Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Construction of a Structurally Defined Double-Stranded DNA Catenane
My Activity
    Letter

    Construction of a Structurally Defined Double-Stranded DNA Catenane
    Click to copy article linkArticle link copied!

    View Author Information
    Cluster of Excellence Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M, Germany
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2011, 11, 4, 1739–1742
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl200303m
    Published March 16, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Topologically interlocked structures like catenanes and rotaxanes are promising components for the construction of molecular machines and motors. Herein we describe the construction of double-stranded DNA catenanes for DNA nanotechnology. For this, C-shaped DNA minicircle fragments were equipped with sequence-specific DNA-binding polyamides and their respective binding site. Formation of catenanes is achieved by self-assembly of two of these fragments and subsequent addition of a ring-closing oligonucleotide.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    DNA sequences, the synthesis and workup protocol for the DNA-PA hybrid molecule, analytical data, synthesis and hybridization protocols of the catenanes, anion exchange HPLC data and AFM protocols, as well as the result of control experiments on the reversibility of PA-DNA binding. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 111 publications.

    1. Mao-Hua Gao, Xiao-Hong Yang, Jia-Hao Tang, Xue-Mei Zhou, Yan-Mei Lei, Ying Zhuo. Selective Activation of Cascade Assembly Amplification for DNA Methyltransferase Detection Using a Double-Loop Interlocked DNA Circuit. Analytical Chemistry 2024, 96 (30) , 12546-12552. https://doi.org/10.1021/acs.analchem.4c02498
    2. Saeed Akbari Shandiz, Gary M. Leuty, Hao Guo, Abdol Hadi Mokarizadeh, Joao M. Maia, Mesfin Tsige. Structure and Thermodynamics of Linear, Ring, and Catenane Polymers in Solutions and at Liquid–Liquid Interfaces. Langmuir 2023, 39 (20) , 7154-7166. https://doi.org/10.1021/acs.langmuir.3c00589
    3. Kazuki Kuwahara, Sayaka Yajima, Yuuhei Yamano, Fumi Nagatsugi, Kazumitsu Onizuka. Formation of Direction-Controllable Pseudorotaxane and Catenane Using Chemically Cyclized Oligodeoxynucleotides and Their Noncovalent RNA Labeling. Bioconjugate Chemistry 2023, 34 (4) , 696-706. https://doi.org/10.1021/acs.bioconjchem.3c00031
    4. Qi Li, Mathias Centola, Daniel Keppner, Julián Valero, Michael Famulok. Reconfigurable Nanopolygons Made of DNA Catenanes. Bioconjugate Chemistry 2023, 34 (1) , 105-110. https://doi.org/10.1021/acs.bioconjchem.2c00464
    5. Shengtao Yao, Yongyun Chang, Zanjing Zhai, Hiroshi Sugiyama, Masayuki Endo, Weiping Zhu, Yufang Xu, Yangyang Yang, Xuhong Qian. DNA-Based Daisy Chain Rotaxane Nanocomposite Hydrogels as Dual-Programmable Dynamic Scaffolds for Stem Cell Adhesion. ACS Applied Materials & Interfaces 2022, 14 (18) , 20739-20748. https://doi.org/10.1021/acsami.2c03265
    6. Yusuke Sakai, Gerrit D. Wilkens, Karol Wolski, Szczepan Zapotoczny, Jonathan G. Heddle. Topogami: Topologically Linked DNA Origami. ACS Nanoscience Au 2022, 2 (1) , 57-63. https://doi.org/10.1021/acsnanoscienceau.1c00027
    7. Amanda Acevedo-Jake, Andrew T. Ball, Marzia Galli, Mikiembo Kukwikila, Mathieu Denis, Daniel G. Singleton, Ali Tavassoli, Stephen M. Goldup. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. Journal of the American Chemical Society 2020, 142 (13) , 5985-5990. https://doi.org/10.1021/jacs.0c01670
    8. Michael Matthies, Nayan P. Agarwal, Erik Poppleton, Foram M. Joshi, Petr Šulc, Thorsten L. Schmidt. Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles. ACS Nano 2019, 13 (2) , 1839-1848. https://doi.org/10.1021/acsnano.8b08009
    9. Michael W. Haydell, Mathias Centola, Volker Adam, Julián Valero, Michael Famulok. Temporal and Reversible Control of a DNAzyme by Orthogonal Photoswitching. Journal of the American Chemical Society 2018, 140 (49) , 16868-16872. https://doi.org/10.1021/jacs.8b08738
    10. Nayan P. Agarwal, Michael Matthies, Bastian Joffroy, Thorsten L. Schmidt. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling. ACS Nano 2018, 12 (3) , 2546-2553. https://doi.org/10.1021/acsnano.7b08345
    11. Caitlin D. Allen and A. James Link . Self-Assembly of Catenanes from Lasso Peptides. Journal of the American Chemical Society 2016, 138 (43) , 14214-14217. https://doi.org/10.1021/jacs.6b09454
    12. Yuwei Hu, Jiangtao Ren, Chun-Hua Lu, and Itamar Willner . Programmed pH-Driven Reversible Association and Dissociation of Interconnected Circular DNA Dimer Nanostructures. Nano Letters 2016, 16 (7) , 4590-4594. https://doi.org/10.1021/acs.nanolett.6b01891
    13. Fatih N. Gür, Friedrich W. Schwarz, Jingjing Ye, Stefan Diez, and Thorsten L. Schmidt . Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates. ACS Nano 2016, 10 (5) , 5374-5382. https://doi.org/10.1021/acsnano.6b01537
    14. Chun-Hua Lu, Alessandro Cecconello, and Itamar Willner . Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures. Journal of the American Chemical Society 2016, 138 (16) , 5172-5185. https://doi.org/10.1021/jacs.6b00694
    15. Cheng Zhang, Linjing Shen, Chao Liang, Yafei Dong, Jing Yang, and Jin Xu . DNA Sequential Logic Gate Using Two-Ring DNA. ACS Applied Materials & Interfaces 2016, 8 (14) , 9370-9376. https://doi.org/10.1021/acsami.6b00847
    16. Tevin Li, Hao Zhang, Lianzhe Hu, and Fangwei Shao . Topoisomerase-Based Preparation and AFM Imaging of Multi-Interlocked Circular DNA. Bioconjugate Chemistry 2016, 27 (3) , 616-620. https://doi.org/10.1021/acs.bioconjchem.5b00606
    17. Michael Matthies, Nayan P. Agarwal, and Thorsten L. Schmidt . Design and Synthesis of Triangulated DNA Origami Trusses. Nano Letters 2016, 16 (3) , 2108-2113. https://doi.org/10.1021/acs.nanolett.6b00381
    18. Chun-Hua Lu, Alessandro Cecconello, Xiu-Juan Qi, Na Wu, Stefan-Sven Jester, Michael Famulok, Michael Matthies, Thorsten-Lars Schmidt, and Itamar Willner . Switchable Reconfiguration of a Seven-Ring Interlocked DNA Catenane Nanostructure. Nano Letters 2015, 15 (10) , 7133-7137. https://doi.org/10.1021/acs.nanolett.5b03280
    19. Sundus Erbas-Cakmak, David A. Leigh, Charlie T. McTernan, and Alina L. Nussbaumer . Artificial Molecular Machines. Chemical Reviews 2015, 115 (18) , 10081-10206. https://doi.org/10.1021/acs.chemrev.5b00146
    20. Annemie Biesemans, Misha Soskine, and Giovanni Maglia . A Protein Rotaxane Controls the Translocation of Proteins Across a ClyA Nanopore. Nano Letters 2015, 15 (9) , 6076-6081. https://doi.org/10.1021/acs.nanolett.5b02309
    21. Stefan-S. Jester and Michael Famulok . Mechanically Interlocked DNA nanostructures for Functional Devices. Accounts of Chemical Research 2014, 47 (6) , 1700-1709. https://doi.org/10.1021/ar400321h
    22. Kazumitsu Onizuka, Fumi Nagatsugi, Yoshihiro Ito, and Hiroshi Abe . Automatic Pseudorotaxane Formation Targeting on Nucleic Acids Using a Pair of Reactive Oligodeoxynucleotides. Journal of the American Chemical Society 2014, 136 (20) , 7201-7204. https://doi.org/10.1021/ja5018283
    23. Alessandro Cecconello, Chun-Hua Lu, Johann Elbaz, and Itamar Willner . Au Nanoparticle/DNA Rotaxane Hybrid Nanostructures Exhibiting Switchable Fluorescence Properties. Nano Letters 2013, 13 (12) , 6275-6280. https://doi.org/10.1021/nl403884w
    24. Chun-Hua Lu, Alessandro Cecconello, Johann Elbaz, Alberto Credi, and Itamar Willner . A Three-Station DNA Catenane Rotary Motor with Controlled Directionality. Nano Letters 2013, 13 (5) , 2303-2308. https://doi.org/10.1021/nl401010e
    25. Tao Li and Michael Famulok . I-Motif-Programmed Functionalization of DNA Nanocircles. Journal of the American Chemical Society 2013, 135 (4) , 1593-1599. https://doi.org/10.1021/ja3118224
    26. Željka Krpetić, Ishwar Singh, Wu Su, Luca Guerrini, Karen Faulds, Glenn A. Burley, and Duncan Graham . Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole–Imidazole Polyamides. Journal of the American Chemical Society 2012, 134 (20) , 8356-8359. https://doi.org/10.1021/ja3014924
    27. Tao Li, Damian Ackermann, Anna M. Hall, and Michael Famulok . Input-Dependent Induction of Oligonucleotide Structural Motifs for Performing Molecular Logic. Journal of the American Chemical Society 2012, 134 (7) , 3508-3516. https://doi.org/10.1021/ja2108883
    28. Hironobu Morinaga, Toshikazu Bando, Toshiki Takagaki, Makoto Yamamoto, Kaori Hashiya, and Hiroshi Sugiyama . Cysteine Cyclic Pyrrole–Imidazole Polyamide for Sequence-Specific Recognition in the DNA Minor Groove. Journal of the American Chemical Society 2011, 133 (46) , 18924-18930. https://doi.org/10.1021/ja207440p
    29. Yu-Xiang Wang, Wen-Hao Wu, Feng-Yi Jiang, Wen-Bin Zhang. Mechanically Interlocked Biomacromolecules. Supramolecular Materials 2024, 3 , 100059. https://doi.org/10.1016/j.supmat.2023.100059
    30. Tania Gardasevic, Agnes Noy. The impact of sequence periodicity on DNA mechanics: investigating the origin of A-tract's curvature. Nanoscale 2024, 16 (39) , 18410-18420. https://doi.org/10.1039/D4NR02571G
    31. Yinzhou Ma, Ze Yu, Julián Valero. Recent Advances on Catenanes and Rotaxanes Made of DNA. 2024, 195-216. https://doi.org/10.1002/9783527828975.ch7
    32. Diego Becerra, Alexander R. Klotz, Lisa M. Hall. Single-molecule analysis of solvent-responsive mechanically interlocked ring polymers and the effects of nanoconfinement from coarse-grained simulations. The Journal of Chemical Physics 2024, 160 (11) https://doi.org/10.1063/5.0191295
    33. L. Tubiana, F. Ferrari, E. Orlandini. Circular Polycatenanes: Supramolecular Structures with Topologically Tunable Properties. Physical Review Letters 2022, 129 (22) https://doi.org/10.1103/PhysRevLett.129.227801
    34. Kazumitsu Onizuka, Yuuhei Yamano, Ahmed Mostafa Abdelhady, Fumi Nagatsugi. Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids. Organic & Biomolecular Chemistry 2022, 20 (23) , 4699-4708. https://doi.org/10.1039/D2OB00551D
    35. Arivazhagan Rajendran, Kirankumar Krishnamurthy, Seojeong Park, Eiji Nakata, Youngjoo Kwon, Takashi Morii. Topologically‐Interlocked Minicircles as Probes of DNA Topology and DNA‐Protein Interactions. Chemistry – A European Journal 2022, 28 (22) https://doi.org/10.1002/chem.202200108
    36. Soumya Chandrasekhar, Praneetha Sundar Prakash, Thorsten‐Lars Schmidt. Stability and Stabilization of DNA Nanostructures in Biomedical Applications. 2022, 333-377. https://doi.org/10.1002/9781119682561.ch16
    37. Minjung Kim, Chi Cheng Hong, Saeyeon Lee, Jun Soo Kim. Dynamics of a DNA minicircle: Poloidal rotation and in‐plane circular vibration. Bulletin of the Korean Chemical Society 2022, 43 (4) , 523-528. https://doi.org/10.1002/bkcs.12492
    38. Minjung Kim, Sehui Bae, Inrok Oh, Jejoong Yoo, Jun Soo Kim. Sequence-dependent twist-bend coupling in DNA minicircles. Nanoscale 2021, 13 (47) , 20186-20196. https://doi.org/10.1039/D1NR04672A
    39. Jing-Ting Wu, Ran Liu, Yan-Ru Chen, Xiao-Qi Zheng, Zai-Sheng Wu. The hierarchical assembly of a multi-level DNA ring-based nanostructure in a precise order and its application for screening tumor cells. Biomaterials Science 2021, 9 (6) , 2262-2270. https://doi.org/10.1039/D0BM00085J
    40. David Winogradoff, Pin‐Yi Li, Himanshu Joshi, Lauren Quednau, Christopher Maffeo, Aleksei Aksimentiev. Chiral Systems Made from DNA. Advanced Science 2021, 8 (5) https://doi.org/10.1002/advs.202003113
    41. Runjhun Saran, Yong Wang, Isaac T. S. Li. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. Sensors 2020, 20 (24) , 7019. https://doi.org/10.3390/s20247019
    42. Chang Xue, Songbai Zhang, Xin Yu, Shuyao Hu, Yi Lu, Zai‐Sheng Wu. Periodically Ordered, Nuclease‐Resistant DNA Nanowires Decorated with Cell‐Specific Aptamers as Selective Theranostic Agents. Angewandte Chemie International Edition 2020, 59 (40) , 17540-17547. https://doi.org/10.1002/anie.202004805
    43. Chang Xue, Songbai Zhang, Xin Yu, Shuyao Hu, Yi Lu, Zai‐Sheng Wu. Periodically Ordered, Nuclease‐Resistant DNA Nanowires Decorated with Cell‐Specific Aptamers as Selective Theranostic Agents. Angewandte Chemie 2020, 132 (40) , 17693-17700. https://doi.org/10.1002/ange.202004805
    44. Yajie Liu, Zelin Duan, Jing Fang, Fan Zhang, Junyu Xiao, Wen‐Bin Zhang. Cellular Synthesis and X‐ray Crystal Structure of a Designed Protein Heterocatenane. Angewandte Chemie International Edition 2020, 59 (37) , 16122-16127. https://doi.org/10.1002/anie.202005490
    45. Yajie Liu, Zelin Duan, Jing Fang, Fan Zhang, Junyu Xiao, Wen‐Bin Zhang. Cellular Synthesis and X‐ray Crystal Structure of a Designed Protein Heterocatenane. Angewandte Chemie 2020, 132 (37) , 16256-16261. https://doi.org/10.1002/ange.202005490
    46. Yinzhou Ma, Mathias Centola, Daniel Keppner, Michael Famulok. Interlocked DNA Nanojoints for Reversible Thermal Sensing. Angewandte Chemie 2020, 132 (30) , 12555-12559. https://doi.org/10.1002/ange.202003991
    47. Yinzhou Ma, Mathias Centola, Daniel Keppner, Michael Famulok. Interlocked DNA Nanojoints for Reversible Thermal Sensing. Angewandte Chemie International Edition 2020, 59 (30) , 12455-12459. https://doi.org/10.1002/anie.202003991
    48. Jiuxing Li, Mostafa Mohammed‐Elsabagh, Freeman Paczkowski, Yingfu Li. Circular Nucleic Acids: Discovery, Functions and Applications. ChemBioChem 2020, 21 (11) , 1547-1566. https://doi.org/10.1002/cbic.202000003
    49. Lin Li, Ran An, Jiaxuan Tang, Zhe Sui, Guoqing Wang, Makoto Komiyama, Xingguo Liang. Facile Characterization of Topology of DNA Catenanes. Biophysical Journal 2020, 118 (7) , 1702-1708. https://doi.org/10.1016/j.bpj.2020.02.006
    50. Andreas Peil, Pengfei Zhan, Na Liu. DNA Origami Catenanes Templated by Gold Nanoparticles. Small 2020, 16 (6) https://doi.org/10.1002/smll.201905987
    51. Ali Jahanban-Esfahlan, Khaled Seidi, Mehdi Jaymand, Thorsten L. Schmidt, Hasan Majdi, Tahereh Javaheri, Rana Jahanban-Esfahlan, Peyman Zare. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. Journal of Controlled Release 2019, 315 , 166-185. https://doi.org/10.1016/j.jconrel.2019.10.003
    52. Yusuke Kawamoto. Introduction: Sequence-Specific DNA Binding Pyrrole–Imidazole Polyamides and Their Applications. 2019, 1-41. https://doi.org/10.1007/978-981-13-6912-4_1
    53. Xiaodong Qi, Fei Zhang, Zhaoming Su, Shuoxing Jiang, Dongran Han, Baoquan Ding, Yan Liu, Wah Chiu, Peng Yin, Hao Yan. Programming molecular topologies from single-stranded nucleic acids. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07039-7
    54. Katarina Iric, Madhumalar Subramanian, Jana Oertel, Nayan P. Agarwal, Michael Matthies, Xavier Periole, Thomas P. Sakmar, Thomas Huber, Karim Fahmy, Thorsten L. Schmidt. DNA-encircled lipid bilayers. Nanoscale 2018, 10 (39) , 18463-18467. https://doi.org/10.1039/C8NR06505E
    55. Brad A. Krajina, Audrey Zhu, Sarah C. Heilshorn, Andrew J. Spakowitz. Active DNA Olympic Hydrogels Driven by Topoisomerase Activity. Physical Review Letters 2018, 121 (14) https://doi.org/10.1103/PhysRevLett.121.148001
    56. Kazumitsu Onizuka, Takuya Miyashita, Tomoko Chikuni, Mamiko Ozawa, Hiroshi Abe, Fumi Nagatsugi. Structural optimization of pseudorotaxane-forming oligonucleotides for efficient and stable complex formation. Nucleic Acids Research 2018, 46 (17) , 8710-8719. https://doi.org/10.1093/nar/gky744
    57. Qi Li, Jing Li, Yixiao Cui, Sheng Liu, Ran An, Xingguo Liang, Makoto Komiyama. Two-Holder Strategy for Efficient and Selective Synthesis of Lk 1 ssDNA Catenane. Molecules 2018, 23 (9) , 2270. https://doi.org/10.3390/molecules23092270
    58. Chunlei Wu, Wei Wang, Lijing Fang, Wu Su. Programmable pyrrole-imidazole polyamides: A potent tool for DNA targeting. Chinese Chemical Letters 2018, 29 (7) , 1105-1112. https://doi.org/10.1016/j.cclet.2018.05.025
    59. Yusuke Kawamoto, Toshikazu Bando, Hiroshi Sugiyama. Sequence-specific DNA binding Pyrrole–imidazole polyamides and their applications. Bioorganic & Medicinal Chemistry 2018, 26 (8) , 1393-1411. https://doi.org/10.1016/j.bmc.2018.01.026
    60. Nikolai Grebenovsky, Thomas Goldau, Michael Bolte, Alexander Heckel. Light Regulation of DNA Minicircle Dimerization by Utilizing Azobenzene C ‐Nucleosides. Chemistry – A European Journal 2018, 24 (14) , 3425-3428. https://doi.org/10.1002/chem.201706003
    61. Bastian Joffroy, Yavuz O Uca, Domen Prešern, Jonathan P. K Doye, Thorsten L Schmidt. Rolling circle amplification shows a sinusoidal template length-dependent amplification bias. Nucleic Acids Research 2018, 46 (2) , 538-545. https://doi.org/10.1093/nar/gkx1238
    62. Qi Li, Guangqi Wu, Yanyan Yang, Ran An, Jing Li, Xingguo Liang, Makoto Komiyama. Topology- and linking number-controlled synthesis of a closed 3 link chain of single-stranded DNA. Chemical Communications 2018, 54 (72) , 10156-10159. https://doi.org/10.1039/C8CC04965C
    63. Julián Valero, Finn Lohmann, Michael Famulok. Interlocked DNA topologies for nanotechnology. Current Opinion in Biotechnology 2017, 48 , 159-167. https://doi.org/10.1016/j.copbio.2017.04.002
    64. Yuwei Hu, Alessandro Cecconello, Andrea Idili, Francesco Ricci, Itamar Willner. Triplex‐DNA‐Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angewandte Chemie 2017, 129 (48) , 15410-15434. https://doi.org/10.1002/ange.201701868
    65. Yuwei Hu, Alessandro Cecconello, Andrea Idili, Francesco Ricci, Itamar Willner. Triplex DNA Nanostructures: From Basic Properties to Applications. Angewandte Chemie International Edition 2017, 56 (48) , 15210-15233. https://doi.org/10.1002/anie.201701868
    66. Xiao‐Wei Wang, Wen‐Bin Zhang. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angewandte Chemie 2017, 129 (45) , 14173-14177. https://doi.org/10.1002/ange.201705194
    67. Xiao‐Wei Wang, Wen‐Bin Zhang. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angewandte Chemie International Edition 2017, 56 (45) , 13985-13989. https://doi.org/10.1002/anie.201705194
    68. Daniel Lazarev, Fredy R. Zypman. Charge and size of a ring in an electrolyte with atomic force microscopy. Journal of Electrostatics 2017, 87 , 243-250. https://doi.org/10.1016/j.elstat.2017.05.004
    69. Nayan P. Agarwal, Michael Matthies, Fatih N. Gür, Kensuke Osada, Thorsten L. Schmidt. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angewandte Chemie 2017, 129 (20) , 5552-5556. https://doi.org/10.1002/ange.201608873
    70. Nayan P. Agarwal, Michael Matthies, Fatih N. Gür, Kensuke Osada, Thorsten L. Schmidt. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angewandte Chemie International Edition 2017, 56 (20) , 5460-5464. https://doi.org/10.1002/anie.201608873
    71. Meng Liu, Qiang Zhang, Zhongping Li, Jimmy Gu, John D. Brennan, Yingfu Li. Programming a topologically constrained DNA nanostructure into a sensor. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12074
    72. . The Fundamentals of Making Mechanical Bonds. 2016, 55-268. https://doi.org/10.1002/9781119044123.ch2
    73. Di Liu, Gang Chen, Usman Akhter, Timothy M. Cronin, Yossi Weizmann. Creating complex molecular topologies by configuring DNA four-way junctions. Nature Chemistry 2016, 8 (10) , 907-914. https://doi.org/10.1038/nchem.2564
    74. Zai‐Sheng Wu, Zhifa Shen, Kha Tram, Bruno J. Salena, Yingfu Li. Topological DNA Assemblies Containing Identical or Fraternal Twins. ChemBioChem 2016, 17 (12) , 1142-1145. https://doi.org/10.1002/cbic.201600036
    75. Meng Wang, Xin Guo, Chuan Jiang, Xuemei Wang, Shou‐Jun Xiao. In‐Phase Assembly of Slim DNA Lattices with Small Circular DNA Motifs via Short Connections of 11 and 16 Base Pairs. ChemBioChem 2016, 17 (12) , 1132-1137. https://doi.org/10.1002/cbic.201600054
    76. Qi Li, Guangqi Wu, Wei Wu, Xingguo Liang. Efficient Synthesis of Topologically Linked Three‐Ring DNA Catenanes. ChemBioChem 2016, 17 (12) , 1127-1131. https://doi.org/10.1002/cbic.201600071
    77. Julián Valero, Finn Lohmann, Daniel Keppner, Michael Famulok. Single‐Stranded Tile Stoppers for Interlocked DNA Architectures. ChemBioChem 2016, 17 (12) , 1146-1149. https://doi.org/10.1002/cbic.201500685
    78. Johannes Weigandt, Chia‐Ling Chung, Stefan‐S. Jester, Michael Famulok. Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures. Angewandte Chemie 2016, 128 (18) , 5602-5606. https://doi.org/10.1002/ange.201601042
    79. Johannes Weigandt, Chia‐Ling Chung, Stefan‐S. Jester, Michael Famulok. Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures. Angewandte Chemie International Edition 2016, 55 (18) , 5512-5516. https://doi.org/10.1002/anie.201601042
    80. Xie Han, Guotao Liu, Sheng Hua Liu, Jun Yin. Synthesis of rotaxanes and catenanes using an imine clipping reaction. Organic & Biomolecular Chemistry 2016, 14 (44) , 10331-10351. https://doi.org/10.1039/C6OB01581F
    81. Xue Gong, Wenjiao Zhou, Daxiu Li, Yaqin Chai, Yun Xiang, Ruo Yuan. RNA-regulated molecular tweezers for sensitive fluorescent detection of microRNA from cancer cells. Biosensors and Bioelectronics 2015, 71 , 98-102. https://doi.org/10.1016/j.bios.2015.04.003
    82. Valentina Cassinelli, Birgit Oberleitner, Jessica Sobotta, Philipp Nickels, Guido Grossi, Susanne Kempter, Thomas Frischmuth, Tim Liedl, Antonio Manetto. One‐Step Formation of “Chain‐Armor”‐Stabilized DNA Nanostructures. Angewandte Chemie International Edition 2015, 54 (27) , 7795-7798. https://doi.org/10.1002/anie.201500561
    83. Valentina Cassinelli, Birgit Oberleitner, Jessica Sobotta, Philipp Nickels, Guido Grossi, Susanne Kempter, Thomas Frischmuth, Tim Liedl, Antonio Manetto. Eintopfsynthese von “Kettenhemd”‐stabilisierten DNA‐Nanostrukturen. Angewandte Chemie 2015, 127 (27) , 7905-7909. https://doi.org/10.1002/ange.201500561
    84. Brian Janssen, Sven Van Ommeren, Maarten Merkx. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation. International Journal of Molecular Sciences 2015, 16 (6) , 12631-12647. https://doi.org/10.3390/ijms160612631
    85. Thomas Goldau, Keiji Murayama, Clara Brieke, Sabrina Steinwand, Padmabati Mondal, Mithun Biswas, Irene Burghardt, Josef Wachtveitl, Hiroyuki Asanuma, Alexander Heckel. Reversible Photoswitching of RNA Hybridization at Room Temperature with an Azobenzene C ‐Nucleoside. Chemistry – A European Journal 2015, 21 (7) , 2845-2854. https://doi.org/10.1002/chem.201405840
    86. Tao Li, Finn Lohmann, Michael Famulok. Interlocked DNA nanostructures controlled by a reversible logic circuit. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms5940
    87. Zai-Sheng Wu, Zhifa Shen, Kha Tram, Yingfu Li. Engineering interlocking DNA rings with weak physical interactions. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms5279
    88. Finn Lohmann, Johannes Weigandt, Julián Valero, Michael Famulok. Logic Gating by Macrocycle Displacement Using a Double‐Stranded DNA [3]Rotaxane Shuttle. Angewandte Chemie International Edition 2014, 53 (39) , 10372-10376. https://doi.org/10.1002/anie.201405447
    89. Finn Lohmann, Johannes Weigandt, Julián Valero, Michael Famulok. Logic Gating by Macrocycle Displacement Using a Double‐Stranded DNA [3]Rotaxane Shuttle. Angewandte Chemie 2014, 126 (39) , 10540-10544. https://doi.org/10.1002/ange.201405447
    90. Tanja Nöll, Holger Schönherr, Daniel Wesner, Michael Schopferer, Thomas Paululat, Gilbert Nöll. Construction of Three‐Dimensional DNA Hydrogels from Linear Building Blocks. Angewandte Chemie International Edition 2014, 53 (32) , 8328-8332. https://doi.org/10.1002/anie.201402497
    91. Tanja Nöll, Holger Schönherr, Daniel Wesner, Michael Schopferer, Thomas Paululat, Gilbert Nöll. Construction of Three‐Dimensional DNA Hydrogels from Linear Building Blocks. Angewandte Chemie 2014, 126 (32) , 8468-8472. https://doi.org/10.1002/ange.201402497
    92. Chun‐Hua Lu, Xiu‐Juan Qi, Alessandro Cecconello, Stefan‐Sven Jester, Michael Famulok, Itamar Willner. Switchable Reconfiguration of an Interlocked DNA Olympiadane Nanostructure. Angewandte Chemie International Edition 2014, 53 (29) , 7499-7503. https://doi.org/10.1002/anie.201403202
    93. Chun‐Hua Lu, Xiu‐Juan Qi, Alessandro Cecconello, Stefan‐Sven Jester, Michael Famulok, Itamar Willner. Switchable Reconfiguration of an Interlocked DNA Olympiadane Nanostructure. Angewandte Chemie 2014, 126 (29) , 7629-7633. https://doi.org/10.1002/ange.201403202
    94. Xisen Hou, Chenfeng Ke, Chuyang Cheng, Nan Song, Anthea K. Blackburn, Amy A. Sarjeant, Youssry Y. Botros, Ying-Wei Yang, J. Fraser Stoddart. Efficient syntheses of pillar[6]arene-based hetero[4]rotaxanes using a cooperative capture strategy. Chem. Commun. 2014, 50 (47) , 6196-6199. https://doi.org/10.1039/C4CC00733F
    95. Xiu-Juan Qi, Chun-Hua Lu, Alessandro Cecconello, Huang-Hao Yang, Itamar Willner. A two-ring interlocked DNA catenane rotor undergoing switchable transitions across three states. Chem. Commun. 2014, 50 (36) , 4717-4720. https://doi.org/10.1039/C4CC00880D
    96. Finn Lohmann, Julián Valero, Michael Famulok. A novel family of structurally stable double stranded DNA catenanes. Chem. Commun. 2014, 50 (46) , 6091-6093. https://doi.org/10.1039/C4CC02030H
    97. Nicholas H. Evans, Paul D. Beer. Progress in the synthesis and exploitation of catenanes since the Millennium. Chemical Society Reviews 2014, 43 (13) , 4658. https://doi.org/10.1039/c4cs00029c
    98. Zhen-Gang Wang, Baoquan Ding. Mechanical DNA Devices. 2014, 201-242. https://doi.org/10.1007/978-3-642-38815-6_8
    99. Fuan Wang, Bilha Willner, Itamar Willner. DNA-Based Machines. 2014, 279-338. https://doi.org/10.1007/128_2013_515
    100. Wu Su, Clive R. Bagshaw, Glenn A. Burley. Addressable and unidirectional energy transfer along a DNA three-way junction programmed by pyrrole-imidazole polyamides. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01883
    Load all citations

    Nano Letters

    Cite this: Nano Lett. 2011, 11, 4, 1739–1742
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl200303m
    Published March 16, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    4390

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.