Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Graphene-Based Liquid Crystal Device

View Author Information
School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom, School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom, Graphene Industries Limited, 32 Holden Avenue, Whalley Range, Manchester M16 8TA, United Kingdom, Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, United Kingdom, and Institute for Microelectronics Technology, 142432 Chernogolovka, Russia
* Corresponding author. E-mail: [email protected]. Telephone: +44-(0)161-275-41-19 . Fax:+44-(0)161-275-40-56.
†School of Computer Science, University of Manchester.
‡School of Physics & Astronomy, University of Manchester.
§Graphene Industries Limited.
∥Centre for Mesoscience and Nanotechnology, University of Manchester.
⊥Institute for Microelectronics Technology.
Cite this: Nano Lett. 2008, 8, 6, 1704–1708
Publication Date (Web):April 30, 2008
https://doi.org/10.1021/nl080649i
Copyright © 2008 American Chemical Society

    Article Views

    21376

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Graphene is only one atom thick, optically transparent, chemically inert, and an excellent conductor. These properties seem to make this material an excellent candidate for applications in various photonic devices that require conducting but transparent thin films. In this letter, we demonstrate liquid crystal devices with electrodes made of graphene that show excellent performance with a high contrast ratio. We also discuss the advantages of graphene compared to conventionally used metal oxides in terms of low resistivity, high transparency and chemical stability.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 1368 publications.

    1. Xueyang Liu, Zengkai Huang, Hua Ma, Jingxian Wang, Shiwen Yang, Yingbin Jia, Qingquan Tang, Luoxin Wang, Hua Wang, Siwei Xiong. Thermoplastic Liquid-Crystal Polyarylate Nanofiber with an Ultrahigh Aspect Ratio. ACS Applied Nano Materials 2024, 7 (10) , 11195-11202. https://doi.org/10.1021/acsanm.4c00683
    2. Hemanth H., Sairam S. Mallajosyula. Graphene: From Solid Support for Nucleobase Assisted Self-Assemblies to Functional Material for DNA Sequencing. The Journal of Physical Chemistry C 2024, 128 (8) , 3091-3112. https://doi.org/10.1021/acs.jpcc.3c08041
    3. Likuan Ma, Quanyang Tao, Yang Chen, Zheyi Lu, Liting Liu, Zhiwei Li, Donglin Lu, Yiliu Wang, Lei Liao, Yuan Liu. Realizing On/Off Ratios over 104 for Sub-2 nm Vertical Transistors. Nano Letters 2023, 23 (17) , 8303-8309. https://doi.org/10.1021/acs.nanolett.3c02518
    4. Daeyeon Won, Junhyuk Bang, Seok Hwan Choi, Kyung Rok Pyun, Seongmin Jeong, Youngseok Lee, Seung Hwan Ko. Transparent Electronics for Wearable Electronics Application. Chemical Reviews 2023, 123 (16) , 9982-10078. https://doi.org/10.1021/acs.chemrev.3c00139
    5. Xiao Cai, Shuang Wen, Binghao Lv, Wei-Dong Dou. Vertical-Graphene-Assisted Chemical Vapor Deposition for Fast Growth of Macroscaled Graphene Grains. The Journal of Physical Chemistry C 2023, 127 (14) , 6991-6997. https://doi.org/10.1021/acs.jpcc.3c00957
    6. Uzodinma Okoroanyanwu, Ayush Bhardwaj, James J. Watkins. Large Area Millisecond Preparation of High-Quality, Few-Layer Graphene Films on Arbitrary Substrates via Xenon Flash Lamp Photothermal Pyrolysis and Their Application for High-Performance Micro-supercapacitors. ACS Applied Materials & Interfaces 2023, 15 (10) , 13495-13507. https://doi.org/10.1021/acsami.2c19894
    7. Stuart J. Goldie, Matteo T. Degiacomi, Shan Jiang, Stewart J. Clark, Valentina Erastova, Karl S. Coleman. Identification of Graphene Dispersion Agents through Molecular Fingerprints. ACS Nano 2022, 16 (10) , 16109-16117. https://doi.org/10.1021/acsnano.2c04406
    8. Jonathan Tersur Orasugh, Suprakas Sinha Ray. Graphene-Based Electrospun Fibrous Materials with Enhanced EMI Shielding: Recent Developments and Future Perspectives. ACS Omega 2022, 7 (38) , 33699-33718. https://doi.org/10.1021/acsomega.2c03579
    9. Le Gia Trung, Rajneesh Kumar Mishra, Subhangi Subedi, Avinash Kumar Rella, Vipin Kumar, Jeong Won Ryu, Hwajun Jeon, Jin Seog Gwag. Graphene Oxide Liquid Crystals Aligned in a Confined Configuration: Implications for Optical Materials. ACS Applied Nano Materials 2022, 5 (8) , 11506-11518. https://doi.org/10.1021/acsanm.2c02537
    10. Matteo Crisci, Paolo Dolcet, Jijin Yang, Marco Salerno, Péter Bélteky, Ákos Kukovecz, Francesco Lamberti, Stefano Agnoli, Silvio Osella, Silvia Gross, Teresa Gatti. Design Principles and Insights into the Liquid-Phase Exfoliation of Alpha-MoO3 for the Production of Colloidal 2D Nano-inks in Green Solvents. The Journal of Physical Chemistry C 2022, 126 (1) , 404-415. https://doi.org/10.1021/acs.jpcc.1c09221
    11. Changming Qu, Yun Xu, Yu Xiao, Shaochun Zhang, Hanyun Liu, Guofeng Song. Multifunctional Displays and Sensing Platforms for the Future: A Review on Flexible Alternating Current Electroluminescence Devices. ACS Applied Electronic Materials 2021, 3 (12) , 5188-5210. https://doi.org/10.1021/acsaelm.1c00833
    12. Zheling Li, Robert J. Young, Claudia Backes, Wen Zhao, Xun Zhang, Alexander A. Zhukov, Evan Tillotson, Aidan P. Conlan, Feng Ding, Sarah J. Haigh, Kostya S. Novoselov, Jonathan N. Coleman. Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano 2020, 14 (9) , 10976-10985. https://doi.org/10.1021/acsnano.0c03916
    13. Indu Sharma, Girija Shankar Papanai, Sharon Jyotika Paul, Bipin Kumar Gupta. Partial Pressure Assisted Growth of Single-Layer Graphene Grown by Low-Pressure Chemical Vapor Deposition: Implications for High-Performance Graphene FET Devices. ACS Omega 2020, 5 (35) , 22109-22118. https://doi.org/10.1021/acsomega.0c02132
    14. Xinzuo Huang, Fenghua Zhang, Yanju Liu, Jinsong Leng. Active and Deformable Organic Electronic Devices based on Conductive Shape Memory Polyimide. ACS Applied Materials & Interfaces 2020, 12 (20) , 23236-23243. https://doi.org/10.1021/acsami.0c04635
    15. Yian Chen, Petra Pötschke, Jürgen Pionteck, Brigitte Voit, Haisong Qi. RETRACTED: Multifunctional Cellulose/rGO/Fe3O4 Composite Aerogels for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces 2020, 12 (19) , 22088-22098. https://doi.org/10.1021/acsami.9b23052
    16. Tu Lan, Hongbo Zeng, Tian Tang. Molecular Dynamics Study on the Mechanism of Graphene Oxide to Destabilize Oil/Water Emulsion. The Journal of Physical Chemistry C 2019, 123 (37) , 22989-22999. https://doi.org/10.1021/acs.jpcc.9b05906
    17. Jayashree Swaminathan, Shayan Enayat, Ashokkumar Meiyazhagan, Francisco C. Robles Hernandez, Xiang Zhang, Robert Vajtai, Francisco M. Vargas, Pulickel M. Ajayan. Asphaltene-Derived Metal-Free Carbons for Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2019, 11 (31) , 27697-27705. https://doi.org/10.1021/acsami.9b05309
    18. Shu-Kai Hu, Fang-Yen Lo, Chih-Chen Hsieh, Ling Chao. Sensing Ability and Formation Criterion of Fluid Supported Lipid Bilayer Coated Graphene Field-Effect Transistors. ACS Sensors 2019, 4 (4) , 892-899. https://doi.org/10.1021/acssensors.8b01623
    19. Heechang Shin, Bhupendra K. Sharma, Seung Won Lee, Jae-Bok Lee, Minwoo Choi, Luhing Hu, Cheolmin Park, Jin Hwan Choi, Tae Woong Kim, Jong-Hyun Ahn. Stretchable Electroluminescent Display Enabled by Graphene-Based Hybrid Electrode. ACS Applied Materials & Interfaces 2019, 11 (15) , 14222-14228. https://doi.org/10.1021/acsami.8b22135
    20. Bi-Yun Shi, Qiao-Jun Cao, Qun Wang, Xu Han, Hai-Fei Wu, Lei-Qiang Chu, Ze-Bo Fang, Han Huang, Jian-Xin Tang, Wei-Dong Dou. Asymmetric Growth of Tetragon-Shaped Single-Crystalline Graphene Flakes on Copper Foil by Annealing Treatment under Oxygen-Free Conditions. The Journal of Physical Chemistry C 2019, 123 (4) , 2642-2650. https://doi.org/10.1021/acs.jpcc.8b11897
    21. Zheng Meng, Robert M. Stolz, Lukasz Mendecki, Katherine A. Mirica. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews 2019, 119 (1) , 478-598. https://doi.org/10.1021/acs.chemrev.8b00311
    22. Jin Hyuck Heo, Dong Hee Shin, Myung Lae Lee, Man Gu Kang, Sang Hyuk Im. Efficient Organic–Inorganic Hybrid Flexible Perovskite Solar Cells Prepared by Lamination of Polytriarylamine/CH3NH3PbI3/Anodized Ti Metal Substrate and Graphene/PDMS Transparent Electrode Substrate. ACS Applied Materials & Interfaces 2018, 10 (37) , 31413-31421. https://doi.org/10.1021/acsami.8b11411
    23. Sanjay V. Patel, Stephen T. Hobson, Sabina Cemalovic, William K. Tolley. Comparing Selectivity of Functionalized Graphenes Used for Chemiresistive Hydrocarbon Vapor Detection. ACS Applied Nano Materials 2018, 1 (8) , 4092-4100. https://doi.org/10.1021/acsanm.8b00852
    24. Suman Bera, Amit K. Guria, Saied Md Pratik, Narayan Pradhan. Thermal-Undoping-Induced 2D Sheet Exfoliations in 1D Nanomaterial. The Journal of Physical Chemistry C 2018, 122 (25) , 13731-13737. https://doi.org/10.1021/acs.jpcc.8b00463
    25. Kun Zhang, Jie Tang, Jinshi Yuan, Jing Li, Yige Sun, Yorishige Matsuba, Da-Ming Zhu, Lu-Chang Qin. Production of Few-Layer Graphene via Enhanced High-Pressure Shear Exfoliation in Liquid for Supercapacitor Applications. ACS Applied Nano Materials 2018, 1 (6) , 2877-2884. https://doi.org/10.1021/acsanm.8b00515
    26. Yingqiu Zhou, Haijie Tan, Yuewen Sheng, Ye Fan, Wenshuo Xu, Jamie H. Warner. Utilizing Interlayer Excitons in Bilayer WS2 for Increased Photovoltaic Response in Ultrathin Graphene Vertical Cross-Bar Photodetecting Tunneling Transistors. ACS Nano 2018, 12 (5) , 4669-4677. https://doi.org/10.1021/acsnano.8b01263
    27. Alaa El Din Mahmoud, Achim Stolle, Michael Stelter. Sustainable Synthesis of High-Surface-Area Graphite Oxide via Dry Ball Milling. ACS Sustainable Chemistry & Engineering 2018, 6 (5) , 6358-6369. https://doi.org/10.1021/acssuschemeng.8b00147
    28. Tao Chen, Meixiu Li, Jingquan Liu. π–π Stacking Interaction: A Nondestructive and Facile Means in Material Engineering for Bioapplications. Crystal Growth & Design 2018, 18 (5) , 2765-2783. https://doi.org/10.1021/acs.cgd.7b01503
    29. Benno M. Blaschke, Philip Böhm, Simon Drieschner, Bert Nickel, Jose A. Garrido. Lipid Monolayer Formation and Lipid Exchange Monitored by a Graphene Field-Effect Transistor. Langmuir 2018, 34 (14) , 4224-4233. https://doi.org/10.1021/acs.langmuir.8b00162
    30. Govindaraj Divyapriya, Prabhu Thangadurai, Indumathi Nambi. Green Approach To Produce a Graphene Thin Film on a Conductive LCD Matrix for the Oxidative Transformation of Ciprofloxacin. ACS Sustainable Chemistry & Engineering 2018, 6 (3) , 3453-3462. https://doi.org/10.1021/acssuschemeng.7b03687
    31. Xianwen Liang, Tao Zhao, Pengli Zhu, Yougen Hu, Rong Sun, and Ching-Ping Wong . Room-Temperature Nanowelding of a Silver Nanowire Network Triggered by Hydrogen Chloride Vapor for Flexible Transparent Conductive Films. ACS Applied Materials & Interfaces 2017, 9 (46) , 40857-40867. https://doi.org/10.1021/acsami.7b13048
    32. Limin Ma, Zhengang Lu, Jiubin Tan, Jian Liu, Xuemei Ding, Nicola Black, Tianyi Li, John Gallop, and Ling Hao . Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene. ACS Applied Materials & Interfaces 2017, 9 (39) , 34221-34229. https://doi.org/10.1021/acsami.7b09372
    33. Vaishali Arunachalam and Sukumaran Vasudevan . Probing Graphene–Surfactant Interactions in Aqueous Dispersions with Nuclear Overhauser Effect NMR Spectroscopy and Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2017, 121 (30) , 16637-16643. https://doi.org/10.1021/acs.jpcc.7b05404
    34. Elena Vishnyakova, Gaowei Chen, Bruce E. Brinson, Lawrence B. Alemany, and W. Edward Billups . Structural Studies of Hydrographenes. Accounts of Chemical Research 2017, 50 (6) , 1351-1358. https://doi.org/10.1021/acs.accounts.6b00588
    35. Jingyu Sun, Zhaolong Chen, Long Yuan, Yubin Chen, Jing Ning, Shuwei Liu, Donglin Ma, Xiuju Song, Manish K. Priydarshi, Alicja Bachmatiuk, Mark H. Rümmeli, Tianbao Ma, Linjie Zhi, Libai Huang, Yanfeng Zhang, and Zhongfan Liu . Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano 2016, 10 (12) , 11136-11144. https://doi.org/10.1021/acsnano.6b06066
    36. D. Leonardo Gonzalez Arellano, Hyunbok Lee, Ethan B. Secor, Edmund K. Burnett, Mark C. Hersam, James J. Watkins, and Alejandro L. Briseno . Graphene Ink as a Conductive Templating Interlayer for Enhanced Charge Transport of C60-Based Devices. ACS Applied Materials & Interfaces 2016, 8 (43) , 29594-29599. https://doi.org/10.1021/acsami.6b05536
    37. Huhu Cheng, Fei Zhao, Jiangli Xue, Gaoquan Shi, Lan Jiang, and Liangti Qu . One Single Graphene Oxide Film for Responsive Actuation. ACS Nano 2016, 10 (10) , 9529-9535. https://doi.org/10.1021/acsnano.6b04769
    38. Zhan Li, Yanqi Liu, Yang Zhao, Xin Zhang, Lijuan Qian, Longlong Tian, Jing Bai, Wei Qi, Huijun Yao, Bin Gao, Jie Liu, Wangsuo Wu, and Hongdeng Qiu . Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups. Analytical Chemistry 2016, 88 (20) , 10002-10010. https://doi.org/10.1021/acs.analchem.6b02175
    39. Qingqing Pang, Deyan Wang, Xiuyan Wang, Shaoguang Feng, Michael B. Clark, Jr., and Qiaowei Li . Transfer-Free Fabrication of Graphene Scaffolds on High-k Dielectrics from Metal–Organic Oligomers. ACS Applied Materials & Interfaces 2016, 8 (38) , 25469-25475. https://doi.org/10.1021/acsami.6b08358
    40. Lachlan J. Larsen, Cameron J. Shearer, Amanda V. Ellis, and Joseph G. Shapter . Optimization and Doping of Reduced Graphene Oxide–Silicon Solar Cells. The Journal of Physical Chemistry C 2016, 120 (29) , 15648-15656. https://doi.org/10.1021/acs.jpcc.5b08056
    41. Wenlong Yang, Andrea Lucotti, Matteo Tommasini, and Wesley A. Chalifoux . Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations. Journal of the American Chemical Society 2016, 138 (29) , 9137-9144. https://doi.org/10.1021/jacs.6b03014
    42. M. P. Lavin-Lopez, J. L. Valverde, L. Sanchez-Silva, and A. Romero . Solvent-Based Exfoliation via Sonication of Graphitic Materials for Graphene Manufacture. Industrial & Engineering Chemistry Research 2016, 55 (4) , 845-855. https://doi.org/10.1021/acs.iecr.5b03502
    43. Anqi Zhang and Charles M. Lieber . Nano-Bioelectronics. Chemical Reviews 2016, 116 (1) , 215-257. https://doi.org/10.1021/acs.chemrev.5b00608
    44. Youngbin Lee, Hyunmin Kim, Jinhwan Lee, Seong Hun Yu, Euyheon Hwang, Changgu Lee, Jong-Hyun Ahn, and Jeong Ho Cho . Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition Metal Dichalcogenides Correlated to Photoinduced Charge Transfer. Chemistry of Materials 2016, 28 (1) , 180-187. https://doi.org/10.1021/acs.chemmater.5b03714
    45. Srabani Kar, Y. Su, R. R. Nair, and A. K. Sood . Probing Photoexcited Carriers in a Few-Layer MoS2 Laminate by Time-Resolved Optical Pump–Terahertz Probe Spectroscopy. ACS Nano 2015, 9 (12) , 12004-12010. https://doi.org/10.1021/acsnano.5b04804
    46. Qu Chen, Ai Leen Koh, Alex W. Robertson, Kuang He, Sungwoo Lee, Euijoon Yoon, Gun-Do Lee, Robert Sinclair, and Jamie H. Warner . Rotating Anisotropic Crystalline Silicon Nanoclusters in Graphene. ACS Nano 2015, 9 (10) , 9497-9506. https://doi.org/10.1021/acsnano.5b03476
    47. Nan Gao and Xiaosheng Fang . Synthesis and Development of Graphene–Inorganic Semiconductor Nanocomposites. Chemical Reviews 2015, 115 (16) , 8294-8343. https://doi.org/10.1021/cr400607y
    48. Jiayu Wan, Feng Gu, Wenzhong Bao, Jiaqi Dai, Fei Shen, Wei Luo, Xiaogang Han, Daniel Urban, and Liangbing Hu . Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks. Nano Letters 2015, 15 (6) , 3763-3769. https://doi.org/10.1021/acs.nanolett.5b00300
    49. Seok Ki Kim, Dohyeon Yoon, Seung-Cheol Lee, and Jaehoon Kim . Mo2C/Graphene Nanocomposite As a Hydrodeoxygenation Catalyst for the Production of Diesel Range Hydrocarbons. ACS Catalysis 2015, 5 (6) , 3292-3303. https://doi.org/10.1021/acscatal.5b00335
    50. Daniel J. Preston, Daniela L. Mafra, Nenad Miljkovic, Jing Kong, and Evelyn N. Wang . Scalable Graphene Coatings for Enhanced Condensation Heat Transfer. Nano Letters 2015, 15 (5) , 2902-2909. https://doi.org/10.1021/nl504628s
    51. Andrew Harvey, Claudia Backes, Zahra Gholamvand, Damien Hanlon, David McAteer, Hannah C. Nerl, Eva McGuire, Andrés Seral-Ascaso, Quentin M. Ramasse, Niall McEvoy, Sinéad Winters, Nina C. Berner, David McCloskey, John F. Donegan, Georg S. Duesberg, Valeria Nicolosi, and Jonathan N. Coleman . Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chemistry of Materials 2015, 27 (9) , 3483-3493. https://doi.org/10.1021/acs.chemmater.5b00910
    52. Jonathan H. Beck, Robert A. Barton, Marshall P. Cox, Konstantinos Alexandrou, Nicholas Petrone, Giorgia Olivieri, Shyuan Yang, James Hone, and Ioannis Kymissis . Clean Graphene Electrodes on Organic Thin-Film Devices via Orthogonal Fluorinated Chemistry. Nano Letters 2015, 15 (4) , 2555-2561. https://doi.org/10.1021/acs.nanolett.5b00110
    53. Shuilai Qiu, Weizhao Hu, Bin Yu, Bihe Yuan, Yulu Zhu, Saihua Jiang, Bibo Wang, Lei Song, and Yuan Hu . Effect of Functionalized Graphene Oxide with Organophosphorus Oligomer on the Thermal and Mechanical Properties and Fire Safety of Polystyrene. Industrial & Engineering Chemistry Research 2015, 54 (13) , 3309-3319. https://doi.org/10.1021/ie504511f
    54. Gabin Yoon, Dong-Hwa Seo, Kyojin Ku, Jungmo Kim, Seokwoo Jeon, and Kisuk Kang . Factors Affecting the Exfoliation of Graphite Intercalation Compounds for Graphene Synthesis. Chemistry of Materials 2015, 27 (6) , 2067-2073. https://doi.org/10.1021/cm504511b
    55. David Ager, Vivek Arjunan Vasantha, Rene Crombez, and John Texter . Aqueous Graphene Dispersions–Optical Properties and Stimuli-Responsive Phase Transfer. ACS Nano 2014, 8 (11) , 11191-11205. https://doi.org/10.1021/nn502946f
    56. Amr M. Abdelkader, Cristina Vallés, Adam J. Cooper, Ian A. Kinloch, and Robert A. W. Dryfe . Alkali Reduction of Graphene Oxide in Molten Halide Salts: Production of Corrugated Graphene Derivatives for High-Performance Supercapacitors. ACS Nano 2014, 8 (11) , 11225-11233. https://doi.org/10.1021/nn505700x
    57. D. S. Eom, J. Chang, Y. -W. Song, and J. A. Lim , J. T. Han , H. Kim and K. Cho . Coffee-Ring Structure from Dried Graphene Derivative Solutions: A Facile One-Step Fabrication Route for All Graphene-Based Transistors. The Journal of Physical Chemistry C 2014, 118 (46) , 27081-27090. https://doi.org/10.1021/jp507451b
    58. Caterina Soldano, Andrea Stefani, Viviana Biondo, Laura Basiricò, Guido Turatti, Gianluca Generali, Luca Ortolani, Vittorio Morandi, Giulio Paolo Veronese, Rita Rizzoli, Raffaella Capelli, and Michele Muccini . ITO-Free Organic Light-Emitting Transistors with Graphene Gate Electrode. ACS Photonics 2014, 1 (10) , 1082-1088. https://doi.org/10.1021/ph500289s
    59. Jesús Palenzuela, Ana Viñuales, Ibon Odriozola, Germán Cabañero, Hans J. Grande, and Virginia Ruiz . Flexible Viologen Electrochromic Devices with Low Operational Voltages Using Reduced Graphene Oxide Electrodes. ACS Applied Materials & Interfaces 2014, 6 (16) , 14562-14567. https://doi.org/10.1021/am503869b
    60. Jae Hoon Park, Dong Yun Lee, Young-Hoon Kim, Jung Kyu Kim, Jung Heon Lee, Jong Hyeok Park, Tae-Woo Lee, and Jeong Ho Cho . Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly. ACS Applied Materials & Interfaces 2014, 6 (15) , 12380-12387. https://doi.org/10.1021/am502233y
    61. Jooho Lee, Yongsung Kim, Hyeon-Jin Shin, ChangSeung Lee, Dongwook Lee, Sunghee Lee, Chang-Yul Moon, Su Chan Lee, Sun Jun Kim, Jae Hoon Ji, Hyong Seo Yoon, and Seong Chan Jun . Crack-Release Transfer Method of Wafer-Scale Grown Graphene Onto Large-Area Substrates. ACS Applied Materials & Interfaces 2014, 6 (15) , 12588-12593. https://doi.org/10.1021/am502565z
    62. Adriano Ambrosi, Chun Kiang Chua, Alessandra Bonanni, and Martin Pumera . Electrochemistry of Graphene and Related Materials. Chemical Reviews 2014, 114 (14) , 7150-7188. https://doi.org/10.1021/cr500023c
    63. Nastasja Vucaj, Matthew D. J. Quinn, Curdin Baechler, Shannon M. Notley, Philip Cottis, Pejman Hojati-Talemi, Manrico V. Fabretto, Gordon G. Wallace, Peter J. Murphy, and Drew R. Evans . Vapor Phase Synthesis of Conducting Polymer Nanocomposites Incorporating 2D Nanoparticles. Chemistry of Materials 2014, 26 (14) , 4207-4213. https://doi.org/10.1021/cm5014653
    64. Zhengyu He, Kuang He, Alex W. Robertson, Angus I. Kirkland, Dongwook Kim, Jisoon Ihm, Euijoon Yoon, Gun-Do Lee, and Jamie H. Warner . Atomic Structure and Dynamics of Metal Dopant Pairs in Graphene. Nano Letters 2014, 14 (7) , 3766-3772. https://doi.org/10.1021/nl500682j
    65. F. Withers, H. Yang, L. Britnell, A. P. Rooney, E. Lewis, A. Felten, C. R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y. J. Kim, S. G. Yeates, S. J. Haigh, A. K. Geim, K. S. Novoselov, and C. Casiraghi . Heterostructures Produced from Nanosheet-Based Inks. Nano Letters 2014, 14 (7) , 3987-3992. https://doi.org/10.1021/nl501355j
    66. Nan-Nan Li, Zhen-Dong Sha, Qing-Xiang Pei, and Yong-Wei Zhang . Hydrogenated Grain Boundaries Control the Strength and Ductility of Polycrystalline Graphene. The Journal of Physical Chemistry C 2014, 118 (25) , 13769-13774. https://doi.org/10.1021/jp502084f
    67. Vikram K. Srivastava, Ronald A. Quinlan, Alexander L. Agapov, Alexander Kisliuk, Gajanan S. Bhat, and Jimmy W. Mays . High-Yield Synthesis of Mesoscopic Conductive and Dispersible Carbon Nanostructures via Ultrasonication of Commercial Precursors. Industrial & Engineering Chemistry Research 2014, 53 (23) , 9781-9791. https://doi.org/10.1021/ie501659n
    68. Haozhi Lei, Xuejiao Zhou, Haixia Wu, Yang Song, Jun Hu, Shouwu Guo, and Yi Zhang . Morphology Change and Detachment of Lipid Bilayers from the Mica Substrate Driven by Graphene Oxide Sheets. Langmuir 2014, 30 (16) , 4678-4683. https://doi.org/10.1021/la500788z
    69. Rickard Arvidsson, Duncan Kushnir, Björn A. Sandén, and Sverker Molander . Prospective Life Cycle Assessment of Graphene Production by Ultrasonication and Chemical Reduction. Environmental Science & Technology 2014, 48 (8) , 4529-4536. https://doi.org/10.1021/es405338k
    70. Dickson Joseph, Shinae Seo, Darren R. Williams, and Kurt E. Geckeler . Double-Stranded DNA-Graphene Hybrid: Preparation and Anti-Proliferative Activity. ACS Applied Materials & Interfaces 2014, 6 (5) , 3347-3356. https://doi.org/10.1021/am405378x
    71. Alison Y. W. Sham and Shannon M. Notley . Layer-by-Layer Assembly of Thin Films Containing Exfoliated Pristine Graphene Nanosheets and Polyethyleneimine. Langmuir 2014, 30 (9) , 2410-2418. https://doi.org/10.1021/la404745b
    72. Minhao Wong, Ryohei Ishige, Taiki Hoshino, Spencer Hawkins, Peng Li, Atsushi Takahara, and Hung-Jue Sue . Solution Processable Iridescent Self-Assembled Nanoplatelets with Finely Tunable Interlayer Distances Using Charge- and Sterically Stabilizing Oligomeric Polyoxyalkyleneamine Surfactants. Chemistry of Materials 2014, 26 (4) , 1528-1537. https://doi.org/10.1021/cm402991c
    73. Damien Hanlon, Claudia Backes, Thomas M. Higgins, Marguerite Hughes, Arlene O’Neill, Paul King, Niall McEvoy, Georg S. Duesberg, Beatriz Mendoza Sanchez, Henrik Pettersson, Valeria Nicolosi, and Jonathan N. Coleman . Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors. Chemistry of Materials 2014, 26 (4) , 1751-1763. https://doi.org/10.1021/cm500271u
    74. Wei-Hsiang Lin, Ting-Hui Chen, Jan-Kai Chang, Jieh-I Taur, Yuan-Yen Lo, Wei-Li Lee, Chia-Seng Chang, Wei-Bin Su, and Chih-I Wu . A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. ACS Nano 2014, 8 (2) , 1784-1791. https://doi.org/10.1021/nn406170d
    75. Tao Chen, Yuhua Xue, Ajit K. Roy, and Liming Dai . Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes. ACS Nano 2014, 8 (1) , 1039-1046. https://doi.org/10.1021/nn405939w
    76. Leonid A. Chernozatonskii, Dmitry G. Kvashnin, Olga P. Kvashnina, and Nelly A. Konstantinova . Similarity in Band Gap Behavior of Modified Graphene with Different Types of Functionalization. The Journal of Physical Chemistry C 2014, 118 (2) , 1318-1321. https://doi.org/10.1021/jp410264b
    77. Matthew D. J. Quinn, Ngoc Han Ho, and Shannon M. Notley . Aqueous Dispersions of Exfoliated Molybdenum Disulfide for Use in Visible-Light Photocatalysis. ACS Applied Materials & Interfaces 2013, 5 (23) , 12751-12756. https://doi.org/10.1021/am404161k
    78. Stephen McDonnell, Barry Brennan, Angelica Azcatl, Ning Lu, Hong Dong, Creighton Buie, Jiyoung Kim, Christopher L. Hinkle, Moon J. Kim, and Robert M. Wallace . HfO2 on MoS2 by Atomic Layer Deposition: Adsorption Mechanisms and Thickness Scalability. ACS Nano 2013, 7 (11) , 10354-10361. https://doi.org/10.1021/nn404775u
    79. Bin Shen, Wentao Zhai, Mimi Tao, Jianqiang Ling, and Wenge Zheng . Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution. ACS Applied Materials & Interfaces 2013, 5 (21) , 11383-11391. https://doi.org/10.1021/am4036527
    80. Matt W. Graham, Su-Fei Shi, Zenghui Wang, Daniel C. Ralph, Jiwoong Park, and Paul L. McEuen . Transient Absorption and Photocurrent Microscopy Show That Hot Electron Supercollisions Describe the Rate-Limiting Relaxation Step in Graphene. Nano Letters 2013, 13 (11) , 5497-5502. https://doi.org/10.1021/nl4030787
    81. Bingqian Guo, Wufeng Chen, and Lifeng Yan . Preparation of Flexible, Highly Transparent, Cross-Linked Cellulose Thin Film with High Mechanical Strength and Low Coefficient of Thermal Expansion. ACS Sustainable Chemistry & Engineering 2013, 1 (11) , 1474-1479. https://doi.org/10.1021/sc400252e
    82. Chun-Da Liao, Yi-Ying Lu, Srinivasa Reddy Tamalampudi, Hung-Chieh Cheng, and Yit-Tsong Chen . Chemical Vapor Deposition Synthesis and Raman Spectroscopic Characterization of Large-Area Graphene Sheets. The Journal of Physical Chemistry A 2013, 117 (39) , 9454-9461. https://doi.org/10.1021/jp311757r
    83. Sebastian Barwich, Umar Khan, and Jonathan N. Coleman . A Technique To Pretreat Graphite Which Allows the Rapid Dispersion of Defect-Free Graphene in Solvents at High Concentration. The Journal of Physical Chemistry C 2013, 117 (37) , 19212-19218. https://doi.org/10.1021/jp4047006
    84. Amarjeet Yadav and P. C. Mishra . Polyradicals of Polycyclic Aromatic Hydrocarbons as Finite Size Models of Graphene: Highly Open-Shell Nature, Symmetry Breaking, and Enhanced-Edge Electron Density. The Journal of Physical Chemistry A 2013, 117 (36) , 8958-8968. https://doi.org/10.1021/jp4058719
    85. Sukjoon Hong, Junyeob Yeo, Gunho Kim, Dongkyu Kim, Habeom Lee, Jinhyeong Kwon, Hyungman Lee, Phillip Lee, and Seung Hwan Ko . Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink. ACS Nano 2013, 7 (6) , 5024-5031. https://doi.org/10.1021/nn400432z
    86. Arun Kumar Singh, Muneer Ahmad, Vivek Kumar Singh, Koo Shin, Yongho Seo, and Jonghwa Eom . Tailoring the Electrical Properties of Graphene Layers by Molecular Doping. ACS Applied Materials & Interfaces 2013, 5 (11) , 5276-5281. https://doi.org/10.1021/am401119j
    87. Jiangtan Yuan, Lai-Peng Ma, Songfeng Pei, Jinhong Du, Yang Su, Wencai Ren, and Hui-Ming Cheng . Tuning the Electrical and Optical Properties of Graphene by Ozone Treatment for Patterning Monolithic Transparent Electrodes. ACS Nano 2013, 7 (5) , 4233-4241. https://doi.org/10.1021/nn400682u
    88. Lixin Xu, John-Wesley McGraw, Fan Gao, Mark Grundy, Zhibin Ye, Zhiyong Gu, and Jeffrey L. Shepherd . Production of High-Concentration Graphene Dispersions in Low-Boiling-Point Organic Solvents by Liquid-Phase Noncovalent Exfoliation of Graphite with a Hyperbranched Polyethylene and Formation of Graphene/Ethylene Copolymer Composites. The Journal of Physical Chemistry C 2013, 117 (20) , 10730-10742. https://doi.org/10.1021/jp4008009
    89. Seoung-Ki Lee, Kuldeep Rana, and Jong-Hyun Ahn . Graphene Films for Flexible Organic and Energy Storage Devices. The Journal of Physical Chemistry Letters 2013, 4 (5) , 831-841. https://doi.org/10.1021/jz400005k
    90. Xianjie Liu, Alexander Grüneis, Danny Haberer, Alexander V. Fedorov, Oleg Vilkov, Wlodek Strupinski, and Thomas Pichler . Tunable Interface Properties between Pentacene and Graphene on the SiC Substrate. The Journal of Physical Chemistry C 2013, 117 (8) , 3969-3975. https://doi.org/10.1021/jp3103518
    91. Tingting Gao, Xiaolong Wang, Bo Yu, Qiangbing Wei, Yanqiu Xia, and Feng Zhou . Noncovalent Microcontact Printing for Grafting Patterned Polymer Brushes on Graphene Films. Langmuir 2013, 29 (4) , 1054-1060. https://doi.org/10.1021/la304385r
    92. Jonathan N Coleman . Liquid Exfoliation of Defect-Free Graphene. Accounts of Chemical Research 2013, 46 (1) , 14-22. https://doi.org/10.1021/ar300009f
    93. K. F. Kelly and W. E. Billups . Synthesis of Soluble Graphite and Graphene. Accounts of Chemical Research 2013, 46 (1) , 4-13. https://doi.org/10.1021/ar300121q
    94. Alain Pénicaud and Carlos Drummond . Deconstructing Graphite: Graphenide Solutions. Accounts of Chemical Research 2013, 46 (1) , 129-137. https://doi.org/10.1021/ar300141s
    95. Toby Sainsbury, Amro Satti, Peter May, Zhiming Wang, Ignatius McGovern, Yurii K. Gun’ko, and Jonathan Coleman . Oxygen Radical Functionalization of Boron Nitride Nanosheets. Journal of the American Chemical Society 2012, 134 (45) , 18758-18771. https://doi.org/10.1021/ja3080665
    96. Iskandar N. Kholmanov, Carl W. Magnuson, Ali E. Aliev, Huifeng Li, Bin Zhang, Ji Won Suk, Li Li Zhang, Eric Peng, S. Hossein Mousavi, Alexander B. Khanikaev, Richard Piner, Gennady Shvets, and Rodney S. Ruoff . Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires. Nano Letters 2012, 12 (11) , 5679-5683. https://doi.org/10.1021/nl302870x
    97. Rafael Hernández, Jordi Riu, Johan Bobacka, Cristina Vallés, Pablo Jiménez, Ana M. Benito, Wolfgang K. Maser, and F. Xavier Rius . Reduced Graphene Oxide Films as Solid Transducers in Potentiometric All-Solid-State Ion-Selective Electrodes. The Journal of Physical Chemistry C 2012, 116 (42) , 22570-22578. https://doi.org/10.1021/jp306234u
    98. Michela Alfè, Valentina Gargiulo, Roberto Di Capua, Fabio Chiarella, Jean-Noel Rouzaud, Alessandro Vergara, and Anna Ciajolo . Wet Chemical Method for Making Graphene-like Films from Carbon Black. ACS Applied Materials & Interfaces 2012, 4 (9) , 4491-4498. https://doi.org/10.1021/am301197q
    99. Leonid A. Chernozatonskii, Dmitry G. Kvashnin, Pavel B. Sorokin, Alexander G. Kvashnin, and Jochen W. Brüning . Strong Influence of Graphane Island Configurations on the Electronic Properties of a Mixed Graphene/Graphane Superlattice. The Journal of Physical Chemistry C 2012, 116 (37) , 20035-20039. https://doi.org/10.1021/jp304596y
    100. Heesoo Park, Jin Yong Lee, and Seokmin Shin . Tuning of the Band Structures of Zigzag Graphene Nanoribbons by an Electric Field and Adsorption of Pyridine and BF3: A DFT Study. The Journal of Physical Chemistry C 2012, 116 (37) , 20054-20061. https://doi.org/10.1021/jp3046824
    Load more citations