ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Debye Screening in Single-Molecule Carbon Nanotube Field-Effect Sensors

View Author Information
Department of Electrical Engineering and Department of Chemistry, Columbia University, New York, New York 10027, United States
Cite this: Nano Lett. 2011, 11, 9, 3739–3743
Publication Date (Web):August 1, 2011
https://doi.org/10.1021/nl201781q
Copyright © 2011 American Chemical Society

    Article Views

    2642

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough gate potentials, the target DNA is completely repelled and RTN is suppressed.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional information on modeling electrostatics of DNA molecules, device variability, on-chip pseudoreference electrode, and microfluidic setup. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 82 publications.

    1. Sukjin S. Jang, Sarah Dubnik, Jason Hon, Björn Hellenkamp, David G. Lynall, Kenneth L. Shepard, Colin Nuckolls, Ruben L. Gonzalez, Jr.. Characterizing the Conformational Free-Energy Landscape of RNA Stem-Loops Using Single-Molecule Field-Effect Transistors. Journal of the American Chemical Society 2023, 145 (1) , 402-412. https://doi.org/10.1021/jacs.2c10218
    2. Benjamin Barnes, Peng Wang, YuHuang Wang. Parallel Field-Effect Nanosensors Detect Trace Biomarkers Rapidly at Physiological High-Ionic-Strength Conditions. ACS Sensors 2022, 7 (9) , 2537-2544. https://doi.org/10.1021/acssensors.2c00229
    3. Yu Li, Lihua Zhao, Yuan Yao, Xuefeng Guo. Single-Molecule Nanotechnologies: An Evolution in Biological Dynamics Detection. ACS Applied Bio Materials 2020, 3 (1) , 68-85. https://doi.org/10.1021/acsabm.9b00840
    4. Cheng Wang, Jingjing Wu, Yashuo He, Ze Song, Sumeng Shi, Yibo Zhu, Yuan Jia, Weixiang Ye. Fully Solid-State Graphene Transistors with Striking Homogeneity and Sensitivity for the Practicalization of Single-Device Electronic Bioassays. Nano Letters 2020, 20 (1) , 166-175. https://doi.org/10.1021/acs.nanolett.9b03528
    5. Yoonhee Lee, Scott M. Trocchia, Steven B. Warren, Erik F. Young, Sefi Vernick, Kenneth L. Shepard. Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays. ACS Nano 2018, 12 (10) , 9922-9930. https://doi.org/10.1021/acsnano.8b03073
    6. Yao Zhang, Rui Ma, Xue V. Zhen, Yogish C. Kudva, Philippe Bühlmann, and Steven J. Koester . Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors. ACS Applied Materials & Interfaces 2017, 9 (44) , 38863-38869. https://doi.org/10.1021/acsami.7b14864
    7. Weiwei Zhou and Peter J. Burke . Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices. ACS Applied Materials & Interfaces 2017, 9 (17) , 14618-14632. https://doi.org/10.1021/acsami.7b00268
    8. Carl H. Naylor, Nicholas J. Kybert, Camilla Schneier, Jin Xi, Gabriela Romero, Jeffery G. Saven, Renyu Liu, and A. T. Charlie Johnson . Scalable Production of Molybdenum Disulfide Based Biosensors. ACS Nano 2016, 10 (6) , 6173-6179. https://doi.org/10.1021/acsnano.6b02137
    9. Dong Xiang, Xiaolong Wang, Chuancheng Jia, Takhee Lee, and Xuefeng Guo . Molecular-Scale Electronics: From Concept to Function. Chemical Reviews 2016, 116 (7) , 4318-4440. https://doi.org/10.1021/acs.chemrev.5b00680
    10. Steven B. Warren, Sefi Vernick, Ethan Romano, and Kenneth L. Shepard . Complementary Metal-Oxide-Semiconductor Integrated Carbon Nanotube Arrays: Toward Wide-Bandwidth Single-Molecule Sensing Systems. Nano Letters 2016, 16 (4) , 2674-2679. https://doi.org/10.1021/acs.nanolett.6b00319
    11. Maxim V. Akhterov, Yongki Choi, Tivoli J. Olsen, Patrick C. Sims, Mariam Iftikhar, O. Tolga Gul, Brad L. Corso, Gregory A. Weiss, and Philip G. Collins . Observing Lysozyme’s Closing and Opening Motions by High-Resolution Single-Molecule Enzymology. ACS Chemical Biology 2015, 10 (6) , 1495-1501. https://doi.org/10.1021/cb500750v
    12. David D. Ordinario, Anthony M. Burke, Long Phan, Jonah-Micah Jocson, Hanfei Wang, Mary N. Dickson, and Alon A. Gorodetsky . Sequence Specific Detection of Restriction Enzymes at DNA-Modified Carbon Nanotube Field Effect Transistors. Analytical Chemistry 2014, 86 (17) , 8628-8633. https://doi.org/10.1021/ac501441d
    13. Alexandra M. Münzer, Wanji Seo, Gregory J. Morgan, Zachary P. Michael, Yong Zhao, Katharina Melzer, Giuseppe Scarpa, and Alexander Star . Sensing Reversible Protein–Ligand Interactions with Single-Walled Carbon Nanotube Field-Effect Transistors. The Journal of Physical Chemistry C 2014, 118 (31) , 17193-17199. https://doi.org/10.1021/jp503670a
    14. Yongki Choi, Tivoli J. Olsen, Patrick C. Sims, Issa S. Moody, Brad L. Corso, Mytrang N. Dang, Gregory A. Weiss, and Philip G. Collins . Dissecting Single-Molecule Signal Transduction in Carbon Nanotube Circuits with Protein Engineering. Nano Letters 2013, 13 (2) , 625-631. https://doi.org/10.1021/nl304209p
    15. Oh Seok Kwon, Seon Joo Park, Jun Seop Lee, Eunyu Park, Taejoon Kim, Hyun-Woo Park, Sun Ah You, Hyeonseok Yoon, and Jyongsik Jang . Multidimensional Conducting Polymer Nanotubes for Ultrasensitive Chemical Nerve Agent Sensing. Nano Letters 2012, 12 (6) , 2797-2802. https://doi.org/10.1021/nl204587t
    16. Girish S. Kulkarni and Zhaohui Zhong . Detection beyond the Debye Screening Length in a High-Frequency Nanoelectronic Biosensor. Nano Letters 2012, 12 (2) , 719-723. https://doi.org/10.1021/nl203666a
    17. Honglei Xue, Wanshuo Gao, Jianwei Gao, Grégory F Schneider, Chen Wang, Wangyang Fu. Radiofrequency sensing systems based on emerging two-dimensional materials and devices. International Journal of Extreme Manufacturing 2023, 5 (3) , 032010. https://doi.org/10.1088/2631-7990/acd88d
    18. Xinyue Chang, Yani Huo, Cong Zhao, Wanqi Sun, Ziqi Song, Ziyuan Qi, Jinying Wang, Chuancheng Jia, Xuefeng Guo. Single‐Molecule Electronic Biosensors: Principles and Applications. Advanced Sensor Research 2023, 2 (5) https://doi.org/10.1002/adsr.202200084
    19. Sybren Santermans, Geert Hellings, Marc Heyns, Willem Van Roy, Koen Martens. Unraveling the impact of nano-scaling on silicon field-effect transistors for the detection of single-molecules. Nanoscale 2023, 15 (5) , 2354-2368. https://doi.org/10.1039/D2NR05267A
    20. Alessandro Silvestri, Julian Zayas-Arrabal, Mariano Vera-Hidalgo, Desire Di Silvio, Cecilia Wetzl, Marta Martinez-Moro, Amaia Zurutuza, Elias Torres, Alba Centeno, Arantxa Maestre, Juan Manuel Gómez, María Arrastua, Marta Elicegui, Nerea Ontoso, Maurizio Prato, Ivan Coluzza, Alejandro Criado. Ultrasensitive detection of SARS-CoV-2 spike protein by graphene field-effect transistors. Nanoscale 2023, 15 (3) , 1076-1085. https://doi.org/10.1039/D2NR05103F
    21. X. Kang, X.W. Meng. Effect of carbon nanotube diameter on water transfer through disjoint carbon nanotubes in the lateral electric fields. Chemical Physics 2023, 565 , 111733. https://doi.org/10.1016/j.chemphys.2022.111733
    22. Chang‐Seuk Lee, Rebecca E. A. Gwyther, Mark Freeley, Dafydd Jones, Matteo Palma. Fabrication and Functionalisation of Nanocarbon‐Based Field‐Effect Transistor Biosensors. ChemBioChem 2022, 23 (23) https://doi.org/10.1002/cbic.202200282
    23. Deepa Bhatt, Siddhartha Panda. Dual‐gate ion‐sensitive field‐effect transistors: A review. Electrochemical Science Advances 2022, 2 (6) https://doi.org/10.1002/elsa.202100195
    24. Drew A. Hall, Nagaraj Ananthapadmanabhan, Chulmin Choi, Le Zheng, Paul P. Pan, Christoph Von Jutrzenka, Thuan Nguyen, Jose Rizo, Macklan Weinstein, Raymond Lobaton, Prem Sinha, Trevor Sauerbrey, Cruz Sigala, Kathryne Bailey, Paul J. Mudondo, Ashesh Ray Chaudhuri, Simone Severi, Carl W. Fuller, James M. Tour, Sungho Jin, Paul W. Mola, Barry Merriman. A Scalable CMOS Molecular Electronics Chip for Single-Molecule Biosensing. IEEE Transactions on Biomedical Circuits and Systems 2022, 16 (6) , 1030-1043. https://doi.org/10.1109/TBCAS.2022.3211420
    25. Zhuo Li, Parminder Kaur, Chen-Yu Lo, Neil Chopra, Jamie Smith, Hong Wang, Yang Gao. Structural and dynamic basis of DNA capture and translocation by mitochondrial Twinkle helicase. Nucleic Acids Research 2022, 50 (20) , 11965-11978. https://doi.org/10.1093/nar/gkac1089
    26. X. Kang, X.W. Meng, X.Q. Yang. Tunable transport of a methane-water mixture through a carbon nanotube. Chemical Physics 2022, 559 , 111544. https://doi.org/10.1016/j.chemphys.2022.111544
    27. Mingfeng Zhang, Zhibo Li, Yuan Jia, Fuquan Wang, Jinpeng Tian, Cuiping Zhang, Tingting Han, Ruiqing Xing, Weixiang Ye, Cheng Wang. Observing Mesoscopic Nucleic Acid Capacitance Effect and Mismatch Impact via Graphene Transistors. Small 2022, 18 (12) https://doi.org/10.1002/smll.202105890
    28. Sébastien Côté, Delphine Bouilly, Normand Mousseau. The molecular origin of the electrostatic gating of single-molecule field-effect biosensors investigated by molecular dynamics simulations. Physical Chemistry Chemical Physics 2022, 24 (7) , 4174-4186. https://doi.org/10.1039/D1CP04626H
    29. Carl W. Fuller, Pius S. Padayatti, Hadi Abderrahim, Lisa Adamiak, Nolan Alagar, Nagaraj Ananthapadmanabhan, Jihye Baek, Sarat Chinni, Chulmin Choi, Kevin J. Delaney, Rich Dubielzig, Julie Frkanec, Chris Garcia, Calvin Gardner, Daniel Gebhardt, Tim Geiser, Zachariah Gutierrez, Drew A. Hall, Andrew P. Hodges, Guangyuan Hou, Sonal Jain, Teresa Jones, Raymond Lobaton, Zsolt Majzik, Allen Marte, Prateek Mohan, Paul Mola, Paul Mudondo, James Mullinix, Thuan Nguyen, Frederick Ollinger, Sarah Orr, Yuxuan Ouyang, Paul Pan, Namseok Park, David Porras, Keshav Prabhu, Cassandra Reese, Travers Ruel, Trevor Sauerbrey, Jaymie R. Sawyer, Prem Sinha, Jacky Tu, A. G. Venkatesh, Sushmitha VijayKumar, Le Zheng, Sungho Jin, James M. Tour, George M. Church, Paul W. Mola, Barry Merriman. Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proceedings of the National Academy of Sciences 2022, 119 (5) https://doi.org/10.1073/pnas.2112812119
    30. Shuo Wang, Xin Qi, Danni Hao, Ramiro Moro, Yanqing Ma, Lei Ma. Review—Recent Advances in Graphene-Based Field-Effect-Transistor Biosensors: A Review on Biosensor Designing Strategy. Journal of The Electrochemical Society 2022, 169 (2) , 027509. https://doi.org/10.1149/1945-7111/ac4f24
    31. Qitao Hu, Si Chen, Paul Solomon, Zhen Zhang. Ion sensing with single charge resolution using sub–10-nm electrical double layer–gated silicon nanowire transistors. Science Advances 2021, 7 (49) https://doi.org/10.1126/sciadv.abj6711
    32. M. Bahri, B. Shi, K. Djebbi, M.A. Elaguech, D. Zhou, M. Ben Ali, C. Tlili, D. Wang. Toward clean and crackless polymer-assisted transfer of CVD-grown graphene and its recent advances in GFET-based biosensors. Materials Today Chemistry 2021, 22 , 100578. https://doi.org/10.1016/j.mtchem.2021.100578
    33. Hong Phan T. Nguyen, Thanihaichelvan Murugathas, Natalie O. V. Plank. Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors. Nanomaterials 2021, 11 (9) , 2280. https://doi.org/10.3390/nano11092280
    34. M Sanchez Miranda, R Lyttleton, P H Siu, S Diez, H Linke, A P Micolich. Prospects for single-molecule electrostatic detection in molecular motor gliding motility assays. New Journal of Physics 2021, 23 (6) , 065003. https://doi.org/10.1088/1367-2630/abfdf5
    35. Saisai Yuan, Tengyang Gao, Wenqiang Cao, Zhichao Pan, Junyang Liu, Jia Shi, Wenjing Hong. The Characterization of Electronic Noise in the Charge Transport through Single‐Molecule Junctions. Small Methods 2021, 5 (3) https://doi.org/10.1002/smtd.202001064
    36. Peihui Li, Chuancheng Jia, Xuefeng Guo. Structural Transition Dynamics in Carbon Electrode‐Based Single‐Molecule Junctions. Chinese Journal of Chemistry 2021, 39 (2) , 223-231. https://doi.org/10.1002/cjoc.202000529
    37. Anouk Béraud, Madline Sauvage, Claudia M. Bazán, Monique Tie, Amira Bencherif, Delphine Bouilly. Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. The Analyst 2021, 146 (2) , 403-428. https://doi.org/10.1039/D0AN01661F
    38. Shima Ghasemi, Kasper Moth-Poulsen. Single molecule electronic devices with carbon-based materials: status and opportunity. Nanoscale 2021, 13 (2) , 659-671. https://doi.org/10.1039/D0NR07844A
    39. Shi Luo, Da-Peng Wei, Da-Cheng Wei, , , . Applications of two-dimensional materials in bio-sensors. Acta Physica Sinica 2021, 70 (6) , 064701. https://doi.org/10.7498/aps.70.20201613
    40. Chiara Baldacchini, Antonino Francesco Montanarella, Luca Francioso, Maria Assunta Signore, Salvatore Cannistraro, Anna Rita Bizzarri. A Reliable BioFET Immunosensor for Detection of p53 Tumour Suppressor in Physiological-Like Environment. Sensors 2020, 20 (21) , 6364. https://doi.org/10.3390/s20216364
    41. . Integrating Molecular Functionalities into Electrical Circuits. 2020, 225-374. https://doi.org/10.1002/9783527818914.ch9
    42. Xiaoyan Zhang, Qiushi Jing, Shen Ao, Grégory F. Schneider, Dmitry Kireev, Zhengjun Zhang, Wangyang Fu. Ultrasensitive Field‐Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small 2020, 16 (15) https://doi.org/10.1002/smll.201902820
    43. Jonathan D. Bohbot, Sefi Vernick. The Emergence of Insect Odorant Receptor-Based Biosensors. Biosensors 2020, 10 (3) , 26. https://doi.org/10.3390/bios10030026
    44. S. S. Alabsi, Abdelaziz Yousif Ahmed, J. O. Dennis, M. H. Md Khir, A. S. Algamili. A Review of Carbon Nanotubes Field Effect-Based Biosensors. IEEE Access 2020, 8 , 69509-69521. https://doi.org/10.1109/ACCESS.2020.2987204
    45. Pei Lin, Laipan Zhu, Ding Li, Zhong Lin Wang. Defect repair for enhanced piezo-phototronic MoS 2 flexible phototransistors. Journal of Materials Chemistry C 2019, 7 (46) , 14731-14738. https://doi.org/10.1039/C9TC05337A
    46. Xuejun Wang, Zhuang Hao, Timothy R. Olsen, Wenjun Zhang, Qiao Lin. Measurements of aptamer–protein binding kinetics using graphene field-effect transistors. Nanoscale 2019, 11 (26) , 12573-12581. https://doi.org/10.1039/C9NR02797A
    47. Marta Neves, Daniel Martín-Yerga. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. Biosensors 2018, 8 (4) , 100. https://doi.org/10.3390/bios8040100
    48. Gen He, Jie Li, Chuanmin Qi, Xuefeng Guo. Single Nucleotide Polymorphism Genotyping in Single‐Molecule Electronic Circuits. Advanced Science 2017, 4 (11) https://doi.org/10.1002/advs.201700158
    49. Daniel Gruss, Alex Smolyanitsky, Michael Zwolak. Communication: Relaxation-limited electronic currents in extended reservoir simulations. The Journal of Chemical Physics 2017, 147 (14) https://doi.org/10.1063/1.4997022
    50. Wangyang Fu, Lingyan Feng, Gregory Panaitov, Dmitry Kireev, Dirk Mayer, Andreas Offenhäusser, Hans-Joachim Krause. Biosensing near the neutrality point of graphene. Science Advances 2017, 3 (10) https://doi.org/10.1126/sciadv.1701247
    51. Sefi Vernick, Scott M. Trocchia, Steven B. Warren, Erik F. Young, Delphine Bouilly, Ruben L. Gonzalez, Colin Nuckolls, Kenneth L. Shepard. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms15450
    52. Ying-Pin Wu, Chia-Jung Chu, Li-Chu Tsai, Ya-Wen Su, Pei-Hua Chen, Mathew K Moodley, Ding Huang, Yit-Tsong Chen, Ying-Jay Yang, Chii-Dong Chen. Detection of electrically neutral and nonpolar molecules in ionic solutions using silicon nanowires. Nanotechnology 2017, 28 (16) , 165501. https://doi.org/10.1088/1361-6528/aa63a6
    53. Jinglei Ping, Jin Xi, Jeffery G. Saven, Renyu Liu, A.T. Charlie Johnson. Quantifying the effect of ionic screening with protein-decorated graphene transistors. Biosensors and Bioelectronics 2017, 89 , 689-692. https://doi.org/10.1016/j.bios.2015.11.052
    54. Yijun Li, Cheng Wang, Yibo Zhu, Xiaohong Zhou, Yu Xiang, Miao He, Siyu Zeng. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosensors and Bioelectronics 2017, 89 , 758-763. https://doi.org/10.1016/j.bios.2016.10.061
    55. Wangyang Fu, Lin Jiang, Erik P. van Geest, Lia M. C. Lima, Grégory F. Schneider. Sensing at the Surface of Graphene Field‐Effect Transistors. Advanced Materials 2017, 29 (6) https://doi.org/10.1002/adma.201603610
    56. Shun Mao, Jingbo Chang, Haihui Pu, Ganhua Lu, Qiyuan He, Hua Zhang, Junhong Chen. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews 2017, 46 (22) , 6872-6904. https://doi.org/10.1039/C6CS00827E
    57. James E. Ellis, Alexander Star. Carbon Nanotube Based Gas Sensors toward Breath Analysis. ChemPlusChem 2016, 81 (12) , 1248-1265. https://doi.org/10.1002/cplu.201600478
    58. Wlodek Mandecki, Efrain “Frank” Rodriguez, Julie Drawbridge. Tagging of individual embryos with electronic p-Chips. Biomedical Microdevices 2016, 18 (6) https://doi.org/10.1007/s10544-016-0127-2
    59. Kumud Malika Tripathi, TaeYoung Kim, Dusan Losic, Tran Thanh Tung. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 2016, 110 , 97-129. https://doi.org/10.1016/j.carbon.2016.08.040
    60. Cheng Wang, Yijun Li, Yibo Zhu, Xiaohong Zhou, Qiao Lin, Miao He. High‐κ Solid‐Gate Transistor Configured Graphene Biosensor with Fully Integrated Structure and Enhanced Sensitivity. Advanced Functional Materials 2016, 26 (42) , 7668-7678. https://doi.org/10.1002/adfm.201602960
    61. O. Gül, Kaitlin Pugliese, Yongki Choi, Patrick Sims, Deng Pan, Arith Rajapakse, Gregory Weiss, Philip Collins. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths. Biosensors 2016, 6 (3) , 29. https://doi.org/10.3390/bios6030029
    62. Daniel Gruss, Kirill A. Velizhanin, Michael Zwolak. Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep24514
    63. Yong Lin Kong, Manu S. Mannoor, Michael C. McAlpine. Bionic Graphene Nanosensors. 2016, 269-297. https://doi.org/10.1007/978-3-319-22861-7_9
    64. Jie Li, Gen He, Hiroshi Ueno, Chuancheng Jia, Hiroyuki Noji, Chuanmin Qi, Xuefeng Guo. Direct real-time detection of single proteins using silicon nanowire-based electrical circuits. Nanoscale 2016, 8 (36) , 16172-16176. https://doi.org/10.1039/C6NR04103E
    65. Anjan Panneer Selvam, Shalini Prasad, Thomas W Barrett, Steven C Kazmierczak. Electrical nanowell diagnostics sensors for rapid and ultrasensitive detection of prostate-specific antigen. Nanomedicine 2015, 10 (16) , 2527-2536. https://doi.org/10.2217/nnm.15.100
    66. Arthur W. Snow, F. Keith Perkins, Mario G. Ancona, Jeremy T. Robinson, Eric S. Snow, Edward E. Foos. Disordered Nanomaterials for Chemielectric Vapor Sensing: A Review. IEEE Sensors Journal 2015, 15 (3) , 1301-1320. https://doi.org/10.1109/JSEN.2014.2364677
    67. Katharina Melzer, Giuseppe Scarpa. Organic thin-film transistors for biological applications. 2015, 34-48. https://doi.org/10.1017/CBO9781139629539.005
    68. Yongki Choi, Gregory A. Weiss, Philip G. Collins. Single-molecule bioelectronics. 2015, 66-85. https://doi.org/10.1017/CBO9781139629539.007
    69. Li Gao, Le-Le Li, Xiaolong Wang, Peiwen Wu, Yang Cao, Bo Liang, Xin Li, Yuanwei Lin, Yi Lu, Xuefeng Guo. Graphene–DNAzyme junctions: a platform for direct metal ion detection with ultrahigh sensitivity. Chemical Science 2015, 6 (4) , 2469-2473. https://doi.org/10.1039/C4SC03612C
    70. Xiaolong Wang, Li Gao, Bo Liang, Xin Li, Xuefeng Guo. Revealing the direct effect of individual intercalations on DNA conductance toward single-molecule electrical biodetection. Journal of Materials Chemistry B 2015, 3 (26) , 5150-5154. https://doi.org/10.1039/C5TB00666J
    71. Shiojenn Tseng, Yi-Hsuan Tai, Jyh-Ping Hsu. Ionic current in a pH-regulated nanochannel filled with multiple ionic species. Microfluidics and Nanofluidics 2014, 17 (5) , 933-941. https://doi.org/10.1007/s10404-014-1384-0
    72. Jindong Wang, Fangxia Shen, Zhenxing Wang, Gen He, Jinwen Qin, Nongyi Cheng, Maosheng Yao, Lidong Li, Xuefeng Guo. Point Decoration of Silicon Nanowires: An Approach Toward Single‐Molecule Electrical Detection. Angewandte Chemie 2014, 126 (20) , 5138-5143. https://doi.org/10.1002/ange.201309438
    73. Jindong Wang, Fangxia Shen, Zhenxing Wang, Gen He, Jinwen Qin, Nongyi Cheng, Maosheng Yao, Lidong Li, Xuefeng Guo. Point Decoration of Silicon Nanowires: An Approach Toward Single‐Molecule Electrical Detection. Angewandte Chemie International Edition 2014, 53 (20) , 5038-5043. https://doi.org/10.1002/anie.201309438
    74. Weiguo Huang, Kalpana Besar, Rachel LeCover, Pratima Dulloor, Jasmine Sinha, Josue F. Martínez Hardigree, Christian Pick, Julia Swavola, Allen D. Everett, Joelle Frechette, Michael Bevan, Howard E. Katz. Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer. Chem. Sci. 2014, 5 (1) , 416-426. https://doi.org/10.1039/C3SC52638K
    75. Duck‐Jin Kim, Hae‐Chul Park, Il Yung Sohn, Jin‐Heak Jung, Ok Ja Yoon, Joon‐Shik Park, Moon‐Young Yoon, Nae‐Eung Lee. Electrical Graphene Aptasensor for Ultra‐Sensitive Detection of Anthrax Toxin with Amplified Signal Transduction. Small 2013, 9 (19) , 3352-3360. https://doi.org/10.1002/smll.201203245
    76. Xuefeng Guo. Single‐Molecule Electrical Biosensors Based on Single‐Walled Carbon Nanotubes. Advanced Materials 2013, 25 (25) , 3397-3408. https://doi.org/10.1002/adma.201301219
    77. Yongki Choi, Gregory A. Weiss, Philip G. Collins. Single molecule recordings of lysozyme activity. Physical Chemistry Chemical Physics 2013, 15 (36) , 14879. https://doi.org/10.1039/c3cp51356d
    78. Andreas Menzel, Raphael J. Gübeli, Firat Güder, Wilfried Weber, Margit Zacharias. Detection of real-time dynamics of drug–target interactions by ultralong nanowalls. Lab on a Chip 2013, 13 (21) , 4173. https://doi.org/10.1039/c3lc50694k
    79. A. M. Münzer, M. Heimgreiter, K. Melzer, A. Weise, B. Fabel, A. Abdellah, P. Lugli, G. Scarpa. Back-gated spray-deposited carbon nanotube thin film transistors operated in electrolytic solutions: an assessment towards future biosensing applications. Journal of Materials Chemistry B 2013, 1 (31) , 3797. https://doi.org/10.1039/c3tb20170h
    80. Zishi Jiang, Sabyasachi Kar, Y. K. Ho. Energies and transition wavelengths for Li II , Be III , B IV , C V embedded in Debye plasmas. Physics of Plasmas 2012, 19 (3) https://doi.org/10.1063/1.3692085
    81. Yongki Choi, Issa S. Moody, Patrick C. Sims, Steven R. Hunt, Brad L. Corso, Israel Perez, Gregory A. Weiss, Philip G. Collins. Single-Molecule Lysozyme Dynamics Monitored by an Electronic Circuit. Science 2012, 335 (6066) , 319-324. https://doi.org/10.1126/science.1214824
    82. Mercè Pacios, Iñigo Martin-Fernandez, Xavier Borrisé, Manel del Valle, Jordi Bartrolí, Emilio Lora-Tamayo, Philippe Godignon, Francesc Pérez-Murano, María José Esplandiu. Real time protein recognition in a liquid-gated carbon nanotube field-effect transistor modified with aptamers. Nanoscale 2012, 4 (19) , 5917. https://doi.org/10.1039/c2nr31257c

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect