry silk and glassy water. The approach presented allows one to predict the low-temperature vibrational heat capacity for dry silk and for the silk−water system down to 0 K and, together with an extension to higher temperatures, above the glass transition. This can be used as a reference baseline for quantitative thermal analysis of this biomaterial.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 44 publications.

    1. Raj Kumar, Emmanuel Joseph, Atul Chaudhari, Anuya Nisal, Kamendra P. Sharma. Viscoelastic Liquid from Regenerated Silk Fibroin in the Silk I Conformation: A Writeable and Shapeable Material. ACS Applied Polymer Materials 2022, 4 (7) , 4699-4708. https://doi.org/10.1021/acsapm.2c00290
    2. Jian Liu, Ran Huang, Gang Li, David L. Kaplan, Zhaozhu Zheng, Xiaoqin Wang. Generation of Nano-pores in Silk Fibroin Films Using Silk Nanoparticles for Full-Thickness Wound Healing. Biomacromolecules 2021, 22 (2) , 546-556. https://doi.org/10.1021/acs.biomac.0c01411
    3. Wenwen Huang, Sreevidhya Krishnaji, Olena Rabotyagova Tokareva, David Kaplan, and Peggy Cebe . Influence of Water on Protein Transitions: Thermal Analysis. Macromolecules 2014, 47 (22) , 8098-8106. https://doi.org/10.1021/ma5016215
    4. Wenwen Huang, Sreevidhya Krishnaji, Xiao Hu, David Kaplan, and Peggy Cebe . Heat Capacity of Spider Silk-Like Block Copolymers. Macromolecules 2011, 44 (13) , 5299-5309. https://doi.org/10.1021/ma200563t
    5. Xiao Hu, Karen Shmelev, Lin Sun, Eun-Seok Gil, Sang-Hyug Park, Peggy Cebe, and David L. Kaplan . Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing. Biomacromolecules 2011, 12 (5) , 1686-1696. https://doi.org/10.1021/bm200062a
    6. Xiao Hu, Qiang Lu, Lin Sun, Peggy Cebe, Xiaoqin Wang, Xiaohui Zhang, and David L. Kaplan . Biomaterials from Ultrasonication-Induced Silk Fibroin−Hyaluronic Acid Hydrogels. Biomacromolecules 2010, 11 (11) , 3178-3188. https://doi.org/10.1021/bm1010504
    7. Lei Yu, Xiao Hu, David Kaplan, and Peggy Cebe . Dielectric Relaxation Spectroscopy of Hydrated and Dehydrated Silk Fibroin Cast from Aqueous Solution. Biomacromolecules 2010, 11 (10) , 2766-2775. https://doi.org/10.1021/bm1008316
    8. Xiao Hu, Qiang Lu, David L. Kaplan and Peggy Cebe. Microphase Separation Controlled β-Sheet Crystallization Kinetics in Fibrous Proteins. Macromolecules 2009, 42 (6) , 2079-2087. https://doi.org/10.1021/ma802481p
    9. Khemraj Deshmukh, Arindam Bit. Numerical analysis of scaffold degradation in cryogenic environment: impact of cell migration and cell apoptosis. Biomedical Physics & Engineering Express 2024, 10 (3) , 035010. https://doi.org/10.1088/2057-1976/ad30cc
    10. Khemraj Deshmukh, Saurabh Gupta, Arindam Bit. Evaluation of heat transfer in porous scaffolds under cryogenic treatment: a numerical study. Medical & Biological Engineering & Computing 2023, 61 (10) , 2543-2559. https://doi.org/10.1007/s11517-023-02844-9
    11. Marcin Skotnicki, Agata Drogoń, Janina Lulek, Marek Pyda. Physical Ageing of Amorphous Poly(lactic acid)-Indapamide System Studied by Differential Scanning Calorimetry. Pharmaceutics 2023, 15 (9) , 2341. https://doi.org/10.3390/pharmaceutics15092341
    12. Andrew Clark, Michael Rosenbaum, Yajnaseni Biswas, Ayşe Asatekin, Peggy Cebe. Heat capacity and index of refraction of polyzwitterions. Polymer 2022, 256 , 125176. https://doi.org/10.1016/j.polymer.2022.125176
    13. Marek Pyda. Heat Capacity of Polymeric Materials. 2022, 325-351. https://doi.org/10.1002/9783527828692.ch8
    14. Chunmei Li, Junqi Wu, Haoyuan Shi, Zhiyu Xia, Jugal Kishore Sahoo, Jingjie Yeo, David L. Kaplan. Fiber‐Based Biopolymer Processing as a Route toward Sustainability. Advanced Materials 2022, 34 (1) https://doi.org/10.1002/adma.202105196
    15. Anna Czerniecka-Kubicka, Grzegorz Janowski, Marek Pyda, Wiesław Frącz. Biocomposites based on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix with the hemp fibers: thermal and mechanical properties. Journal of Thermal Analysis and Calorimetry 2022, 147 (2) , 1017-1029. https://doi.org/10.1007/s10973-020-10492-6
    16. A. Czerniecka-Kubicka, G. Neilsen, M.S. Dickson, B.F. Woodfield, M. Janus-Kubiak, L. Kubisz, I. Zarzyka, W. Zielecki, M. Skotnicki, D. Hojan-Jezierska, M. Pyda. Vibrational heat capacity of silver carp collagen. International Journal of Biological Macromolecules 2020, 163 , 833-841. https://doi.org/10.1016/j.ijbiomac.2020.07.051
    17. Ye Xue, Wenbing Hu, Xiao Hu. Thermal analysis of natural fibers. 2020, 105-132. https://doi.org/10.1016/B978-0-08-100572-9.00007-0
    18. A. Czerniecka-Kubicka, W. Zielecki, W. Frącz, M. Janus-Kubiak, L. Kubisz, M. Pyda. Vibrational heat capacity of the linear 6,4-polyurethane. Thermochimica Acta 2020, 683 , 178433. https://doi.org/10.1016/j.tca.2019.178433
    19. Marek Pyda, Patrycja Zawada, Agata Drogon, Marcin Skotnicki, Peggy Cebe. Vibrational heat capacity of collagen and collagen–water. Journal of Thermal Analysis and Calorimetry 2019, 138 (5) , 3389-3401. https://doi.org/10.1007/s10973-019-08697-5
    20. Peggy Cebe, David Thomas, John Merfeld, Benjamin P. Partlow, David L. Kaplan, Rufina G. Alamo, Andreas Wurm, Evgeny Zhuravlev, Christoph Schick. Heat of fusion of polymer crystals by fast scanning calorimetry. Polymer 2017, 126 , 240-247. https://doi.org/10.1016/j.polymer.2017.08.042
    21. Peggy Cebe, Benjamin P. Partlow, David L. Kaplan, Andreas Wurm, Evgeny Zhuravlev, Christoph Schick. Silk I and Silk II studied by fast scanning calorimetry. Acta Biomaterialia 2017, 55 , 323-332. https://doi.org/10.1016/j.actbio.2017.04.001
    22. Ye Xue, Dave Jao, Wenbing Hu, Xiao Hu. Silk-silk blend materials. Journal of Thermal Analysis and Calorimetry 2017, 127 (1) , 915-921. https://doi.org/10.1007/s10973-016-5699-9
    23. A. Czerniecka-Kubicka, I. Zarzyka, M. Pyda. Advanced analysis of poly(3-hydroxybutyrate) phases based on vibrational heat capacity. Journal of Thermal Analysis and Calorimetry 2017, 127 (1) , 905-914. https://doi.org/10.1007/s10973-016-5903-y
    24. Trang Vu, Ye Xue, Trinh Vuong, Matthew Erbe, Christopher Bennet, Ben Palazzo, Lucas Popielski, Nelson Rodriguez, Xiao Hu. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials. International Journal of Molecular Sciences 2016, 17 (9) , 1497. https://doi.org/10.3390/ijms17091497
    25. Byoung Wan Lee, Junho Ryeom, Jae-Hyeon Ko, Dong Wook Kim, Chan Hum Park, Jaehoon Park, Young Ho Ko, Kwang Joo Kim. Pressure and temperature dependences of the acoustic behaviors of biocompatible silk studied by using Brillouin spectroscopy. Journal of the Korean Physical Society 2016, 69 (2) , 213-219. https://doi.org/10.3938/jkps.69.213
    26. Peggy Cebe, Benjamin P. Partlow, David L. Kaplan, Andreas Wurm, Evgeny Zhuravlev, Christoph Schick. Fast Scanning Calorimetry of Silk Fibroin Protein: Sample Mass and Specific Heat Capacity Determination. 2016, 187-203. https://doi.org/10.1007/978-3-319-31329-0_5
    27. Fang Wang, Nathan Wolf, Eva-Marie Rocks, Trinh Vuong, Xiao Hu. Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films. Journal of Thermal Analysis and Calorimetry 2015, 122 (3) , 1069-1076. https://doi.org/10.1007/s10973-015-4736-4
    28. Peggy Cebe, Benjamin P. Partlow, David L. Kaplan, Andreas Wurm, Evgeny Zhuravlev, Christoph Schick. Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochimica Acta 2015, 615 , 8-14. https://doi.org/10.1016/j.tca.2015.07.009
    29. Marek Pyda. Temperature‐Modulated Differential Scanning Calorimetry. 2014, 1-31. https://doi.org/10.1002/0471440264.pst623
    30. J. Pionteck, M. Pyda. Introduction to Thermal Properties of Polymers. 2014, 270-280. https://doi.org/10.1007/978-3-642-41542-5_52
    31. Shasha Lin, Guozhong Lu, Shanshan Liu, Shumeng Bai, Xi Liu, Qiang Lu, Baoqi Zuo, David L. Kaplan, Hesun Zhu. Nanoscale control of silks for nanofibrous scaffold formation with an improved porous structure. J. Mater. Chem. B 2014, 2 (17) , 2622-2633. https://doi.org/10.1039/C4TB00019F
    32. Peggy Cebe, Xiao Hu, David L. Kaplan, Evgeny Zhuravlev, Andreas Wurm, Daniela Arbeiter, Christoph Schick. Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01130
    33. Xiao Hu, Waseem K. Raja, Bo An, Olena Tokareva, Peggy Cebe, David L. Kaplan. Stability of Silk and Collagen Protein Materials in Space. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep03428
    34. Xiao Hu, Min D. Tang‐Schomer, Wenwen Huang, Xiao‐Xia Xia, Anthony S. Weiss, David L. Kaplan. Charge‐Tunable Autoclaved Silk‐Tropoelastin Protein Alloys That Control Neuron Cell Responses. Advanced Functional Materials 2013, 23 (31) , 3875-3884. https://doi.org/10.1002/adfm.201202685
    35. Wenwen Huang, Sreevidhya Krishnaji, David Kaplan, Peggy Cebe. Thermal analysis of spider silk inspired di-block copolymers in the glass transition region by TMDSC. Journal of Thermal Analysis and Calorimetry 2012, 109 (3) , 1193-1201. https://doi.org/10.1007/s10973-012-2283-9
    36. Wenwen Huang, Sreevidhya Krishnaji, David Kaplan, Peggy Cebe. Morphology and Crystallinity Control of Novel Spider Silk-like Block Copolymer. MRS Proceedings 2012, 1417 https://doi.org/10.1557/opl.2012.738
    37. Xiao Hu, Sang-Hyug Park, Eun Seok Gil, Xiao-Xia Xia, Anthony S. Weiss, David L. Kaplan. The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials. Biomaterials 2011, 32 (34) , 8979-8989. https://doi.org/10.1016/j.biomaterials.2011.08.037
    38. Bernhard Wunderlich. Do biopolymers behave the same as synthetic high polymers?. Journal of Thermal Analysis and Calorimetry 2011, 106 (1) , 81-84. https://doi.org/10.1007/s10973-011-1306-2
    39. Hongyan Xu, Lan Guan. Investigation on the Heat Capacity of Water in Poly(Acrylic Acid)/Water Mixtures Through Stepscan Method. Journal of Macromolecular Science, Part B 2011, 50 (5) , 956-966. https://doi.org/10.1080/00222348.2010.497102
    40. X. Hu, D.L. Kaplan. Silk Biomaterials. 2011, 207-219. https://doi.org/10.1016/B978-0-08-055294-1.00070-2
    41. Marek Pyda. Heat Capacity of Polymeric Systems. 2010, 329-354. https://doi.org/10.1039/9781847559791-00329
    42. Kun Tian, David Porter, Jinrong Yao, Zhengzhong Shao, Xin Chen. Kinetics of thermally-induced conformational transitions in soybean protein films. Polymer 2010, 51 (11) , 2410-2416. https://doi.org/10.1016/j.polymer.2010.03.032
    43. Qiang Lu, Xiao Hu, Xiaoqin Wang, Jonathan A. Kluge, Shenzhou Lu, Peggy Cebe, David L. Kaplan. Water-insoluble silk films with silk I structure. Acta Biomaterialia 2010, 6 (4) , 1380-1387. https://doi.org/10.1016/j.actbio.2009.10.041
    44. Xiao Hu, David Kaplan, Peggy Cebe. Thermal analysis of protein–metallic ion systems. Journal of Thermal Analysis and Calorimetry 2009, 96 (3) , 827-834. https://doi.org/10.1007/s10973-009-0049-9

    Macromolecules

    Cite this: Macromolecules 2008, 41, 13, 4786–4793
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma8003357
    Published June 11, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    694

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.