ACS Publications. Most Trusted. Most Cited. Most Read
Enhanced Absorption Induced by a Metallic Nanoshell
My Activity
    Letter

    Enhanced Absorption Induced by a Metallic Nanoshell
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physical Chemistry and the Lise Meitner Center for Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 Israel
    Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
    Other Access Options

    Nano Letters

    Cite this: Nano Letters 2004, 4, 1, 85–88
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl034902k
    Published December 9, 2003
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Nanoshells have been previously shown to have tunable absorption frequencies that are dependent on the ratio of their inner and outer radii. Inspired by this, we ask:  can a nanoshell increase the absorption of a small core system embedded within it? A theoretical model is constructed to answer this question. A core, composed of a “jellium” ball of the density of gold is embedded within a jellium nanoshell of nanometric diameter. The shell plasmon frequency is tuned to the core absorption line. A calculation based the time-dependent density functional theory was performed showing a 10 fold increase in core excitation yield.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 73 publications.

    1. Jie Zhang, Guohua Qi, Chen Xu, Yongdong Jin. Enzymatic Preparation of Plasmonic-Fluorescent Quantum Dot-Gold Hybrid Nanoprobes for Sensitive Detection of Glucose and Alkaline Phosphatase and Dual-Modality Cell Imaging. Analytical Chemistry 2019, 91 (21) , 14074-14079. https://doi.org/10.1021/acs.analchem.9b03818
    2. Oluwasesan Adegoke, Kenshin Takemura, Enoch Y. Park. Plasmonic Oleylamine-Capped Gold and Silver Nanoparticle-Assisted Synthesis of Luminescent Alloyed CdZnSeS Quantum Dots. ACS Omega 2018, 3 (2) , 1357-1366. https://doi.org/10.1021/acsomega.7b01724
    3. Xi-bin Xu, Zao Yi, Xi-bo Li, Yu-ying Wang, Xing Geng, Jiang-shan Luo, Bing-chi Luo, You-gen Yi, and Yong-jian Tang . Discrete Dipole Approximation Simulation of the Surface Plasmon Resonance of Core/Shell Nanostructure and the Study of Resonance Cavity Effect. The Journal of Physical Chemistry C 2012, 116 (45) , 24046-24053. https://doi.org/10.1021/jp306238x
    4. Antonio I. Fernández-Domínguez, Yu Luo, Aeneas Wiener, J. B. Pendry, and Stefan A. Maier . Theory of Three-Dimensional Nanocrescent Light Harvesters. Nano Letters 2012, 12 (11) , 5946-5953. https://doi.org/10.1021/nl303377g
    5. Yu-Chieh Lin and Jia-Jen Ho . Reactivity of C–C Scission on Ni-Based Core/Shell Bimetallic Surfaces Investigated with Quantum-Chemical Calculations. The Journal of Physical Chemistry C 2011, 115 (39) , 19231-19238. https://doi.org/10.1021/jp205592p
    6. Naomi J. Halas, Surbhi Lal, Wei-Shun Chang, Stephan Link, and Peter Nordlander . Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews 2011, 111 (6) , 3913-3961. https://doi.org/10.1021/cr200061k
    7. Kenneth Lopata and Niranjan Govind . Modeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores. Journal of Chemical Theory and Computation 2011, 7 (5) , 1344-1355. https://doi.org/10.1021/ct200137z
    8. Yumei Chen,, Fan Yang,, Yu Dai,, Weiqi Wang, and, Shengli Chen. Ni@Pt Core−Shell Nanoparticles:  Synthesis, Structural and Electrochemical Properties. The Journal of Physical Chemistry C 2008, 112 (5) , 1645-1649. https://doi.org/10.1021/jp709886y
    9. Ester Livshits and, Roi Baer. Time-Dependent Density-Functional Studies of the D2 Coulomb Explosion. The Journal of Physical Chemistry A 2006, 110 (27) , 8443-8450. https://doi.org/10.1021/jp0600460
    10. Minghai Chen and, Lian Gao. Synthesis and Characterization of Ag Nanoshells by a Facile Sacrificial Template Route through in situ Replacement Reaction. Inorganic Chemistry 2006, 45 (13) , 5145-5149. https://doi.org/10.1021/ic060539j
    11. Jin Zhang,, Michael Post,, Teodor Veres,, Zygmunt J. Jakubek,, Jingwen Guan,, Dashan Wang,, Francois Normandin,, Yves Deslandes, and, Benoit Simard. Laser-Assisted Synthesis of Superparamagnetic Fe@Au Core−Shell Nanoparticles. The Journal of Physical Chemistry B 2006, 110 (14) , 7122-7128. https://doi.org/10.1021/jp0560967
    12. Stefan Schelm and, Geoff B. Smith. Internal Electric Field Densities of Metal Nanoshells. The Journal of Physical Chemistry B 2005, 109 (5) , 1689-1694. https://doi.org/10.1021/jp0450686
    13. Yugang Sun,, Benjamin Wiley,, Zhi-Yuan Li, and, Younan Xia. Synthesis and Optical Properties of Nanorattles and Multiple-Walled Nanoshells/Nanotubes Made of Metal Alloys. Journal of the American Chemical Society 2004, 126 (30) , 9399-9406. https://doi.org/10.1021/ja048789r
    14. Maha A. Al-Kinani, Adawiya J. Haider, Sharafaldin Al-Musawi. Design and Synthesis of Nanoencapsulation with a New Formulation of Fe@Au-CS-CU-FA NPs by Pulsed Laser Ablation in Liquid (PLAL) Method in Breast Cancer Therapy: In Vitro and In Vivo. Plasmonics 2021, 16 (4) , 1107-1117. https://doi.org/10.1007/s11468-021-01371-3
    15. Maha A. Al-Kinani, Adawiya J. Haider, Sharafaldin Al-Musawi. High Uniformity Distribution of Fe@Au Preparation by a Micro-Emulsion Method. IOP Conference Series: Materials Science and Engineering 2020, 987 (1) , 012013. https://doi.org/10.1088/1757-899X/987/1/012013
    16. Fahri Alkan, Christine M. Aikens. Understanding plasmon coupling in nanoparticle dimers using molecular orbitals and configuration interaction. Physical Chemistry Chemical Physics 2019, 21 (41) , 23065-23075. https://doi.org/10.1039/C9CP03890F
    17. Muhammad Khalid, Cristian Ciracì. Numerical Analysis of Nonlocal Optical Response of Metallic Nanoshells. Photonics 2019, 6 (2) , 39. https://doi.org/10.3390/photonics6020039
    18. Deepak S. Chauhan, Mukesh K. Kumawat, Rajendra Prasad, Pradeep K. Reddy, Mukesh Dhanka, Sumit K. Mishra, Rohan Bahadur, Suditi Neekhra, Abhijit De, Rohit Srivastava. Plasmonic carbon nanohybrids for repetitive and highly localized photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces 2018, 172 , 430-439. https://doi.org/10.1016/j.colsurfb.2018.08.054
    19. Anas Lataifeh, Heinz-Bernhard Kraatz, Lyudmila V. Goncharova. Core–Shell Nanoparticles Containing Peptide Dendrimers. Journal of Inorganic and Organometallic Polymers and Materials 2018, 28 (2) , 457-462. https://doi.org/10.1007/s10904-017-0689-3
    20. Jin Zhang, Xiaoyu Zhao, Yanfei Wang, Liang Zhu, Libin Yang, Gang Li, Zuoliang Sha. Preparation and Structural Analysis of Nano-Silver Loaded Poly(styrene-co-acrylic acid) Core-Shell Nanospheres with Defined Shape and Composition. Nanomaterials 2017, 7 (9) , 234. https://doi.org/10.3390/nano7090234
    21. Miaoxin Yang, Kyle D. Gilroy, Younan Xia. A General Approach to the Synthesis of M@Au/Ag (M = Au, Pd, and Pt) Nanorattles with Ultrathin Shells Less Than 2.5 nm Thick. Particle & Particle Systems Characterization 2017, 34 (8) https://doi.org/10.1002/ppsc.201600279
    22. Ajith R, Vincent Mathew. Longitudinal Localized Surface Plasmons in Trimer Nanocylinder System. Plasmonics 2016, 11 (4) , 1049-1055. https://doi.org/10.1007/s11468-015-0141-x
    23. Majid Arvand, Naz Chaibakhsh, Samaneh Daneshvar. Amperometric Determination of Quercetin in Some Foods by Magnetic Core/Shell Fe3O4@ZnO Nanoparticles Modified Glassy Carbon Electrode. Food Analytical Methods 2015, 8 (8) , 1911-1922. https://doi.org/10.1007/s12161-014-0080-8
    24. Peng Cheng He, Xiao Bo Ji, Qing Zhang, Yi Fei Liu, Wen Cong Lu. Shape-Controlled Synthesis and Pattern Recognition of Core-Shell Co-Al Hydroxides Superstructures. Advanced Materials Research 2015, 1120-1121 , 188-192. https://doi.org/10.4028/www.scientific.net/AMR.1120-1121.188
    25. Ameneh Sazgarnia, Nadia Naghavi, Hoda Mehdizadeh, Zahra Shahamat. Investigation of thermal distribution for pulsed laser radiation in cancer treatment with nanoparticle-mediated hyperthermia. Journal of Thermal Biology 2015, 47 , 32-41. https://doi.org/10.1016/j.jtherbio.2014.10.011
    26. Daoli Zhao, Xuefei Guo, Tingting Wang, Yuchuan Zheng, Linlin Wang, Qing Yang. Synthesis and Characterization of Ag @ C Core–Shell Structures. Nano LIFE 2014, 04 (03) , 1441008. https://doi.org/10.1142/S1793984414410086
    27. Santosh K. Misra, Benjamin Kim, Huei-Huei Chang, Dipanjan Pan. Defying symmetry: a ‘flowery’ architecture with augmented surface area from gold coated polymeric ‘nanoblooms’. RSC Advances 2014, 4 (65) , 34303. https://doi.org/10.1039/C4RA05249H
    28. Christian F. A. Negre, Cristián G. Sánchez. Optical Properties of Metal Nanoclusters from an Atomistic Point of View. 2013, 105-157. https://doi.org/10.1007/978-1-4614-3643-0_4
    29. Uday K. Chettiar, Nader Engheta. Internal homogenization: Effective permittivity of a coated sphere. Optics Express 2012, 20 (21) , 22976. https://doi.org/10.1364/OE.20.022976
    30. Huimin Wu, David Wexler, Guoxiu Wang, Huakun Liu. Cocore–Ptshell nanoparticles as cathode catalyst for PEM fuel cells. Journal of Solid State Electrochemistry 2012, 16 (3) , 1105-1110. https://doi.org/10.1007/s10008-011-1486-5
    31. Daryoush Mortazavi, Abbas Z. Kouzani, Akif Kaynak, Wei Duan. DEVELOPING LSPR DESIGN GUIDELINES. Progress In Electromagnetics Research 2012, 126 , 203-235. https://doi.org/10.2528/PIER12011810
    32. David G. Tempel, Alán Aspuru-Guzik. Relaxation and dephasing in open quantum systems time-dependent density functional theory: Properties of exact functionals from an exactly-solvable model system. Chemical Physics 2011, 391 (1) , 130-142. https://doi.org/10.1016/j.chemphys.2011.03.014
    33. Lei Liu, Bin Wang, Xuewei Cao, Xiaoxuan Xu, Yufang Wang. Investigation of resonant properties of metal core–shell nanoparticles using T-matrix calculations. Journal of Quantitative Spectroscopy and Radiative Transfer 2011, 112 (17) , 2733-2740. https://doi.org/10.1016/j.jqsrt.2011.08.001
    34. Haiqing Xu, Hongjian Li, Zhimin Liu, Suxia Xie, Xin Zhou, Jinjun Wu. Adjustable plasmon resonance in the coaxial gold nanotubes. Solid State Communications 2011, 151 (10) , 759-762. https://doi.org/10.1016/j.ssc.2011.03.012
    35. Uday Chettiar, Nader Engheta. Internal Homogenization: Effective Permittivity of Multilayered Spheres. 2011, FTuG4. https://doi.org/10.1364/FIO.2011.FTuG4
    36. Yuan-Fong Chau, Han-Hsuan Yeh, Chi-Yu Liu, Din Ping Tsai. RETRACTED: The optical properties in a chain waveguide of an array of silver nanoshell with dielectric holes. Optics Communications 2010, 283 (16) , 3189-3193. https://doi.org/10.1016/j.optcom.2010.04.028
    37. Yuanpeng Wu, Tao Zhang, Zhaohui Zheng, Xiaobin Ding, Yuxing Peng. A facile approach to Fe3O4@Au nanoparticles with magnetic recyclable catalytic properties. Materials Research Bulletin 2010, 45 (4) , 513-517. https://doi.org/10.1016/j.materresbull.2009.11.012
    38. B. G. Ershov, E. V. Abkhalimov, V. V. Vysotskii, V. I. Roldughin. Preparation of PtcoreAgshell nanoparticles: Catalytic reduction of Ag+ ions by hydrogen. Colloid Journal 2010, 72 (2) , 177-182. https://doi.org/10.1134/S1061933X10020055
    39. Yuan-Fong Chau, Han-Hsuan Yeh, Chiung-Chou Liao, Hong-Fa Ho, Chi-Yu Liu, Din Ping Tsai. Controlling surface plasmon of several pair arrays of silver-shell nanocylinders. Applied Optics 2010, 49 (7) , 1163. https://doi.org/10.1364/AO.49.001163
    40. Roi Baer, Ester Livshits, Ulrike Salzner. Tuned Range-Separated Hybrids in Density Functional Theory. Annual Review of Physical Chemistry 2010, 61 (1) , 85-109. https://doi.org/10.1146/annurev.physchem.012809.103321
    41. Jaebeom Lee, Azamat Orazbayev, Alexander O. Govorov, Nicholas A. Kotov. Solvent Effect in Dynamic Superstructures from Au Nanoparticles and CdTe Nanowires: Experimental Observation and Theoretical Description. The Journal of Physical Chemistry C 2010, 114 (3) , 1404-1410. https://doi.org/10.1021/jp809780m
    42. Kimberly Frey, Juan C. Idrobo, Murilo L. Tiago, Fernando Reboredo, Serdar Öğüt. Quasiparticle gaps and exciton Coulomb energies in Si nanoshells: First-principles calculations. Physical Review B 2009, 80 (15) https://doi.org/10.1103/PhysRevB.80.153411
    43. Yongdong Jin, Xiaohu Gao. Plasmonic fluorescent quantum dots. Nature Nanotechnology 2009, 4 (9) , 571-576. https://doi.org/10.1038/nnano.2009.193
    44. Hong-xia SHEN, Jian-lin YAO, Ren-ao GU. Fabrication and characteristics of spindle Fe2O3@Au core/shell particles. Transactions of Nonferrous Metals Society of China 2009, 19 (3) , 652-656. https://doi.org/10.1016/S1003-6326(08)60328-3
    45. Shuling Xu, Sixiu Sun, Guozhu Chen, Xinyu Song. Rapid room-temperature fabrication of Cu2O–Au core–shell nanospheres. Journal of Crystal Growth 2009, 311 (9) , 2742-2745. https://doi.org/10.1016/j.jcrysgro.2009.03.003
    46. Yuan-Fong Chau, Han-Hsuan Yeh, Din Ping Tsai. Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. Physics of Plasmas 2009, 16 (2) https://doi.org/10.1063/1.3068469
    47. Yusheng Feng, David Fuentes, Andrea Hawkins, Jon Bass, Marissa Nichole Rylander, Andrew Elliott, Anil Shetty, R. Jason Stafford, J. Tinsley Oden. Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Engineering with Computers 2009, 25 (1) , 3-13. https://doi.org/10.1007/s00366-008-0109-y
    48. Peter Elliott, Filipp Furche, Kieron Burke. Excited States from Time‐Dependent Density Functional Theory. 2008, 91-165. https://doi.org/10.1002/9780470399545.ch3
    49. Christian F. A. Negre, Cristián G. Sánchez. Atomistic structure dependence of the collective excitation in metal nanoparticles. The Journal of Chemical Physics 2008, 129 (3) https://doi.org/10.1063/1.2955451
    50. Jingquan Liu, Burak Cankurtaran, Richard Wuhrer, Michael Cortie. Fabrication of double nano-cup assemblies and their anomalous plasmon absorption. 2008, 228-231. https://doi.org/10.1109/COMMAD.2008.4802133
    51. M. Quijada, A. G. Borisov, R. Díez Muiño. Time‐dependent density functional calculation of the energy loss of antiprotons colliding with metallic nanoshells. physica status solidi (a) 2008, 205 (6) , 1312-1316. https://doi.org/10.1002/pssa.200778157
    52. Jie-Yun Yan, Wei Zhang, Suqing Duan, Xian-Geng Zhao, Alexander O. Govorov. Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects. Physical Review B 2008, 77 (16) https://doi.org/10.1103/PhysRevB.77.165301
    53. Abdelilah Mejdoubi, Christian Brosseau. Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: Application to core-shell inclusions. Journal of Applied Physics 2007, 102 (9) https://doi.org/10.1063/1.2803739
    54. Daniel Neuhauser, Kenneth Lopata. Molecular nanopolaritonics: Cross manipulation of near-field plasmons and molecules. I. Theory and application to junction control. The Journal of Chemical Physics 2007, 127 (15) https://doi.org/10.1063/1.2790436
    55. Kenneth Lopata, Daniel Neuhauser, Roi Baer. Curve crossing and negative refraction in simulations of near-field coupled metallic nanoparticle arrays. The Journal of Chemical Physics 2007, 127 (15) https://doi.org/10.1063/1.2796162
    56. Roi Baer, Kenneth Lopata, Daniel Neuhauser. Properties of phase-coherent energy shuttling on the nanoscale. The Journal of Chemical Physics 2007, 126 (1) https://doi.org/10.1063/1.2390697
    57. Yanpeng Wu, Peter Nordlander. Plasmon hybridization in nanoshells with a nonconcentric core. The Journal of Chemical Physics 2006, 125 (12) https://doi.org/10.1063/1.2352750
    58. Y.-P. Zhao, S. B. Chaney, Z.-Y. Zhang. Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition. Journal of Applied Physics 2006, 100 (6) https://doi.org/10.1063/1.2349549
    59. Roi Baer, Daniel Neuhauser. Theoretical studies of molecular scale near-field electron dynamics. The Journal of Chemical Physics 2006, 125 (7) https://doi.org/10.1063/1.2335841
    60. Yuling Wang, Hongjun Chen, Shaojun Dong, Erkang Wang. Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors. The Journal of Chemical Physics 2006, 125 (4) https://doi.org/10.1063/1.2216694
    61. Zhu Jian, Zhang Caili. Influence of dielectric core and embedding medium on the local field enhancement for gold nanoshells. Journal of Applied Physics 2006, 100 (2) https://doi.org/10.1063/1.2217103
    62. Railing Chang, P. T. Leung. Nonlocal effects on optical and molecular interactions with metallic nanoshells. Physical Review B 2006, 73 (12) https://doi.org/10.1103/PhysRevB.73.125438
    63. Yair Kurzweil, Roi Baer. Quantum memory effects in the dynamics of electrons in gold clusters. Physical Review B 2006, 73 (7) https://doi.org/10.1103/PhysRevB.73.075413
    64. Daniel Neuhauser, Roi Baer. Efficient linear-response method circumventing the exchange-correlation kernel: Theory for molecular conductance under finite bias. The Journal of Chemical Physics 2005, 123 (20) https://doi.org/10.1063/1.2121607
    65. Kieron Burke, Jan Werschnik, E. K. U. Gross. Time-dependent density functional theory: Past, present, and future. The Journal of Chemical Physics 2005, 123 (6) https://doi.org/10.1063/1.1904586
    66. A. Seepujak, U. Bangert, A. Gutiérrez-Sosa, A.J. Harvey, V.D. Blank, B.A. Kulnitskiy, D.V. Batov. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system. Ultramicroscopy 2005, 104 (1) , 57-72. https://doi.org/10.1016/j.ultramic.2005.02.008
    67. Adriana P Herrera, Oscar Resto, Julio G Briano, Carlos Rinaldi. Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology 2005, 16 (7) , S618-S625. https://doi.org/10.1088/0957-4484/16/7/040
    68. Stefan Schelm, Geoff B. Smith. Evaluation of the limits of resonance tunability in metallic nanoshells with a spectral averaging method. Journal of the Optical Society of America A 2005, 22 (7) , 1288. https://doi.org/10.1364/JOSAA.22.001288
    69. Linyou Cao, Peng Diao, Lianming Tong, Tao Zhu, Zhongfan Liu. Surface‐Enhanced Raman Scattering of p ‐Aminothiophenol on a Au(core)/Cu(shell) Nanoparticle Assembly. ChemPhysChem 2005, 6 (5) , 913-918. https://doi.org/10.1002/cphc.200400254
    70. Chris Oubre, Peter Nordlander. Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method. The Journal of Physical Chemistry B 2004, 108 (46) , 17740-17747. https://doi.org/10.1021/jp0473164
    71. Roi Baer, Nidal Siam. Real-time study of the adiabatic energy loss in an atomic collision with a metal cluster. The Journal of Chemical Physics 2004, 121 (13) , 6341-6345. https://doi.org/10.1063/1.1788658
    72. Pekka Pyykkö. Theoretical Chemistry of Gold. Angewandte Chemie International Edition 2004, 43 (34) , 4412-4456. https://doi.org/10.1002/anie.200300624
    73. Pekka Pyykkö. Theoretische Chemie des Golds. Angewandte Chemie 2004, 116 (34) , 4512-4557. https://doi.org/10.1002/ange.200300624

    Nano Letters

    Cite this: Nano Letters 2004, 4, 1, 85–88
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl034902k
    Published December 9, 2003
    Copyright © 2004 American Chemical Society

    Article Views

    1000

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.