ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers

View Author Information
Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030
Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, 70 Prospect Avenue, Princeton, New Jersey 08540
* Corresponding authors. E-mail: [email protected] (X. C.), [email protected] (Y. S.), [email protected] (N. Y.).
Cite this: Nano Lett. 2010, 10, 6, 2133–2137
Publication Date (Web):May 25, 2010
https://doi.org/10.1021/nl100812k
Copyright © 2010 American Chemical Society

    Article Views

    11658

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Energy harvesting technologies that are engineered to miniature sizes, while still increasing the power delivered to wireless electronics, (1, 2) portable devices, stretchable electronics, (3) and implantable biosensors, (4, 5) are strongly desired. Piezoelectric nanowire- and nanofiber-based generators have potential uses for powering such devices through a conversion of mechanical energy into electrical energy. (6) However, the piezoelectric voltage constant of the semiconductor piezoelectric nanowires in the recently reported piezoelectric nanogenerators (7-12) is lower than that of lead zirconate titanate (PZT) nanomaterials. Here we report a piezoelectric nanogenerator based on PZT nanofibers. The PZT nanofibers, with a diameter and length of approximately 60 nm and 500 μm, were aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate. The measured output voltage and power under periodic stress application to the soft polymer was 1.63 V and 0.03 μW, respectively.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The fabrication process figure, nanofiber alignment by controlling the electric field during the electrospinning figure, optical microscope image of PZT nanofibers aligned on the platinum electrode and output voltage during tests figures. Details about the establishment of the strain along the PZT nanofibers using mathematical and finite element method. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 771 publications.

    1. Yan-Zhang Liu, Qian Zhang, Xiao-Xiong Wang, Ye Lu, Wen-Bin Li, Qi-Yu Peng, Feng-Yuan Xu. Review of Electrospinning in the Fabrication of Nanogenerators. ACS Applied Nano Materials 2024, Article ASAP.
    2. Shivam Tiwari, Anupama Devi, Dipesh Kumar Dubey, Pralay Maiti. Induced Piezoelectricity in Cotton-Based Composites for Energy-Harvesting Applications. ACS Applied Bio Materials 2023, 6 (4) , 1536-1545. https://doi.org/10.1021/acsabm.2c01062
    3. B. S. Athira, Ashitha George, K. Vaishna Priya, U. S. Hareesh, E. Bhoje Gowd, Kuzhichalil Peethambharan Surendran, Achu Chandran. High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO3 Nanofibers for Self-Powered Vibration Sensing Applications. ACS Applied Materials & Interfaces 2022, 14 (39) , 44239-44250. https://doi.org/10.1021/acsami.2c07911
    4. Om Prakash, Shivam Tiwari, Pralay Maiti. Fluoropolymers and Their Nanohybrids As Energy Materials: Application to Fuel Cells and Energy Harvesting. ACS Omega 2022, 7 (39) , 34718-34740. https://doi.org/10.1021/acsomega.2c04774
    5. Md. Yasir Zamil, Md. Sherajul Islam, Catherine Stampfl, Jeongwon Park. Tribo-Piezoelectricity in Group III Nitride Bilayers: A Density Functional Theory Investigation. ACS Applied Materials & Interfaces 2022, 14 (18) , 20856-20865. https://doi.org/10.1021/acsami.2c00855
    6. Shivam Tiwari, Anupama Gaur, Chandan Kumar, Pralay Maiti. Ionic Liquid-Based Electrospun Polymer Nanohybrid for Energy Harvesting. ACS Applied Electronic Materials 2021, 3 (6) , 2738-2747. https://doi.org/10.1021/acsaelm.1c00307
    7. Shiyuan Liu, Deng Zou, Xinge Yu, Zuankai Wang, Zhengbao Yang. Transfer-Free PZT Thin Films for Flexible Nanogenerators Derived from a Single-Step Modified Sol–Gel Process on 2D Mica. ACS Applied Materials & Interfaces 2020, 12 (49) , 54991-54999. https://doi.org/10.1021/acsami.0c16973
    8. Krittish Roy, Srikanta Jana, Sujoy Kumar Ghosh, Biswajit Mahanty, Zinnia Mallick, Subrata Sarkar, Chittaranjan Sinha, Dipankar Mandal. Three-Dimensional MOF-Assisted Self-Polarized Ferroelectret: An Effective Autopowered Remote Healthcare Monitoring Approach. Langmuir 2020, 36 (39) , 11477-11489. https://doi.org/10.1021/acs.langmuir.0c01749
    9. Sarbaranjan Paria, Suparna Ojha, Sumanta Kumar Karan, Suman Kumar Si, Ranadip Bera, Amit Kumar Das, Anirban Maitra, Lopamudra Halder, Anurima De, Bhanu Bhusan Khatua. Approach for Enhancement in Output Performance of Randomly Oriented ZnSnO3 Nanorod-Based Piezoelectric Nanogenerator via p–n Heterojunction and Surface Passivation Layer. ACS Applied Electronic Materials 2020, 2 (8) , 2565-2578. https://doi.org/10.1021/acsaelm.0c00467
    10. Chen Zhu, Dongliang Guo, Dong Ye, Shan Jiang, YongAn Huang. Flexible PZT-Integrated, Bilateral Sensors via Transfer-Free Laser Lift-Off for Multimodal Measurements. ACS Applied Materials & Interfaces 2020, 12 (33) , 37354-37362. https://doi.org/10.1021/acsami.0c10083
    11. Ritamay Bhunia, Shashikant Gupta, Bushara Fatma, Prateek, Raju Kumar Gupta, Ashish Garg. Milli-Watt Power Harvesting from Dual Triboelectric and Piezoelectric Effects of Multifunctional Green and Robust Reduced Graphene Oxide/P(VDF-TrFE) Composite Flexible Films. ACS Applied Materials & Interfaces 2019, 11 (41) , 38177-38189. https://doi.org/10.1021/acsami.9b13360
    12. Debarun Sengupta, Yutao Pei, Ajay Giri Prakash Kottapalli. Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors. ACS Applied Materials & Interfaces 2019, 11 (38) , 35201-35211. https://doi.org/10.1021/acsami.9b11776
    13. Subash Cherumannil Karumuthil, Sreenidhi Prabha Rajeev, Soney Varghese. Poly(vinylidene fluoride-trifluoroethylene)-ZnO Nanoparticle Composites on a Flexible Poly(dimethylsiloxane) Substrate for Energy Harvesting. ACS Applied Nano Materials 2019, 2 (7) , 4350-4357. https://doi.org/10.1021/acsanm.8b02248
    14. Yasmin Mohamed Yousry, Kui Yao, Xiaoli Tan, Ayman Mahmoud Mohamed, Yumei Wang, Shuting Chen, Seeram Ramakrishna. Structure and High Performance of Lead-Free (K0.5Na0.5)NbO3 Piezoelectric Nanofibers with Surface-Induced Crystallization at Lowered Temperature. ACS Applied Materials & Interfaces 2019, 11 (26) , 23503-23511. https://doi.org/10.1021/acsami.9b05898
    15. Ning Li, Zhiran Yi, Ye Ma, Feng Xie, Yue Huang, Yingwei Tian, Xiaoxue Dong, Yang Liu, Xin Shao, Yang Li, Lei Jin, Jingquan Liu, Zhiyun Xu, Bin Yang, Hao Zhang. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat. ACS Nano 2019, 13 (3) , 2822-2830. https://doi.org/10.1021/acsnano.8b08567
    16. Horim Lee, Hoyeon Kim, Dong Young Kim, Yongsok Seo. Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers. ACS Omega 2019, 4 (2) , 2610-2617. https://doi.org/10.1021/acsomega.8b03325
    17. Rajagopalan Pandey, Nirmal Prasanth Maria Joseph Raj, Vipul Singh, Palani Iyamperumal Anand, Sang-Jae Kim. Novel Interfacial Bulk Heterojunction Technique for Enhanced Response in ZnO Nanogenerator. ACS Applied Materials & Interfaces 2019, 11 (6) , 6078-6088. https://doi.org/10.1021/acsami.8b19321
    18. Sarah Guerin, Syed A. M. Tofail, Damien Thompson. Longitudinal Piezoelectricity in Orthorhombic Amino Acid Crystal Films. Crystal Growth & Design 2018, 18 (9) , 4844-4848. https://doi.org/10.1021/acs.cgd.8b00835
    19. Ju-Hyuck Lee, Kwang Heo, Konstantin Schulz-Schönhagen, Ju Hun Lee, Malav S. Desai, Hyo-Eon Jin, Seung-Wuk Lee. Diphenylalanine Peptide Nanotube Energy Harvesters. ACS Nano 2018, 12 (8) , 8138-8144. https://doi.org/10.1021/acsnano.8b03118
    20. Xing Zhang, Jingfan Chen, Ya Wang. Hierarchical PbZrxTi1–xO3 Nanowires for Vibrational Energy Harvesting. ACS Applied Nano Materials 2018, 1 (4) , 1461-1466. https://doi.org/10.1021/acsanm.7b00317
    21. Hyun-Cheol Song, Deepam Maurya, Mohan Sanghadasa, William T. Reynolds, Jr., and Shashank Priya . Interface Controlled Growth of Single-Crystalline PbTiO3 Nanostructured Arrays. The Journal of Physical Chemistry C 2017, 121 (48) , 27191-27198. https://doi.org/10.1021/acs.jpcc.7b09369
    22. Yaqing Liu, Ke He, Geng Chen, Wan Ru Leow, and Xiaodong Chen . Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews 2017, 117 (20) , 12893-12941. https://doi.org/10.1021/acs.chemrev.7b00291
    23. Kammari Suresh Chary, Himanshu Sekhar Panda, and Chadalapaka Durga Prasad . Fabrication of Large Aspect Ratio Ba0.85Ca0.15Zr0.1Ti0.9O3 Superfine Fibers-Based Flexible Nanogenerator Device: Synergistic Effect on Curie Temperature, Harvested Voltage, and Power. Industrial & Engineering Chemistry Research 2017, 56 (37) , 10335-10342. https://doi.org/10.1021/acs.iecr.7b02182
    24. Quan-Liang Zhao, Guang-Ping He, Jie-Jian Di, Wei-Li Song, Zhi-Ling Hou, Pei-Pei Tan, Da-Wei Wang, and Mao-Sheng Cao . Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires. ACS Applied Materials & Interfaces 2017, 9 (29) , 24696-24703. https://doi.org/10.1021/acsami.7b03929
    25. Enlong Yang, Zhe Xu, Lucas K. Chur, Ali Behroozfar, Mahmoud Baniasadi, Salvador Moreno, Jiacheng Huang, Jules Gilligan, and Majid Minary-Jolandan . Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer. ACS Applied Materials & Interfaces 2017, 9 (28) , 24220-24229. https://doi.org/10.1021/acsami.7b06032
    26. Runjiang Guo, Yiping Guo, Huanan Duan, Hua Li, and Hezhou Liu . Synthesis of Orthorhombic Perovskite-Type ZnSnO3 Single-Crystal Nanoplates and Their Application in Energy Harvesting. ACS Applied Materials & Interfaces 2017, 9 (9) , 8271-8279. https://doi.org/10.1021/acsami.6b16629
    27. Qijun Sun, Dong Hae Ho, Yongsuk Choi, Caofeng Pan, Do Hwan Kim, Zhong Lin Wang, and Jeong Ho Cho . Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli. ACS Nano 2016, 10 (12) , 11037-11043. https://doi.org/10.1021/acsnano.6b05895
    28. Hulin Zhang, Jie Wang, Yuhang Xie, Guang Yao, Zhuocheng Yan, Long Huang, Sihong Chen, Taisong Pan, Liping Wang, Yuanjie Su, Weiqing Yang, and Yuan Lin . Self-Powered, Wireless, Remote Meteorologic Monitoring Based on Triboelectric Nanogenerator Operated by Scavenging Wind Energy. ACS Applied Materials & Interfaces 2016, 8 (48) , 32649-32654. https://doi.org/10.1021/acsami.6b12798
    29. Yan Li, Binrui Cao, Mingying Yang, Ye Zhu, Junghae Suh, and Chuanbin Mao . Identification of Novel Short BaTiO3-Binding/Nucleating Peptides for Phage-Templated in Situ Synthesis of BaTiO3 Polycrystalline Nanowires at Room Temperature. ACS Applied Materials & Interfaces 2016, 8 (45) , 30714-30721. https://doi.org/10.1021/acsami.6b09708
    30. Xiaohu Ren, Huiqing Fan, Yuwei Zhao, and Zhiyong Liu . Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester. ACS Applied Materials & Interfaces 2016, 8 (39) , 26190-26197. https://doi.org/10.1021/acsami.6b04497
    31. Xu-Zhou Jiang, Yi-Jing Sun, Zhiyong Fan, and Tong-Yi Zhang . Integrated Flexible, Waterproof, Transparent, and Self-Powered Tactile Sensing Panel. ACS Nano 2016, 10 (8) , 7696-7704. https://doi.org/10.1021/acsnano.6b03042
    32. Qiang Zheng, Hao Zhang, Bojing Shi, Xiang Xue, Zhuo Liu, Yiming Jin, Ye Ma, Yang Zou, Xinxin Wang, Zhao An, Wei Tang, Wei Zhang, Fan Yang, Yang Liu, Xilong Lang, Zhiyun Xu, Zhou Li, and Zhong Lin Wang . In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. ACS Nano 2016, 10 (7) , 6510-6518. https://doi.org/10.1021/acsnano.6b02693
    33. Gerard Cadafalch Gazquez, Sidong Lei, Antony George, Hemtej Gullapalli, Bernard A. Boukamp, Pulickel M. Ajayan, and Johan E. ten Elshof . Low-Cost, Large-Area, Facile, and Rapid Fabrication of Aligned ZnO Nanowire Device Arrays. ACS Applied Materials & Interfaces 2016, 8 (21) , 13466-13471. https://doi.org/10.1021/acsami.6b01594
    34. Manoj Kumar Gupta, Sang-Woo Kim, and Binay Kumar . Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester. ACS Applied Materials & Interfaces 2016, 8 (3) , 1766-1773. https://doi.org/10.1021/acsami.5b09485
    35. Yang Zhang, Caihong Liu, Jingbin Liu, Jie Xiong, Jingyu Liu, Ke Zhang, Yudong Liu, Mingzeng Peng, Aifang Yu, Aihua Zhang, Yan Zhang, Zhiwei Wang, Junyi Zhai, and Zhong Lin Wang . Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. ACS Applied Materials & Interfaces 2016, 8 (2) , 1381-1387. https://doi.org/10.1021/acsami.5b10345
    36. Hulin Zhang, Shangjie Zhang, Guang Yao, Zhenlong Huang, Yuhang Xie, Yuanjie Su, Weiqing Yang, Chunhua Zheng, and Yuan Lin . Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection. ACS Applied Materials & Interfaces 2015, 7 (51) , 28142-28147. https://doi.org/10.1021/acsami.5b10923
    37. Bhaskar Dudem, Yeong Hwan Ko, Jung Woo Leem, Soo Hyun Lee, and Jae Su Yu . Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template. ACS Applied Materials & Interfaces 2015, 7 (37) , 20520-20529. https://doi.org/10.1021/acsami.5b05842
    38. J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman . Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices. ACS Applied Materials & Interfaces 2015, 7 (24) , 13350-13359. https://doi.org/10.1021/acsami.5b01781
    39. Sung-Ho Shin, Yang Hyeog Kwon, Young-Hwan Kim, Joo-Yun Jung, Min Hyung Lee, and Junghyo Nah . Triboelectric Charging Sequence Induced by Surface Functionalization as a Method To Fabricate High Performance Triboelectric Generators. ACS Nano 2015, 9 (4) , 4621-4627. https://doi.org/10.1021/acsnano.5b01340
    40. Jiagang Wu, Dingquan Xiao, and Jianguo Zhu . Potassium–Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chemical Reviews 2015, 115 (7) , 2559-2595. https://doi.org/10.1021/cr5006809
    41. Zhao Wang, Youdong Zhang, Shulin Yang, Yongming Hu, Shengfu Wang, Haoshuang Gu, Yu Wang, H. L. W. Chan, and John Wang . (K,Na)NbO3 Nanofiber-based Self-Powered Sensors for Accurate Detection of Dynamic Strain. ACS Applied Materials & Interfaces 2015, 7 (8) , 4921-4927. https://doi.org/10.1021/am5090012
    42. Guanlin Liu, Qiang Leng, Jiawei Lian, Hengyu Guo, Xi Yi, and Chenguo Hu . Notepad-like Triboelectric Generator for Efficiently Harvesting Low-Velocity Motion Energy by Interconversion between Kinetic Energy and Elastic Potential Energy. ACS Applied Materials & Interfaces 2015, 7 (2) , 1275-1283. https://doi.org/10.1021/am507477y
    43. Mianli Huang, Sunxian Weng, Bo Wang, Jun Hu, Xianzhi Fu, and Ping Liu . Various Facet Tunable ZnO Crystals by a Scalable Solvothermal Synthesis and Their Facet-Dependent Photocatalytic Activities. The Journal of Physical Chemistry C 2014, 118 (44) , 25434-25440. https://doi.org/10.1021/jp5072567
    44. Sung-Ho Shin, Young-Hwan Kim, Min Hyung Lee, Joo-Yun Jung, Jae Hun Seol, and Junghyo Nah . Lithium-Doped Zinc Oxide Nanowires–Polymer Composite for High Performance Flexible Piezoelectric Nanogenerator. ACS Nano 2014, 8 (10) , 10844-10850. https://doi.org/10.1021/nn5046568
    45. Shan Jiang, Zhaohui Ren, Simin Yin, Siyu Gong, Yifeng Yu, Xiang Li, Xiao Wei, Gang Xu, Ge Shen, and Gaorong Han . Growth and Bending-Sensitive Photoluminescence of a Flexible PbTiO3/ZnO Nanocomposite. ACS Applied Materials & Interfaces 2014, 6 (14) , 10935-10940. https://doi.org/10.1021/am5009024
    46. Christian Reitz, Philipp M. Leufke, Horst Hahn, and Torsten Brezesinski . Ordered Mesoporous Thin Film Ferroelectrics of Biaxially Textured Lead Zirconate Titanate (PZT) by Chemical Solution Deposition. Chemistry of Materials 2014, 26 (6) , 2195-2202. https://doi.org/10.1021/cm500381g
    47. Sung-Ho Shin, Young-Hwan Kim, Min Hyung Lee, Joo-Yun Jung, and Junghyo Nah . Hemispherically Aggregated BaTiO3 Nanoparticle Composite Thin Film for High-Performance Flexible Piezoelectric Nanogenerator. ACS Nano 2014, 8 (3) , 2766-2773. https://doi.org/10.1021/nn406481k
    48. Long Lin, Sihong Wang, Simiao Niu, Chang Liu, Yannan Xie, and Zhong Lin Wang . Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor. ACS Applied Materials & Interfaces 2014, 6 (4) , 3031-3038. https://doi.org/10.1021/am405637s
    49. Gang Cheng, Zong-Hong Lin, Zu-liang Du, and Zhong Lin Wang . Simultaneously Harvesting Electrostatic and Mechanical Energies from Flowing Water by a Hybridized Triboelectric Nanogenerator. ACS Nano 2014, 8 (2) , 1932-1939. https://doi.org/10.1021/nn406565k
    50. Kellye Cung, Booyeon J. Han, Thanh D. Nguyen, Sheng Mao, Yao-Wen Yeh, Shiyou Xu, Rajesh R. Naik, Gerald Poirier, Nan Yao, Prashant K. Purohit, and Michael C. McAlpine . Biotemplated Synthesis of PZT Nanowires. Nano Letters 2013, 13 (12) , 6197-6202. https://doi.org/10.1021/nl4035708
    51. Mengdi Han, Xiao-Sheng Zhang, Bo Meng, Wen Liu, Wei Tang, Xuming Sun, Wei Wang, and Haixia Zhang . r-Shaped Hybrid Nanogenerator with Enhanced Piezoelectricity. ACS Nano 2013, 7 (10) , 8554-8560. https://doi.org/10.1021/nn404023v
    52. Gang Cheng, Zong-Hong Lin, Long Lin, Zu-liang Du, and Zhong Lin Wang . Pulsed Nanogenerator with Huge Instantaneous Output Power Density. ACS Nano 2013, 7 (8) , 7383-7391. https://doi.org/10.1021/nn403151t
    53. Anuja Datta, Devajyoti Mukherjee, Mahesh Hordagoda, Sarath Witanachchi, and Pritish Mukherjee , Ranjit V. Kashid, Mahendra A. More, Dilip S. Joag, and Padmakar G. Chavan . Controlled Ti Seed Layer Assisted Growth and Field Emission Properties of Pb(Zr0.52Ti0.48)O3 Nanowire Arrays. ACS Applied Materials & Interfaces 2013, 5 (13) , 6261-6267. https://doi.org/10.1021/am4012879
    54. Shiyou Xu, Yao-wen Yeh, Gerald Poirier, Michael C. McAlpine, Richard A. Register, and Nan Yao . Flexible Piezoelectric PMN–PT Nanowire-Based Nanocomposite and Device. Nano Letters 2013, 13 (6) , 2393-2398. https://doi.org/10.1021/nl400169t
    55. Long Lin, Sihong Wang, Yannan Xie, Qingshen Jing, Simiao Niu, Youfan Hu, and Zhong Lin Wang . Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy. Nano Letters 2013, 13 (6) , 2916-2923. https://doi.org/10.1021/nl4013002
    56. Luca Valentini, Silvia Bittolo Bon, and Josè M. Kenny . Poly(methyl methacrylate)/Graphene Oxide Layered Films as Generators for Mechanical Energy Harvesting. ACS Applied Materials & Interfaces 2013, 5 (9) , 3770-3775. https://doi.org/10.1021/am400388f
    57. Ya Yang, Hulin Zhang, Yan Liu, Zong-Hong Lin, Sangmin Lee, Ziyin Lin, Ching Ping Wong, and Zhong Lin Wang . Silicon-Based Hybrid Energy Cell for Self-Powered Electrodegradation and Personal Electronics. ACS Nano 2013, 7 (3) , 2808-2813. https://doi.org/10.1021/nn400361p
    58. Ya Yang, Hulin Zhang, Sangmin Lee, Dongseob Kim, Woonbong Hwang, and Zhong Lin Wang . Hybrid Energy Cell for Degradation of Methyl Orange by Self-Powered Electrocatalytic Oxidation. Nano Letters 2013, 13 (2) , 803-808. https://doi.org/10.1021/nl3046188
    59. Ya Yang, Hulin Zhang, Guang Zhu, Sangmin Lee, Zong-Hong Lin, and Zhong Lin Wang . Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies. ACS Nano 2013, 7 (1) , 785-790. https://doi.org/10.1021/nn305247x
    60. Long Gu, Nuanyang Cui, Li Cheng, Qi Xu, Suo Bai, Miaomiao Yuan, Weiwei Wu, Jinmei Liu, Yong Zhao, Fei Ma, Yong Qin, and Zhong Lin Wang . Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode. Nano Letters 2013, 13 (1) , 91-94. https://doi.org/10.1021/nl303539c
    61. Xin Li, Taoli Gu, and Bingqing Wei . Dynamic and Galvanic Stability of Stretchable Supercapacitors. Nano Letters 2012, 12 (12) , 6366-6371. https://doi.org/10.1021/nl303631e
    62. Zong-Hong Lin, Ya Yang, Jyh Ming Wu, Ying Liu, Fang Zhang, and Zhong Lin Wang . BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. The Journal of Physical Chemistry Letters 2012, 3 (23) , 3599-3604. https://doi.org/10.1021/jz301805f
    63. Soumen Jana, Ashleigh Cooper, Fumio Ohuchi, and Miqin Zhang . Uniaxially Aligned Nanofibrous Cylinders by Electrospinning. ACS Applied Materials & Interfaces 2012, 4 (9) , 4817-4824. https://doi.org/10.1021/am301803b
    64. Weiwei Wu, Suo Bai, Miaomiao Yuan, Yong Qin, Zhong Lin Wang, and Tao Jing . Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-Powered Devices. ACS Nano 2012, 6 (7) , 6231-6235. https://doi.org/10.1021/nn3016585
    65. Shiyou Xu, Gerald Poirier, and Nan Yao . PMN-PT Nanowires with a Very High Piezoelectric Constant. Nano Letters 2012, 12 (5) , 2238-2242. https://doi.org/10.1021/nl204334x
    66. Keun Young Lee, Brijesh Kumar, Ju-Seok Seo, Kwon-Ho Kim, Jung Inn Sohn, Seung Nam Cha, Dukhyun Choi, Zhong Lin Wang, and Sang-Woo Kim . P-Type Polymer-Hybridized High-Performance Piezoelectric Nanogenerators. Nano Letters 2012, 12 (4) , 1959-1964. https://doi.org/10.1021/nl204440g
    67. Yu-Ze Chen, Te-Hsiang Liu, Cheng-Ying Chen, Chin-Hung Liu, Szu-Ying Chen, Wen-Wei Wu, Zhong Lin Wang, Jr-Hau He, Ying-Hao Chu, and Yu-Lun Chueh . Taper PbZr0.2Ti0.8O3 Nanowire Arrays: From Controlled Growth by Pulsed Laser Deposition to Piezopotential Measurements. ACS Nano 2012, 6 (3) , 2826-2832. https://doi.org/10.1021/nn300370m
    68. Chien-Chong Hong, Sheng-Yuan Huang, Jiann Shieh, and Szu-Hung Chen . Enhanced Piezoelectricity of Nanoimprinted Sub-20 nm Poly(vinylidene fluoride–trifluoroethylene) Copolymer Nanograss. Macromolecules 2012, 45 (3) , 1580-1586. https://doi.org/10.1021/ma202481t
    69. Jong Hoon Jung, Minbaek Lee, Jung-Il Hong, Yong Ding, Chih-Yen Chen, Li-Jen Chou, and Zhong Lin Wang . Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator. ACS Nano 2011, 5 (12) , 10041-10046. https://doi.org/10.1021/nn2039033
    70. Ronghui Que, Mingwang Shao, Suidong Wang, Dorothy Duo Duo Ma, and Shuit-Tong Lee . Silicon Nanowires with Permanent Electrostatic Charges for Nanogenerators. Nano Letters 2011, 11 (11) , 4870-4873. https://doi.org/10.1021/nl2027266
    71. Cheng-Ying Chen, Jun-Han Huang, Jinhui Song, Yusheng Zhou, Long Lin, Po-Chien Huang, Yan Zhang, Chuan-Pu Liu, Jr-Hau He, and Zhong Lin Wang . Anisotropic Outputs of a Nanogenerator from Oblique-Aligned ZnO Nanowire Arrays. ACS Nano 2011, 5 (8) , 6707-6713. https://doi.org/10.1021/nn202251m
    72. Yi Qi, Jihoon Kim, Thanh D. Nguyen, Bozhena Lisko, Prashant K. Purohit, and Michael C. McAlpine . Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons. Nano Letters 2011, 11 (3) , 1331-1336. https://doi.org/10.1021/nl104412b
    73. Kwi-Il Park, Sheng Xu, Ying Liu, Geon-Tae Hwang, Suk-Joong L. Kang, Zhong Lin Wang, and Keon Jae Lee . Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates. Nano Letters 2010, 10 (12) , 4939-4943. https://doi.org/10.1021/nl102959k
    74. Youfan Hu, Yan Zhang, Chen Xu, Guang Zhu, and Zhong Lin Wang. High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display. Nano Letters 2010, 10 (12) , 5025-5031. https://doi.org/10.1021/nl103203u
    75. Ahmed M. Abd El-Aziz, M. Afifi. Influence the β-PVDF phase on structural and elastic properties of PVDF/PLZT composites. Materials Science and Engineering: B 2024, 301 , 117152. https://doi.org/10.1016/j.mseb.2023.117152
    76. Yunqiao Huang, Yifu Li, Yi Zhang, Hesheng Yu, Zhongchao Tan. Near-field electrospinning for 2D and 3D structuring: Fundamentals, methods, and applications. Materials Today Advances 2024, 21 , 100461. https://doi.org/10.1016/j.mtadv.2023.100461
    77. Ouyang Yue, Xuechuan Wang, Long Xie, Zhongxue Bai, Xiaoliang Zou, Xinhua Liu. Biomimetic Exogenous “Tissue Batteries” as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. Advanced Science 2024, 3 https://doi.org/10.1002/advs.202307369
    78. B. Naveen Kumar, T. Babu, Balgovind Tiwari, R. N. P. Choudhary. Review on PZT as a mechanical engineering material. Ferroelectrics 2024, 618 (1) , 125-138. https://doi.org/10.1080/00150193.2023.2271321
    79. Lei Wang, Xinqi Yao, Yin Zhang, Gaoqiao Luo, Bo Wang, Xinhai Yu. Progress and perspectives of self-powered gas sensors. Next Materials 2024, 2 , 100092. https://doi.org/10.1016/j.nxmate.2023.100092
    80. Levent Paralı, Farida Tatardar, Muhterem Koç, Ali Sarı, Rasoul Moradi. The piezoelectric response of electrospun PVDF/PZT incorporated with pristine graphene nanoplatelets for mechanical energy harvesting. Journal of Materials Science: Materials in Electronics 2024, 35 (1) https://doi.org/10.1007/s10854-023-11798-5
    81. In-Su Kim, Bumjoo Kim, Seok-June Chae, Sahn Nahm. Realization of Self‐Rectifying and Self‐Powered Resistive Random‐Access Memory Memristor Using [001]‐Oriented NaNbO 3 Film Deposited on Sr 2 Nb 3 O 10 Nanosheet at Low Temperatures. Advanced Intelligent Systems 2023, 2 https://doi.org/10.1002/aisy.202300634
    82. B. S. Athira, Kuzhichalil Peethambharan Surendran, Achu Chandran. An electrospun PVDF-KNN nanofiber based lead-free piezoelectric nanogenerator for mechanical energy scavenging and self-powered force sensing applications. Sustainable Energy & Fuels 2023, 7 (24) , 5704-5713. https://doi.org/10.1039/D3SE00880K
    83. P.K. Singh, G.A. Kaur, M. Shandilya, P. Rana, R. Rai, Y.K. Mishra, M. Syväjärvi, A. Tiwari. Trends in piezoelectric nanomaterials towards green energy scavenging nanodevices. Materials Today Sustainability 2023, 24 , 100583. https://doi.org/10.1016/j.mtsust.2023.100583
    84. Massimo Mariello, Ismail Eş, Christopher M. Proctor. Soft and Flexible Bioelectronic Micro‐Systems for Electronically Controlled Drug Delivery. Advanced Healthcare Materials 2023, 1 https://doi.org/10.1002/adhm.202302969
    85. Rui Hou, Zehao Jin, Dan Sun, Baoli Shi, Lili Wang, Xiaobiao Shan. Carbon nanotubes doped cellulose nanocomposite film for high current flexible piezoelectric nanogenerators. Journal of Alloys and Compounds 2023, 965 , 171422. https://doi.org/10.1016/j.jallcom.2023.171422
    86. Shuchang Meng, Ning Wang, Xia Cao. Built-In Piezoelectric Nanogenerators Promote Sustainable and Flexible Supercapacitors: A Review. Materials 2023, 16 (21) , 6916. https://doi.org/10.3390/ma16216916
    87. Kuntal Kumar Das, Bikramjit Basu, Pralay Maiti, Ashutosh Kumar Dubey. Piezoelectric nanogenerators for self‐powered wearable and implantable bioelectronic devices. Acta Biomaterialia 2023, 171 , 85-113. https://doi.org/10.1016/j.actbio.2023.08.057
    88. Ming Li, Ruohe Yao, Yurong Liu. A flexible and ultra-highly sensitive tactile sensor based on Mg-doped ZnO nanorods for human vital signs and activity monitoring. Semiconductor Science and Technology 2023, 38 (9) , 095012. https://doi.org/10.1088/1361-6641/aced68
    89. Yingying Wu, Yun Ou, Jinlin Peng, Chihou Lei. Phase Structures, Electromechanical Responses, and Electrocaloric Effects in K0.5Na0.5NbO3 Epitaxial Film Controlled by Non-Isometric Misfit Strain. Crystals 2023, 13 (9) , 1321. https://doi.org/10.3390/cryst13091321
    90. Hu Xu, Bowei Shang, Xinbo Lv, Siying Hu. Effect of bicontinuous minimal surface meso-scale geometry on piezoelectric performances of piezoelectric composites. Materials Today Communications 2023, 36 , 106462. https://doi.org/10.1016/j.mtcomm.2023.106462
    91. Xingzi Xiahou, Sijia Wu, Xin Guo, Huajian Li, Chen Chen, Ming Xu. Strategies for enhancing low-frequency performances of triboelectric, electrochemical, piezoelectric, and dielectric elastomer energy harvesting: recent progress and challenges. Science Bulletin 2023, 68 (15) , 1687-1714. https://doi.org/10.1016/j.scib.2023.06.025
    92. Zikui Bai, Zhiyuan Yao, Guangmin Wu, Kaiwu Liu, Dezhan Ye, Yongzhen Tao, Shili Xiao, Dongzhi Chen, Zhongmin Deng, Jie Xu, Yinshan Zhou, Shijun Wei, Xianze Yin. PU/PVDF blend nanofiber film with enhanced mechanical and piezoelectric performance for development of stable nanogenerators. Sensors and Actuators A: Physical 2023, 357 , 114407. https://doi.org/10.1016/j.sna.2023.114407
    93. Chao Yan, Xiangming Li, Zhengjie Yang, Xiaopei Wang, Hao Ran, Ruolin Zhang, Hongmiao Tian, Chunhui Wang, Xiaoliang Chen, Jinyou Shao. Electrowetting-assisted printing of 3D-architectured microelectrodes inside flexible piezoelectric films for sensitive, robust responses to bending deformation. Materials Horizons 2023, 10 (8) , 3140-3152. https://doi.org/10.1039/D3MH00325F
    94. Yang Wang, Xiangdong Kong, Ping Yu. Double-layer electrowetting-aided spinning for fabrication of metal-core piezoelectric-piezoresistive composite fiber. Materials and Manufacturing Processes 2023, 38 (9) , 1159-1169. https://doi.org/10.1080/10426914.2023.2165677
    95. Daniela Santos, Rosa M. F. Baptista, Adelino Handa, Bernardo Almeida, Pedro V. Rodrigues, Cidália Castro, Ana Machado, Manuel J. L. F. Rodrigues, Michael Belsley, Etelvina de Matos Gomes. Nanostructured Electrospun Fibers with Self-Assembled Cyclo-L-Tryptophan-L-Tyrosine Dipeptide as Piezoelectric Materials and Optical Second Harmonic Generators. Materials 2023, 16 (14) , 4993. https://doi.org/10.3390/ma16144993
    96. Xiaoxiao Dong, Zhen Yang, Jiayi Li, Wenquan Jiang, Jianmin Ren, Yanting Xu, Travis Shihao Hu, Ming Li. Recent advances of triboelectric, piezoelectric and pyroelectric nanogenerators. Nano-Structures & Nano-Objects 2023, 35 , 100990. https://doi.org/10.1016/j.nanoso.2023.100990
    97. Shivam Tiwari, Dipesh Kumar Dubey, Om Prakash, Santanu Das, Pralay Maiti. Effect of functionalization on electrospun PVDF nanohybrid for piezoelectric energy harvesting applications. Energy 2023, 275 , 127492. https://doi.org/10.1016/j.energy.2023.127492
    98. Shiwei Shi, Zeshan Abbas, Xiangyu Zhao, Junsheng Liang, Dazhi Wang. Nib-Assisted Coaxial Electrohydrodynamic Jet Printing for Nanowires Deposition. Nanomaterials 2023, 13 (9) , 1457. https://doi.org/10.3390/nano13091457
    99. Yi Xin, Junye Tong, Tianyuan Hou, Hongyan Liu, Meng Cui, Xuefeng Song, Yuhang Wang, Tingting Lin, Lingling Wang, Gang Wang. BiScO3-PbTiO3 nanofibers piezoelectric sensor for high-temperature pressure and vibration measurements. Measurement 2023, 212 , 112694. https://doi.org/10.1016/j.measurement.2023.112694
    100. Suparna Ojha, Parna Maity, Sumanta Bera, Suman Kumar Si, Bhanu Bhusan Khatua. Metal–Organic Framework–Derived ZnO‐Assisted β ‐Phase‐Stabilized High‐Performance PVDF/ZnO‐PDMS/rGO Nanocomposites as Piezo–Tribo Hybrid Nanogenerator. Energy Technology 2023, https://doi.org/10.1002/ente.202300157
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect