ACS Publications. Most Trusted. Most Cited. Most Read
1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers
My Activity
    Letter

    1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030
    Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, 70 Prospect Avenue, Princeton, New Jersey 08540
    * Corresponding authors. E-mail: [email protected] (X. C.), [email protected] (Y. S.), [email protected] (N. Y.).
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2010, 10, 6, 2133–2137
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl100812k
    Published May 25, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Energy harvesting technologies that are engineered to miniature sizes, while still increasing the power delivered to wireless electronics, (1, 2) portable devices, stretchable electronics, (3) and implantable biosensors, (4, 5) are strongly desired. Piezoelectric nanowire- and nanofiber-based generators have potential uses for powering such devices through a conversion of mechanical energy into electrical energy. (6) However, the piezoelectric voltage constant of the semiconductor piezoelectric nanowires in the recently reported piezoelectric nanogenerators (7-12) is lower than that of lead zirconate titanate (PZT) nanomaterials. Here we report a piezoelectric nanogenerator based on PZT nanofibers. The PZT nanofibers, with a diameter and length of approximately 60 nm and 500 μm, were aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate. The measured output voltage and power under periodic stress application to the soft polymer was 1.63 V and 0.03 μW, respectively.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The fabrication process figure, nanofiber alignment by controlling the electric field during the electrospinning figure, optical microscope image of PZT nanofibers aligned on the platinum electrode and output voltage during tests figures. Details about the establishment of the strain along the PZT nanofibers using mathematical and finite element method. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 793 publications.

    1. Ramadasu Gunasekhar, Amrutha Bindhu, Mohammad Shamim Reza, Anand Prabu Arun, Kap Jin Kim, Hongdoo Kim. Piezoelectric and Triboelectric Contributions by Aromatic Hyperbranched Polyesters of Second-Generation/PVDF Nanofiber-Based Nanogenerators for Energy Harvesting and Wearable Electronics. ACS Applied Electronic Materials 2024, 6 (7) , 5036-5049. https://doi.org/10.1021/acsaelm.4c00556
    2. Minyoung Seo, Feng Tang, Young-Gi Song, Jin-Hyeok Park, Tae-Gyeong Eom, Seok-Ju Kim, Young Gyu Jeong. Deformation Mode-Sensitive Piezoelectric Hybrid Nanocomposite Films Based on Anionic Waterborne Polyurethane, Barium Titanate Nanoparticles, and Boron Nitride Nanosheets. ACS Applied Nano Materials 2024, 7 (9) , 10974-10983. https://doi.org/10.1021/acsanm.4c00945
    3. Yan-Zhang Liu, Qian Zhang, Xiao-Xiong Wang, Ye Lu, Wen-Bin Li, Qi-Yu Peng, Feng-Yuan Xu. Review of Electrospinning in the Fabrication of Nanogenerators. ACS Applied Nano Materials 2024, 7 (5) , 4630-4652. https://doi.org/10.1021/acsanm.4c00306
    4. Shivam Tiwari, Anupama Devi, Dipesh Kumar Dubey, Pralay Maiti. Induced Piezoelectricity in Cotton-Based Composites for Energy-Harvesting Applications. ACS Applied Bio Materials 2023, 6 (4) , 1536-1545. https://doi.org/10.1021/acsabm.2c01062
    5. B. S. Athira, Ashitha George, K. Vaishna Priya, U. S. Hareesh, E. Bhoje Gowd, Kuzhichalil Peethambharan Surendran, Achu Chandran. High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO3 Nanofibers for Self-Powered Vibration Sensing Applications. ACS Applied Materials & Interfaces 2022, 14 (39) , 44239-44250. https://doi.org/10.1021/acsami.2c07911
    6. Om Prakash, Shivam Tiwari, Pralay Maiti. Fluoropolymers and Their Nanohybrids As Energy Materials: Application to Fuel Cells and Energy Harvesting. ACS Omega 2022, 7 (39) , 34718-34740. https://doi.org/10.1021/acsomega.2c04774
    7. Md. Yasir Zamil, Md. Sherajul Islam, Catherine Stampfl, Jeongwon Park. Tribo-Piezoelectricity in Group III Nitride Bilayers: A Density Functional Theory Investigation. ACS Applied Materials & Interfaces 2022, 14 (18) , 20856-20865. https://doi.org/10.1021/acsami.2c00855
    8. Shivam Tiwari, Anupama Gaur, Chandan Kumar, Pralay Maiti. Ionic Liquid-Based Electrospun Polymer Nanohybrid for Energy Harvesting. ACS Applied Electronic Materials 2021, 3 (6) , 2738-2747. https://doi.org/10.1021/acsaelm.1c00307
    9. Shiyuan Liu, Deng Zou, Xinge Yu, Zuankai Wang, Zhengbao Yang. Transfer-Free PZT Thin Films for Flexible Nanogenerators Derived from a Single-Step Modified Sol–Gel Process on 2D Mica. ACS Applied Materials & Interfaces 2020, 12 (49) , 54991-54999. https://doi.org/10.1021/acsami.0c16973
    10. Krittish Roy, Srikanta Jana, Sujoy Kumar Ghosh, Biswajit Mahanty, Zinnia Mallick, Subrata Sarkar, Chittaranjan Sinha, Dipankar Mandal. Three-Dimensional MOF-Assisted Self-Polarized Ferroelectret: An Effective Autopowered Remote Healthcare Monitoring Approach. Langmuir 2020, 36 (39) , 11477-11489. https://doi.org/10.1021/acs.langmuir.0c01749
    11. Sarbaranjan Paria, Suparna Ojha, Sumanta Kumar Karan, Suman Kumar Si, Ranadip Bera, Amit Kumar Das, Anirban Maitra, Lopamudra Halder, Anurima De, Bhanu Bhusan Khatua. Approach for Enhancement in Output Performance of Randomly Oriented ZnSnO3 Nanorod-Based Piezoelectric Nanogenerator via p–n Heterojunction and Surface Passivation Layer. ACS Applied Electronic Materials 2020, 2 (8) , 2565-2578. https://doi.org/10.1021/acsaelm.0c00467
    12. Chen Zhu, Dongliang Guo, Dong Ye, Shan Jiang, YongAn Huang. Flexible PZT-Integrated, Bilateral Sensors via Transfer-Free Laser Lift-Off for Multimodal Measurements. ACS Applied Materials & Interfaces 2020, 12 (33) , 37354-37362. https://doi.org/10.1021/acsami.0c10083
    13. Ritamay Bhunia, Shashikant Gupta, Bushara Fatma, Prateek, Raju Kumar Gupta, Ashish Garg. Milli-Watt Power Harvesting from Dual Triboelectric and Piezoelectric Effects of Multifunctional Green and Robust Reduced Graphene Oxide/P(VDF-TrFE) Composite Flexible Films. ACS Applied Materials & Interfaces 2019, 11 (41) , 38177-38189. https://doi.org/10.1021/acsami.9b13360
    14. Debarun Sengupta, Yutao Pei, Ajay Giri Prakash Kottapalli. Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors. ACS Applied Materials & Interfaces 2019, 11 (38) , 35201-35211. https://doi.org/10.1021/acsami.9b11776
    15. Subash Cherumannil Karumuthil, Sreenidhi Prabha Rajeev, Soney Varghese. Poly(vinylidene fluoride-trifluoroethylene)-ZnO Nanoparticle Composites on a Flexible Poly(dimethylsiloxane) Substrate for Energy Harvesting. ACS Applied Nano Materials 2019, 2 (7) , 4350-4357. https://doi.org/10.1021/acsanm.8b02248
    16. Yasmin Mohamed Yousry, Kui Yao, Xiaoli Tan, Ayman Mahmoud Mohamed, Yumei Wang, Shuting Chen, Seeram Ramakrishna. Structure and High Performance of Lead-Free (K0.5Na0.5)NbO3 Piezoelectric Nanofibers with Surface-Induced Crystallization at Lowered Temperature. ACS Applied Materials & Interfaces 2019, 11 (26) , 23503-23511. https://doi.org/10.1021/acsami.9b05898
    17. Ning Li, Zhiran Yi, Ye Ma, Feng Xie, Yue Huang, Yingwei Tian, Xiaoxue Dong, Yang Liu, Xin Shao, Yang Li, Lei Jin, Jingquan Liu, Zhiyun Xu, Bin Yang, Hao Zhang. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat. ACS Nano 2019, 13 (3) , 2822-2830. https://doi.org/10.1021/acsnano.8b08567
    18. Horim Lee, Hoyeon Kim, Dong Young Kim, Yongsok Seo. Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers. ACS Omega 2019, 4 (2) , 2610-2617. https://doi.org/10.1021/acsomega.8b03325
    19. Rajagopalan Pandey, Nirmal Prasanth Maria Joseph Raj, Vipul Singh, Palani Iyamperumal Anand, Sang-Jae Kim. Novel Interfacial Bulk Heterojunction Technique for Enhanced Response in ZnO Nanogenerator. ACS Applied Materials & Interfaces 2019, 11 (6) , 6078-6088. https://doi.org/10.1021/acsami.8b19321
    20. Sarah Guerin, Syed A. M. Tofail, Damien Thompson. Longitudinal Piezoelectricity in Orthorhombic Amino Acid Crystal Films. Crystal Growth & Design 2018, 18 (9) , 4844-4848. https://doi.org/10.1021/acs.cgd.8b00835
    21. Ju-Hyuck Lee, Kwang Heo, Konstantin Schulz-Schönhagen, Ju Hun Lee, Malav S. Desai, Hyo-Eon Jin, Seung-Wuk Lee. Diphenylalanine Peptide Nanotube Energy Harvesters. ACS Nano 2018, 12 (8) , 8138-8144. https://doi.org/10.1021/acsnano.8b03118
    22. Xing Zhang, Jingfan Chen, Ya Wang. Hierarchical PbZrxTi1–xO3 Nanowires for Vibrational Energy Harvesting. ACS Applied Nano Materials 2018, 1 (4) , 1461-1466. https://doi.org/10.1021/acsanm.7b00317
    23. Hyun-Cheol Song, Deepam Maurya, Mohan Sanghadasa, William T. Reynolds, Jr., and Shashank Priya . Interface Controlled Growth of Single-Crystalline PbTiO3 Nanostructured Arrays. The Journal of Physical Chemistry C 2017, 121 (48) , 27191-27198. https://doi.org/10.1021/acs.jpcc.7b09369
    24. Yaqing Liu, Ke He, Geng Chen, Wan Ru Leow, and Xiaodong Chen . Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews 2017, 117 (20) , 12893-12941. https://doi.org/10.1021/acs.chemrev.7b00291
    25. Kammari Suresh Chary, Himanshu Sekhar Panda, and Chadalapaka Durga Prasad . Fabrication of Large Aspect Ratio Ba0.85Ca0.15Zr0.1Ti0.9O3 Superfine Fibers-Based Flexible Nanogenerator Device: Synergistic Effect on Curie Temperature, Harvested Voltage, and Power. Industrial & Engineering Chemistry Research 2017, 56 (37) , 10335-10342. https://doi.org/10.1021/acs.iecr.7b02182
    26. Quan-Liang Zhao, Guang-Ping He, Jie-Jian Di, Wei-Li Song, Zhi-Ling Hou, Pei-Pei Tan, Da-Wei Wang, and Mao-Sheng Cao . Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires. ACS Applied Materials & Interfaces 2017, 9 (29) , 24696-24703. https://doi.org/10.1021/acsami.7b03929
    27. Enlong Yang, Zhe Xu, Lucas K. Chur, Ali Behroozfar, Mahmoud Baniasadi, Salvador Moreno, Jiacheng Huang, Jules Gilligan, and Majid Minary-Jolandan . Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer. ACS Applied Materials & Interfaces 2017, 9 (28) , 24220-24229. https://doi.org/10.1021/acsami.7b06032
    28. Runjiang Guo, Yiping Guo, Huanan Duan, Hua Li, and Hezhou Liu . Synthesis of Orthorhombic Perovskite-Type ZnSnO3 Single-Crystal Nanoplates and Their Application in Energy Harvesting. ACS Applied Materials & Interfaces 2017, 9 (9) , 8271-8279. https://doi.org/10.1021/acsami.6b16629
    29. Qijun Sun, Dong Hae Ho, Yongsuk Choi, Caofeng Pan, Do Hwan Kim, Zhong Lin Wang, and Jeong Ho Cho . Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli. ACS Nano 2016, 10 (12) , 11037-11043. https://doi.org/10.1021/acsnano.6b05895
    30. Hulin Zhang, Jie Wang, Yuhang Xie, Guang Yao, Zhuocheng Yan, Long Huang, Sihong Chen, Taisong Pan, Liping Wang, Yuanjie Su, Weiqing Yang, and Yuan Lin . Self-Powered, Wireless, Remote Meteorologic Monitoring Based on Triboelectric Nanogenerator Operated by Scavenging Wind Energy. ACS Applied Materials & Interfaces 2016, 8 (48) , 32649-32654. https://doi.org/10.1021/acsami.6b12798
    31. Yan Li, Binrui Cao, Mingying Yang, Ye Zhu, Junghae Suh, and Chuanbin Mao . Identification of Novel Short BaTiO3-Binding/Nucleating Peptides for Phage-Templated in Situ Synthesis of BaTiO3 Polycrystalline Nanowires at Room Temperature. ACS Applied Materials & Interfaces 2016, 8 (45) , 30714-30721. https://doi.org/10.1021/acsami.6b09708
    32. Xiaohu Ren, Huiqing Fan, Yuwei Zhao, and Zhiyong Liu . Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester. ACS Applied Materials & Interfaces 2016, 8 (39) , 26190-26197. https://doi.org/10.1021/acsami.6b04497
    33. Xu-Zhou Jiang, Yi-Jing Sun, Zhiyong Fan, and Tong-Yi Zhang . Integrated Flexible, Waterproof, Transparent, and Self-Powered Tactile Sensing Panel. ACS Nano 2016, 10 (8) , 7696-7704. https://doi.org/10.1021/acsnano.6b03042
    34. Qiang Zheng, Hao Zhang, Bojing Shi, Xiang Xue, Zhuo Liu, Yiming Jin, Ye Ma, Yang Zou, Xinxin Wang, Zhao An, Wei Tang, Wei Zhang, Fan Yang, Yang Liu, Xilong Lang, Zhiyun Xu, Zhou Li, and Zhong Lin Wang . In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. ACS Nano 2016, 10 (7) , 6510-6518. https://doi.org/10.1021/acsnano.6b02693
    35. Gerard Cadafalch Gazquez, Sidong Lei, Antony George, Hemtej Gullapalli, Bernard A. Boukamp, Pulickel M. Ajayan, and Johan E. ten Elshof . Low-Cost, Large-Area, Facile, and Rapid Fabrication of Aligned ZnO Nanowire Device Arrays. ACS Applied Materials & Interfaces 2016, 8 (21) , 13466-13471. https://doi.org/10.1021/acsami.6b01594
    36. Manoj Kumar Gupta, Sang-Woo Kim, and Binay Kumar . Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester. ACS Applied Materials & Interfaces 2016, 8 (3) , 1766-1773. https://doi.org/10.1021/acsami.5b09485
    37. Yang Zhang, Caihong Liu, Jingbin Liu, Jie Xiong, Jingyu Liu, Ke Zhang, Yudong Liu, Mingzeng Peng, Aifang Yu, Aihua Zhang, Yan Zhang, Zhiwei Wang, Junyi Zhai, and Zhong Lin Wang . Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. ACS Applied Materials & Interfaces 2016, 8 (2) , 1381-1387. https://doi.org/10.1021/acsami.5b10345
    38. Hulin Zhang, Shangjie Zhang, Guang Yao, Zhenlong Huang, Yuhang Xie, Yuanjie Su, Weiqing Yang, Chunhua Zheng, and Yuan Lin . Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection. ACS Applied Materials & Interfaces 2015, 7 (51) , 28142-28147. https://doi.org/10.1021/acsami.5b10923
    39. Bhaskar Dudem, Yeong Hwan Ko, Jung Woo Leem, Soo Hyun Lee, and Jae Su Yu . Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template. ACS Applied Materials & Interfaces 2015, 7 (37) , 20520-20529. https://doi.org/10.1021/acsami.5b05842
    40. J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman . Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices. ACS Applied Materials & Interfaces 2015, 7 (24) , 13350-13359. https://doi.org/10.1021/acsami.5b01781
    41. Sung-Ho Shin, Yang Hyeog Kwon, Young-Hwan Kim, Joo-Yun Jung, Min Hyung Lee, and Junghyo Nah . Triboelectric Charging Sequence Induced by Surface Functionalization as a Method To Fabricate High Performance Triboelectric Generators. ACS Nano 2015, 9 (4) , 4621-4627. https://doi.org/10.1021/acsnano.5b01340
    42. Jiagang Wu, Dingquan Xiao, and Jianguo Zhu . Potassium–Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chemical Reviews 2015, 115 (7) , 2559-2595. https://doi.org/10.1021/cr5006809
    43. Zhao Wang, Youdong Zhang, Shulin Yang, Yongming Hu, Shengfu Wang, Haoshuang Gu, Yu Wang, H. L. W. Chan, and John Wang . (K,Na)NbO3 Nanofiber-based Self-Powered Sensors for Accurate Detection of Dynamic Strain. ACS Applied Materials & Interfaces 2015, 7 (8) , 4921-4927. https://doi.org/10.1021/am5090012
    44. Guanlin Liu, Qiang Leng, Jiawei Lian, Hengyu Guo, Xi Yi, and Chenguo Hu . Notepad-like Triboelectric Generator for Efficiently Harvesting Low-Velocity Motion Energy by Interconversion between Kinetic Energy and Elastic Potential Energy. ACS Applied Materials & Interfaces 2015, 7 (2) , 1275-1283. https://doi.org/10.1021/am507477y
    45. Mianli Huang, Sunxian Weng, Bo Wang, Jun Hu, Xianzhi Fu, and Ping Liu . Various Facet Tunable ZnO Crystals by a Scalable Solvothermal Synthesis and Their Facet-Dependent Photocatalytic Activities. The Journal of Physical Chemistry C 2014, 118 (44) , 25434-25440. https://doi.org/10.1021/jp5072567
    46. Sung-Ho Shin, Young-Hwan Kim, Min Hyung Lee, Joo-Yun Jung, Jae Hun Seol, and Junghyo Nah . Lithium-Doped Zinc Oxide Nanowires–Polymer Composite for High Performance Flexible Piezoelectric Nanogenerator. ACS Nano 2014, 8 (10) , 10844-10850. https://doi.org/10.1021/nn5046568
    47. Shan Jiang, Zhaohui Ren, Simin Yin, Siyu Gong, Yifeng Yu, Xiang Li, Xiao Wei, Gang Xu, Ge Shen, and Gaorong Han . Growth and Bending-Sensitive Photoluminescence of a Flexible PbTiO3/ZnO Nanocomposite. ACS Applied Materials & Interfaces 2014, 6 (14) , 10935-10940. https://doi.org/10.1021/am5009024
    48. Christian Reitz, Philipp M. Leufke, Horst Hahn, and Torsten Brezesinski . Ordered Mesoporous Thin Film Ferroelectrics of Biaxially Textured Lead Zirconate Titanate (PZT) by Chemical Solution Deposition. Chemistry of Materials 2014, 26 (6) , 2195-2202. https://doi.org/10.1021/cm500381g
    49. Sung-Ho Shin, Young-Hwan Kim, Min Hyung Lee, Joo-Yun Jung, and Junghyo Nah . Hemispherically Aggregated BaTiO3 Nanoparticle Composite Thin Film for High-Performance Flexible Piezoelectric Nanogenerator. ACS Nano 2014, 8 (3) , 2766-2773. https://doi.org/10.1021/nn406481k
    50. Long Lin, Sihong Wang, Simiao Niu, Chang Liu, Yannan Xie, and Zhong Lin Wang . Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor. ACS Applied Materials & Interfaces 2014, 6 (4) , 3031-3038. https://doi.org/10.1021/am405637s
    51. Gang Cheng, Zong-Hong Lin, Zu-liang Du, and Zhong Lin Wang . Simultaneously Harvesting Electrostatic and Mechanical Energies from Flowing Water by a Hybridized Triboelectric Nanogenerator. ACS Nano 2014, 8 (2) , 1932-1939. https://doi.org/10.1021/nn406565k
    52. Kellye Cung, Booyeon J. Han, Thanh D. Nguyen, Sheng Mao, Yao-Wen Yeh, Shiyou Xu, Rajesh R. Naik, Gerald Poirier, Nan Yao, Prashant K. Purohit, and Michael C. McAlpine . Biotemplated Synthesis of PZT Nanowires. Nano Letters 2013, 13 (12) , 6197-6202. https://doi.org/10.1021/nl4035708
    53. Mengdi Han, Xiao-Sheng Zhang, Bo Meng, Wen Liu, Wei Tang, Xuming Sun, Wei Wang, and Haixia Zhang . r-Shaped Hybrid Nanogenerator with Enhanced Piezoelectricity. ACS Nano 2013, 7 (10) , 8554-8560. https://doi.org/10.1021/nn404023v
    54. Gang Cheng, Zong-Hong Lin, Long Lin, Zu-liang Du, and Zhong Lin Wang . Pulsed Nanogenerator with Huge Instantaneous Output Power Density. ACS Nano 2013, 7 (8) , 7383-7391. https://doi.org/10.1021/nn403151t
    55. Anuja Datta, Devajyoti Mukherjee, Mahesh Hordagoda, Sarath Witanachchi, and Pritish Mukherjee , Ranjit V. Kashid, Mahendra A. More, Dilip S. Joag, and Padmakar G. Chavan . Controlled Ti Seed Layer Assisted Growth and Field Emission Properties of Pb(Zr0.52Ti0.48)O3 Nanowire Arrays. ACS Applied Materials & Interfaces 2013, 5 (13) , 6261-6267. https://doi.org/10.1021/am4012879
    56. Shiyou Xu, Yao-wen Yeh, Gerald Poirier, Michael C. McAlpine, Richard A. Register, and Nan Yao . Flexible Piezoelectric PMN–PT Nanowire-Based Nanocomposite and Device. Nano Letters 2013, 13 (6) , 2393-2398. https://doi.org/10.1021/nl400169t
    57. Long Lin, Sihong Wang, Yannan Xie, Qingshen Jing, Simiao Niu, Youfan Hu, and Zhong Lin Wang . Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy. Nano Letters 2013, 13 (6) , 2916-2923. https://doi.org/10.1021/nl4013002
    58. Luca Valentini, Silvia Bittolo Bon, and Josè M. Kenny . Poly(methyl methacrylate)/Graphene Oxide Layered Films as Generators for Mechanical Energy Harvesting. ACS Applied Materials & Interfaces 2013, 5 (9) , 3770-3775. https://doi.org/10.1021/am400388f
    59. Ya Yang, Hulin Zhang, Yan Liu, Zong-Hong Lin, Sangmin Lee, Ziyin Lin, Ching Ping Wong, and Zhong Lin Wang . Silicon-Based Hybrid Energy Cell for Self-Powered Electrodegradation and Personal Electronics. ACS Nano 2013, 7 (3) , 2808-2813. https://doi.org/10.1021/nn400361p
    60. Ya Yang, Hulin Zhang, Sangmin Lee, Dongseob Kim, Woonbong Hwang, and Zhong Lin Wang . Hybrid Energy Cell for Degradation of Methyl Orange by Self-Powered Electrocatalytic Oxidation. Nano Letters 2013, 13 (2) , 803-808. https://doi.org/10.1021/nl3046188
    61. Ya Yang, Hulin Zhang, Guang Zhu, Sangmin Lee, Zong-Hong Lin, and Zhong Lin Wang . Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies. ACS Nano 2013, 7 (1) , 785-790. https://doi.org/10.1021/nn305247x
    62. Long Gu, Nuanyang Cui, Li Cheng, Qi Xu, Suo Bai, Miaomiao Yuan, Weiwei Wu, Jinmei Liu, Yong Zhao, Fei Ma, Yong Qin, and Zhong Lin Wang . Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode. Nano Letters 2013, 13 (1) , 91-94. https://doi.org/10.1021/nl303539c
    63. Xin Li, Taoli Gu, and Bingqing Wei . Dynamic and Galvanic Stability of Stretchable Supercapacitors. Nano Letters 2012, 12 (12) , 6366-6371. https://doi.org/10.1021/nl303631e
    64. Zong-Hong Lin, Ya Yang, Jyh Ming Wu, Ying Liu, Fang Zhang, and Zhong Lin Wang . BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. The Journal of Physical Chemistry Letters 2012, 3 (23) , 3599-3604. https://doi.org/10.1021/jz301805f
    65. Soumen Jana, Ashleigh Cooper, Fumio Ohuchi, and Miqin Zhang . Uniaxially Aligned Nanofibrous Cylinders by Electrospinning. ACS Applied Materials & Interfaces 2012, 4 (9) , 4817-4824. https://doi.org/10.1021/am301803b
    66. Weiwei Wu, Suo Bai, Miaomiao Yuan, Yong Qin, Zhong Lin Wang, and Tao Jing . Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-Powered Devices. ACS Nano 2012, 6 (7) , 6231-6235. https://doi.org/10.1021/nn3016585
    67. Shiyou Xu, Gerald Poirier, and Nan Yao . PMN-PT Nanowires with a Very High Piezoelectric Constant. Nano Letters 2012, 12 (5) , 2238-2242. https://doi.org/10.1021/nl204334x
    68. Keun Young Lee, Brijesh Kumar, Ju-Seok Seo, Kwon-Ho Kim, Jung Inn Sohn, Seung Nam Cha, Dukhyun Choi, Zhong Lin Wang, and Sang-Woo Kim . P-Type Polymer-Hybridized High-Performance Piezoelectric Nanogenerators. Nano Letters 2012, 12 (4) , 1959-1964. https://doi.org/10.1021/nl204440g
    69. Yu-Ze Chen, Te-Hsiang Liu, Cheng-Ying Chen, Chin-Hung Liu, Szu-Ying Chen, Wen-Wei Wu, Zhong Lin Wang, Jr-Hau He, Ying-Hao Chu, and Yu-Lun Chueh . Taper PbZr0.2Ti0.8O3 Nanowire Arrays: From Controlled Growth by Pulsed Laser Deposition to Piezopotential Measurements. ACS Nano 2012, 6 (3) , 2826-2832. https://doi.org/10.1021/nn300370m
    70. Chien-Chong Hong, Sheng-Yuan Huang, Jiann Shieh, and Szu-Hung Chen . Enhanced Piezoelectricity of Nanoimprinted Sub-20 nm Poly(vinylidene fluoride–trifluoroethylene) Copolymer Nanograss. Macromolecules 2012, 45 (3) , 1580-1586. https://doi.org/10.1021/ma202481t
    71. Jong Hoon Jung, Minbaek Lee, Jung-Il Hong, Yong Ding, Chih-Yen Chen, Li-Jen Chou, and Zhong Lin Wang . Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator. ACS Nano 2011, 5 (12) , 10041-10046. https://doi.org/10.1021/nn2039033
    72. Ronghui Que, Mingwang Shao, Suidong Wang, Dorothy Duo Duo Ma, and Shuit-Tong Lee . Silicon Nanowires with Permanent Electrostatic Charges for Nanogenerators. Nano Letters 2011, 11 (11) , 4870-4873. https://doi.org/10.1021/nl2027266
    73. Cheng-Ying Chen, Jun-Han Huang, Jinhui Song, Yusheng Zhou, Long Lin, Po-Chien Huang, Yan Zhang, Chuan-Pu Liu, Jr-Hau He, and Zhong Lin Wang . Anisotropic Outputs of a Nanogenerator from Oblique-Aligned ZnO Nanowire Arrays. ACS Nano 2011, 5 (8) , 6707-6713. https://doi.org/10.1021/nn202251m
    74. Yi Qi, Jihoon Kim, Thanh D. Nguyen, Bozhena Lisko, Prashant K. Purohit, and Michael C. McAlpine . Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons. Nano Letters 2011, 11 (3) , 1331-1336. https://doi.org/10.1021/nl104412b
    75. Kwi-Il Park, Sheng Xu, Ying Liu, Geon-Tae Hwang, Suk-Joong L. Kang, Zhong Lin Wang, and Keon Jae Lee . Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates. Nano Letters 2010, 10 (12) , 4939-4943. https://doi.org/10.1021/nl102959k
    76. Youfan Hu, Yan Zhang, Chen Xu, Guang Zhu, and Zhong Lin Wang. High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display. Nano Letters 2010, 10 (12) , 5025-5031. https://doi.org/10.1021/nl103203u
    77. Hang Zhan, Panpan Lv, Shuzhi Zhang, Le Xin, Jia Wang, Ruihang Li, Cuncheng Li, Luchao Ren, Mingwei Zhang. High-performance piezoelectric composite combined with PZT micropillars and P(VDF-TrFE) membrane for energy harvesting and sensing. Journal of Alloys and Compounds 2025, 1019 , 179227. https://doi.org/10.1016/j.jallcom.2025.179227
    78. N. Gogneau, P. Chrétien, T.K. Sodhi, Q.C. Bui, A. Chevillard, S.W. Chen, L. Couraud, L. Travers, J.C. Harmand, M. Tchernycheva, F. Houzé. The surface charge effects: A route to the enhancement of the piezoelectric conversion efficiency in GaN nanowires. Nano Trends 2025, 9 , 100082. https://doi.org/10.1016/j.nwnano.2025.100082
    79. Davide Calestani. Nanostructures of metal oxides. 2025, 443-494. https://doi.org/10.1016/B978-0-323-96027-4.00035-8
    80. Bartłomiej Toroń, Tushar Kanti Das, Mateusz Kozioł, Piotr Szperlich, Mirosława Kępińska. Impact of hydrochloric acid doping on polyaniline conductivity and piezoelectric performance in polyaniline/bismuth oxyiodide nanocomposites. Composites Part B: Engineering 2025, 289 , 111960. https://doi.org/10.1016/j.compositesb.2024.111960
    81. Levent Paralı. Design, Fabrication, and Piezoelectric Performance Evaluation of a Nanogenerator for Vibrational Energy Harvesters. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2024, 13 (4) , 896-904. https://doi.org/10.17798/bitlisfen.1458956
    82. Seung-Han Kang, Jeong-Wan Jo, Jaehyun Kim, Sung Kyu Park. Stretchable electronics based on inorganic semiconducting materials. Journal of Materials Chemistry C 2024, 12 (48) , 19323-19351. https://doi.org/10.1039/D4TC03745F
    83. Nishat Kumar Das, Sushmee Badhulika. SILAR deposited cadmium sulphide (CdS) over graphitic carbon nitride (g-C3N4) based photo-enhanced triboelectric nanogenerator for self-powered visible light photodetector. Materials Science and Engineering: B 2024, 310 , 117714. https://doi.org/10.1016/j.mseb.2024.117714
    84. Qingtao Zhu, Xianfen Chen, Duoduo Li, Lei Xiao, Junyan Chen, Lijun Zhou, Jiabin Chen, Quanping Yuan. Large Enhancement on Performance of Flexible Cellulose‐Based Piezoelectric Composite Film by Welding CNF and MXene via Growing ZnO to Construct a “Brick‐Rebar‐Mortar” Structure. Advanced Functional Materials 2024, 34 (48) https://doi.org/10.1002/adfm.202408588
    85. Sumanta Bera, Suparna Ojha, Parna Maity, Nil Lohit Sengupta, Bhanu Bhusan Khatua. Fabrication of high performance BaSnO3/PVDF piezoelectric nanogenerator through high surface area BaSnO3 nanoparticle assisted β-phase stabilization of PVDF. Journal of Alloys and Compounds 2024, 1005 , 176038. https://doi.org/10.1016/j.jallcom.2024.176038
    86. Xue Tang, Bei Jiang, Qingtao Zhu, Xianfen Chen, Lei Xiao, Lijun Zhou, Junyan Chen, Jiabin Chen, Zhigao Liu, Quanping Yuan. A novel wood-based multifunctional composites incorporating with piezoelectric and moist-electric performance. Nano Energy 2024, 130 , 110159. https://doi.org/10.1016/j.nanoen.2024.110159
    87. Hetal Kundalia, Ashish Ravalia, Ramcharan Meena, K. Asokan, Brinda Vyas, D. G. Kuberkar. Interface-Induced Modifications in the Ferroelectric properties of 200 MeV Ag+15 Ion-Irradiated ZnO-BaTiO3 Nanocomposite Films. Journal of Electronic Materials 2024, 53 (10) , 5981-5989. https://doi.org/10.1007/s11664-024-11367-4
    88. Tianzhao Bu, Wenli Deng, Yaoyao Liu, Zhong Lin Wang, Xinchun Chen, Chi Zhang. Submillimeter‐Scale Superlubric Triboelectric Nanogenerator. Advanced Functional Materials 2024, 34 (40) https://doi.org/10.1002/adfm.202404007
    89. Biswajit Mahanty, Sujoy Kumar Ghosh, Dong-Weon Lee. Advancements in polymer nanofiber-based piezoelectric nanogenerators: Revolutionizing self-powered wearable electronics and biomedical applications. Chemical Engineering Journal 2024, 495 , 153481. https://doi.org/10.1016/j.cej.2024.153481
    90. Maria-Argyro Karageorgou, Kosmas Tsakmakidis, Dimosthenis Stamopoulos. Ferroelectric/Piezoelectric Materials in Energy Harvesting: Physical Properties and Current Status of Applications. Crystals 2024, 14 (9) , 806. https://doi.org/10.3390/cryst14090806
    91. Panpan Lv, Hang Zhan, Le Xin, Shuzhi Zhang, Jia Wang, Ruihang Li, Cuncheng Li, Luchao Ren, Mingwei Zhang, Xin Cheng. Flexible, bilayered piezoelectric composite based on large-scale inorganic PZT film and organic P(VDF-TrFE) membrane for mechanical energy harvesting. Surfaces and Interfaces 2024, 51 , 104623. https://doi.org/10.1016/j.surfin.2024.104623
    92. Shiwei Shi, Zeshan Abbas, Xiaohu Zheng, Xiangyu Zhao, Dazhi Wang. Direct writing of suspended nanowires using coaxial electrohydrodynamic jet with double tip assistance. Journal of Sol-Gel Science and Technology 2024, 111 (1) , 202-215. https://doi.org/10.1007/s10971-024-06454-1
    93. Puneet Sagar, Nidhi Sinha, Tarun Yadav, Mayank Shukla, Ranjan Kumar, Binay Kumar. Transformation of ZnS microspheres to non-centrosymmetric nanoplates for the fabrication of flexible piezoelectric nanogenerators: Electrode surface area modification for boosting the output performance. Journal of Alloys and Compounds 2024, 985 , 174074. https://doi.org/10.1016/j.jallcom.2024.174074
    94. Namanu Panayanthatta, Giacomo Clementi, Merieme Ouhabaz, Samuel Margueron, Ausrine Bartasyte, Mickael Lallart, Skandar Basrour, Roberto La Rosa, Edwige Bano, Laurent Montes. Electro-Mechanical Characterization and Modeling of a Broadband Piezoelectric Microgenerator Based on Lithium Niobate. Sensors 2024, 24 (9) , 2815. https://doi.org/10.3390/s24092815
    95. Ha-Young Son, Sang-Shik Park. Characteristics of Bio-Piezoelectric Generator Using Edible Collagen Powder. Korean Journal of Materials Research 2024, 34 (4) , 215-222. https://doi.org/10.3740/MRSK.2024.34.4.215
    96. Yujia Zhang, Yan Liu, Xueqin Gong, Zeyan Wang, Yuanyuan Liu, Peng Wang, Hefeng Cheng, Baibiao Huang, Zhaoke Zheng. Construction of piezoelectric photocatalyst Au/BiVO 4 for efficient degradation of tetracycline and studied at single-particle level. Chemical Synthesis 2024, 4 (2) https://doi.org/10.20517/cs.2023.65
    97. Ouyang Yue, Xuechuan Wang, Long Xie, Zhongxue Bai, Xiaoliang Zou, Xinhua Liu. Biomimetic Exogenous “Tissue Batteries” as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. Advanced Science 2024, 11 (11) https://doi.org/10.1002/advs.202307369
    98. In-Su Kim, Bumjoo Kim, Seok-June Chae, Sahn Nahm. Realization of Self‐Rectifying and Self‐Powered Resistive Random‐Access Memory Memristor Using [001]‐Oriented NaNbO 3 Film Deposited on Sr 2 Nb 3 O 10 Nanosheet at Low Temperatures. Advanced Intelligent Systems 2024, 6 (3) https://doi.org/10.1002/aisy.202300634
    99. Ahmed M. Abd El-Aziz, M. Afifi. Influence the β-PVDF phase on structural and elastic properties of PVDF/PLZT composites. Materials Science and Engineering: B 2024, 301 , 117152. https://doi.org/10.1016/j.mseb.2023.117152
    100. Yunqiao Huang, Yifu Li, Yi Zhang, Hesheng Yu, Zhongchao Tan. Near-field electrospinning for 2D and 3D structuring: Fundamentals, methods, and applications. Materials Today Advances 2024, 21 , 100461. https://doi.org/10.1016/j.mtadv.2023.100461
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2010, 10, 6, 2133–2137
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl100812k
    Published May 25, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.