ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires

View Author Information
Department of Engineering Science and Mechanics and Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
§ Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: Nano Lett. 2012, 12, 4, 1953–1958
Publication Date (Web):March 22, 2012
https://doi.org/10.1021/nl204437t
Copyright © 2012 American Chemical Society

    Article Views

    3749

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)

    Abstract

    Abstract Image

    Recent independent experiments demonstrated that the lithiation-induced volume expansion in silicon nanowires, nanopillars, and microslabs is highly anisotropic, with predominant expansion along the ⟨110⟩ direction but negligibly small expansion along the ⟨111⟩ direction. The origin of such anisotropic behavior remains elusive. Here, we develop a chemomechanical model to study the phase evolution and morphological changes in lithiated silicon nanowires. The model couples the diffusive reaction of lithium with the lithiation-induced elasto-plastic deformation. We show that the apparent anisotropic swelling is critically controlled by the orientation-dependent mobility of the core–shell interface, i.e., the lithiation reaction rate at the atomically sharp phase boundary between the crystalline core and the amorphous shell. Our results also underscore the importance of structural relaxation by plastic flow behind the moving phase boundary, which is essential to quantitative prediction of the experimentally observed morphologies of lithiated silicon nanowires. The study sheds light on the lithiation-mediated failure in nanowire-based electrodes, and the modeling framework provides a basis for simulating the morphological evolution, stress generation, and fracture in high-capacity electrodes for the next-generation lithium-ion batteries.

    Cited By

    This article is cited by 201 publications.

    1. Yi-Xiu Chen, Hai-Chun Liao, Yin-Wei Cheng, Jun-Han Huang, Chuan-Pu Liu. Scalable Interlayer Nanostructure Design for High-Rate (10C) Submicron Silicon-Film Electrode by Incorporating Silver Nanoparticles. ACS Applied Materials & Interfaces 2023, 15 (15) , 18845-18856. https://doi.org/10.1021/acsami.2c23279
    2. Jingxu Zheng, Lynden A. Archer. Crystallographically Textured Electrodes for Rechargeable Batteries: Symmetry, Fabrication, and Characterization. Chemical Reviews 2022, 122 (18) , 14440-14470. https://doi.org/10.1021/acs.chemrev.2c00022
    3. Zimin She, Marianna Uceda, Michael A. Pope. Encapsulating a Responsive Hydrogel Core for Void Space Modulation in High-Stability Graphene-Wrapped Silicon Anodes. ACS Applied Materials & Interfaces 2022, 14 (8) , 10363-10372. https://doi.org/10.1021/acsami.1c23356
    4. Hyeon-Sik Jang, Tae-Hoon Kim, Byeong Geun Kim, Bo Hou, In-Hwan Lee, Su-Ho Jung, Jae-Hyun Lee, SeungNam Cha, Cheol-Woong Yang, Byung-Sung Kim, Dongmok Whang. Self-Catalytic Growth of Elementary Semiconductor Nanowires with Controlled Morphology and Crystallographic Orientation. Nano Letters 2021, 21 (23) , 9909-9915. https://doi.org/10.1021/acs.nanolett.1c02982
    5. Fei Shuang, Katerina E. Aifantis. A First Molecular Dynamics Study for Modeling the Microstructure and Mechanical Behavior of Si Nanopillars during Lithiation. ACS Applied Materials & Interfaces 2021, 13 (18) , 21310-21319. https://doi.org/10.1021/acsami.1c02977
    6. Xuli Ding, Daowei Liang, Xin Ai, Hongda Zhao, Ning Zhang, Xiaojing Chen, Jiahao Xu, Hui Yang. Synergistic Lithium Storage in Silica–Tin Composites Enables a Cycle-Stable and High-Capacity Anode for Lithium-Ion Batteries. ACS Applied Energy Materials 2021, 4 (3) , 2741-2750. https://doi.org/10.1021/acsaem.1c00023
    7. Jing Hu, Qi Wang, Liang Fu, Ranjusha Rajagopalan, Yan Cui, Hong Chen, Hongyan Yuan, Yougen Tang, Haiyan Wang. Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-like Structure as an Advanced Anode for Li-ion Batteries. ACS Applied Materials & Interfaces 2020, 12 (43) , 48467-48475. https://doi.org/10.1021/acsami.0c10418
    8. Sergei V. Kalinin, Ondrej Dyck, Nina Balke, Sabine Neumayer, Wan-Yu Tsai, Rama Vasudevan, David Lingerfelt, Mahshid Ahmadi, Maxim Ziatdinov, Matthew T. McDowell, Evgheni Strelcov. Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS Nano 2019, 13 (9) , 9735-9780. https://doi.org/10.1021/acsnano.9b02687
    9. Congli Sun, Kangning Zhao, Yang He, Jianming Zheng, Wangwang Xu, Chenyu Zhang, Xiang Wang, Mohan Guo, Liqiang Mai, Chongmin Wang, Meng Gu. Interconnected Vertically Stacked 2D-MoS2 for Ultrastable Cycling of Rechargeable Li-Ion Battery. ACS Applied Materials & Interfaces 2019, 11 (23) , 20762-20769. https://doi.org/10.1021/acsami.9b02359
    10. Jiakun Zhu, Mohan Guo, Yuemei Liu, Xiaobo Shi, Feifei Fan, Meng Gu, Hui Yang. In Situ TEM of Phosphorus-Dopant-Induced Nanopore Formation in Delithiated Silicon Nanowires. ACS Applied Materials & Interfaces 2019, 11 (19) , 17313-17320. https://doi.org/10.1021/acsami.8b20436
    11. Yong-Seok Choi, Jun-Hyoung Park, Jae-Pyoung Ahn, Jae-Chul Lee. Anisotropic Swelling Governed by Orientation-Dependent Interfacial Na Diffusion in Single-Crystalline Sb. Chemistry of Materials 2019, 31 (5) , 1696-1703. https://doi.org/10.1021/acs.chemmater.8b05099
    12. Young-Woon Byeon, Yong-Seok Choi, Jae-Pyoung Ahn, Jae-Chul Lee. Isotropic Sodiation Behaviors of Ultrafast-Chargeable Tin Crystals. ACS Applied Materials & Interfaces 2018, 10 (48) , 41389-41397. https://doi.org/10.1021/acsami.8b15758
    13. Shaobo Han, Jing Wang, Xiaobo Shi, Mohan Guo, Hong Wang, Chongmin Wang, Meng Gu. Morphology-Controlled Discharge Profile and Reversible Cu Extrusion and Dissolution in Biomimetic CuS. ACS Applied Materials & Interfaces 2018, 10 (48) , 41458-41464. https://doi.org/10.1021/acsami.8b17387
    14. Xiaobo Shi, Jiakun Zhu, Yu Xia, Feifei Fan, Fucai Zhang, Meng Gu, Hui Yang. Ultrahigh Malleability of the Lithiation-Induced LixSi Phase. ACS Applied Energy Materials 2018, 1 (8) , 4211-4220. https://doi.org/10.1021/acsaem.8b00841
    15. Yong-Seok Choi, Young-Woon Byeon, Jun-Hyoung Park, Jong-Hyun Seo, Jae-Pyoung Ahn, and Jae-Chul Lee . Ultrafast Sodiation of Single-Crystalline Sn Anodes. ACS Applied Materials & Interfaces 2018, 10 (1) , 560-568. https://doi.org/10.1021/acsami.7b14680
    16. Tianwu Chen, Peng Zhao, Xu Guo, and Sulin Zhang . Two-Fold Anisotropy Governs Morphological Evolution and Stress Generation in Sodiated Black Phosphorus for Sodium Ion Batteries. Nano Letters 2017, 17 (4) , 2299-2306. https://doi.org/10.1021/acs.nanolett.6b05033
    17. Kai Xiang, Wenting Xing, Dorthe B. Ravnsbæk, Liang Hong, Ming Tang, Zheng Li, Kamila M. Wiaderek, Olaf J. Borkiewicz, Karena W. Chapman, Peter J. Chupas, and Yet-Ming Chiang . Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4. Nano Letters 2017, 17 (3) , 1696-1702. https://doi.org/10.1021/acs.nanolett.6b04971
    18. Kwang Jin Kim and Yue Qi . Vacancies in Si Can Improve the Concentration-Dependent Lithiation Rate: Molecular Dynamics Studies of Lithiation Dynamics of Si Electrodes. The Journal of Physical Chemistry C 2015, 119 (43) , 24265-24275. https://doi.org/10.1021/acs.jpcc.5b06953
    19. Sung Joo Kim, Alireza Kargar, Deli Wang, George W. Graham, and Xiaoqing Pan . Lithiation of Rutile TiO2-Coated Si NWs Observed by in Situ TEM. Chemistry of Materials 2015, 27 (20) , 6929-6933. https://doi.org/10.1021/acs.chemmater.5b02565
    20. Langli Luo, Peng Zhao, Hui Yang, Borui Liu, Ji-Guang Zhang, Yi Cui, Guihua Yu, Sulin Zhang, and Chong-Min Wang . Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries. Nano Letters 2015, 15 (10) , 7016-7022. https://doi.org/10.1021/acs.nanolett.5b03047
    21. Xiaotang Lu, Timothy D. Bogart, Meng Gu, Chongmin Wang, and Brian A. Korgel . In Situ TEM Observations of Sn-Containing Silicon Nanowires Undergoing Reversible Pore Formation Due to Fast Lithiation/Delithiation Kinetics. The Journal of Physical Chemistry C 2015, 119 (38) , 21889-21895. https://doi.org/10.1021/acs.jpcc.5b06386
    22. Langli Luo, Hui Yang, Pengfei Yan, Jonathan J. Travis, Younghee Lee, Nian Liu, Daniela Molina Piper, Se-Hee Lee, Peng Zhao, Steven M. George, Ji-Guang Zhang, Yi Cui, Sulin Zhang, Chunmei Ban, and Chong-Min Wang . Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery. ACS Nano 2015, 9 (5) , 5559-5566. https://doi.org/10.1021/acsnano.5b01681
    23. Jinyun Liu, Nan Li, Matthew D. Goodman, Hui Gang Zhang, Eric S. Epstein, Bo Huang, Zeng Pan, Jinwoo Kim, Jun Hee Choi, Xingjiu Huang, Jinhuai Liu, K. Jimmy Hsia, Shen J. Dillon, and Paul V. Braun . Mechanically and Chemically Robust Sandwich-Structured C@Si@C Nanotube Array Li-Ion Battery Anodes. ACS Nano 2015, 9 (2) , 1985-1994. https://doi.org/10.1021/nn507003z
    24. Hyun Jung, Minho Lee, Byung Chul Yeo, Kwang-Ryeol Lee, and Sang Soo Han . Atomistic Observation of the Lithiation and Delithiation Behaviors of Silicon Nanowires Using Reactive Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2015, 119 (7) , 3447-3455. https://doi.org/10.1021/jp5094756
    25. Kai He, Huolin L. Xin, Kejie Zhao, Xiqian Yu, Dennis Nordlund, Tsu-Chien Weng, Jing Li, Yi Jiang, Christopher A. Cadigan, Ryan M. Richards, Marca M. Doeff, Xiao-Qing Yang, Eric A. Stach, Ju Li, Feng Lin, and Dong Su . Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials. Nano Letters 2015, 15 (2) , 1437-1444. https://doi.org/10.1021/nl5049884
    26. Georgiana Sandu, Laurence Brassart, Jean-François Gohy, Thomas Pardoen, Sorin Melinte, and Alexandru Vlad . Surface Coating Mediated Swelling and Fracture of Silicon Nanowires during Lithiation. ACS Nano 2014, 8 (9) , 9427-9436. https://doi.org/10.1021/nn503564r
    27. Lifen Wang, Donghua Liu, Shize Yang, Xuezeng Tian, Guangyu Zhang, Wenlong Wang, Enge Wang, Zhi Xu, and Xuedong Bai . Exotic Reaction Front Migration and Stage Structure in Lithiated Silicon Nanowires. ACS Nano 2014, 8 (8) , 8249-8254. https://doi.org/10.1021/nn502621k
    28. Meng Gu, Hui Yang, Daniel E. Perea, Ji-Guang Zhang, Sulin Zhang, and Chong-Min Wang . Bending-Induced Symmetry Breaking of Lithiation in Germanium Nanowires. Nano Letters 2014, 14 (8) , 4622-4627. https://doi.org/10.1021/nl501680w
    29. Qianqian Li, Peng Wang, Qiong Feng, Minmin Mao, Jiabin Liu, Scott X. Mao, and Hongtao Wang . In Situ TEM on the Reversibility of Nanosized Sn Anodes during the Electrochemical Reaction. Chemistry of Materials 2014, 26 (14) , 4102-4108. https://doi.org/10.1021/cm5009448
    30. Qi Gao, Meng Gu, Anmin Nie, Farzad Mashayek, Chongmin Wang, Gregory M. Odegard, and Reza Shahbazian-Yassar . Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes. Chemistry of Materials 2014, 26 (4) , 1660-1669. https://doi.org/10.1021/cm403951b
    31. Meng Gu, Lucas R. Parent, B. Layla Mehdi, Raymond R. Unocic, Matthew T. McDowell, Robert L. Sacci, Wu Xu, Justin Grant Connell, Pinghong Xu, Patricia Abellan, Xilin Chen, Yaohui Zhang, Daniel E. Perea, James E. Evans, Lincoln J. Lauhon, Ji-Guang Zhang, Jun Liu, Nigel D. Browning, Yi Cui, Ilke Arslan, and Chong-Min Wang . Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes. Nano Letters 2013, 13 (12) , 6106-6112. https://doi.org/10.1021/nl403402q
    32. Wentao Liang, Liang Hong, Hui Yang, FeiFei Fan, Yang Liu, Hong Li, Ju Li, Jian Yu Huang, Long-Qing Chen, Ting Zhu, and Sulin Zhang . Nanovoid Formation and Annihilation in Gallium Nanodroplets under Lithiation–Delithiation Cycling. Nano Letters 2013, 13 (11) , 5212-5217. https://doi.org/10.1021/nl402644w
    33. Yong Jae Cho, Hyung Soon Im, Han Sung Kim, Yoon Myung, Seung Hyuk Back, Young Rok Lim, Chan Su Jung, Dong Myung Jang, Jeunghee Park, Eun Hee Cha, Won Il Cho, Fazel Shojaei, and Hong Seok Kang . Tetragonal Phase Germanium Nanocrystals in Lithium Ion Batteries. ACS Nano 2013, 7 (10) , 9075-9084. https://doi.org/10.1021/nn403674z
    34. Yang Liu, Xiao Hua Liu, Binh-Minh Nguyen, Jinkyoung Yoo, John P. Sullivan, S. Tom Picraux, Jian Yu Huang, and Shadi A. Dayeh . Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale. Nano Letters 2013, 13 (10) , 4876-4883. https://doi.org/10.1021/nl4027549
    35. Anmin Nie, Li-Yong Gan, Yingchun Cheng, Hasti Asayesh-Ardakani, Qianqian Li, Cezhou Dong, Runzhe Tao, Farzad Mashayek, Hong-Tao Wang, Udo Schwingenschlögl, Robert F. Klie, and Reza S. Yassar . Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO2 Materials. ACS Nano 2013, 7 (7) , 6203-6211. https://doi.org/10.1021/nn402125e
    36. Meng Gu, Zhiguo Wang, Justin G. Connell, Daniel E. Perea, Lincoln J. Lauhon, Fei Gao, and Chongmin Wang . Electronic Origin for the Phase Transition from Amorphous LixSi to Crystalline Li15Si4. ACS Nano 2013, 7 (7) , 6303-6309. https://doi.org/10.1021/nn402349j
    37. Ekin D. Cubuk, Wei L. Wang, Kejie Zhao, Joost J. Vlassak, Zhigang Suo, and Efthimios Kaxiras . Morphological Evolution of Si Nanowires upon Lithiation: A First-Principles Multiscale Model. Nano Letters 2013, 13 (5) , 2011-2015. https://doi.org/10.1021/nl400132q
    38. Wentao Liang, Hui Yang, Feifei Fan, Yang Liu, Xiao Hua Liu, Jian Yu Huang, Ting Zhu, and Sulin Zhang . Tough Germanium Nanoparticles under Electrochemical Cycling. ACS Nano 2013, 7 (4) , 3427-3433. https://doi.org/10.1021/nn400330h
    39. Xiao Hua Liu, Feifei Fan, Hui Yang, Sulin Zhang, Jian Yu Huang, and Ting Zhu . Self-Limiting Lithiation in Silicon Nanowires. ACS Nano 2013, 7 (2) , 1495-1503. https://doi.org/10.1021/nn305282d
    40. Sung Chul Jung, Jang Wook Choi, and Young-Kyu Han . Anisotropic Volume Expansion of Crystalline Silicon during Electrochemical Lithium Insertion: An Atomic Level Rationale. Nano Letters 2012, 12 (10) , 5342-5347. https://doi.org/10.1021/nl3027197
    41. Meng Gu, Ying Li, Xiaolin Li, Shenyang Hu, Xiangwu Zhang, Wu Xu, Suntharampillai Thevuthasan, Donald R. Baer, Ji-Guang Zhang, Jun Liu, and Chongmin Wang . In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix. ACS Nano 2012, 6 (9) , 8439-8447. https://doi.org/10.1021/nn303312m
    42. Matt Pharr, Kejie Zhao, Xinwei Wang, Zhigang Suo, and Joost J. Vlassak . Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries. Nano Letters 2012, 12 (9) , 5039-5047. https://doi.org/10.1021/nl302841y
    43. Wen Zhang, Siwei Gui, Zihan Zhang, Wanming Li, Xinxin Wang, Junhong Wei, Shuibin Tu, Linxin Zhong, Wu Yang, Hongjun Ye, Yongming Sun, Xinwen Peng, Jianyu Huang, Hui Yang. Tight Binding and Dual Encapsulation Enabled Stable Thick Silicon/Carbon Anode with Ultrahigh Volumetric Capacity for Lithium Storage. Small 2023, 1 https://doi.org/10.1002/smll.202303864
    44. Zhongling Cheng, Hao Jiang, Xinlin Zhang, Fangyi Cheng, Minghong Wu, Haijiao Zhang. Fundamental Understanding and Facing Challenges in Structural Design of Porous Si‐Based Anodes for Lithium‐Ion Batteries. Advanced Functional Materials 2023, 33 (26) https://doi.org/10.1002/adfm.202301109
    45. Amit Bhowmick, Jeevanjyoti Chakraborty. Predicting non-axisymmetric growth and facet evolution during lithiation of crystalline silicon anode particles through orientation-dependent interface reaction. International Journal of Solids and Structures 2023, 17 , 112266. https://doi.org/10.1016/j.ijsolstr.2023.112266
    46. Daniel Martín‐Yerga, Mounib Bahri, Matthew E. Curd, Xiangdong Xu, Weiqun Li, Timothy L. Burnett, Philip J. Withers, B. Layla Mehdi, Nigel D. Browning, Patrick R. Unwin. Link between anisotropic electrochemistry and surface transformations at single‐crystal silicon electrodes: Implications for lithium‐ion batteries. Natural Sciences 2023, 3 (2) https://doi.org/10.1002/ntls.20210607
    47. Xiaofei Wang, Qi Tong. Simulating fracture patterns under anisotropic swelling in lithiated crystalline nanostructures. Engineering Fracture Mechanics 2023, 281 , 109088. https://doi.org/10.1016/j.engfracmech.2023.109088
    48. Quanyan Man, Yongling An, Chengkai Liu, Hengtao Shen, Shenglin Xiong, Jinkui Feng. Interfacial design of silicon/carbon anodes for rechargeable batteries: A review. Journal of Energy Chemistry 2023, 76 , 576-600. https://doi.org/10.1016/j.jechem.2022.09.020
    49. Yong Li, Kai Zhang, Yihui Pan, Fuqian Yang. Anisotropic behavior in the lithiation of a silicon nanopillar. Journal of Energy Storage 2023, 57 , 106271. https://doi.org/10.1016/j.est.2022.106271
    50. Arief Suriadi Budiman, D. Speaks, E. Hossain, S.K. Tippabhotla, R. Sahay, A. Baji, T. Pasang. Battery anode design: From 1D nanostructure to 3D nanoarchitecture – Enabling next-generation energy storage technology. Microelectronic Engineering 2022, 5 , 111927. https://doi.org/10.1016/j.mee.2022.111927
    51. Xiang Gao, Yikai Jia, Wen Zhang, Chunhao Yuan, Jun Xu. Mechanics-Driven Anode Material Failure in Battery Safety and Capacity Deterioration Issues: A Review. Applied Mechanics Reviews 2022, 74 (6) https://doi.org/10.1115/1.4054566
    52. Ryota Okuno, Mari Yamamoto, Atsutaka Kato, Masanari Takahashi. High Cycle Stability of Nanoporous Si Composites in All-solid-state Lithium-ion Batteries. Journal of The Electrochemical Society 2022, 169 (8) , 080502. https://doi.org/10.1149/1945-7111/ac81f6
    53. Shiwei Tao, Ming Li, Miaoqiang Lyu, Lingbing Ran, Roger Wepf, Ian Gentle, Ruth Knibbe. In Operando Closed-cell Transmission Electron Microscopy for Rechargeable Battery Characterization: Scientific Breakthroughs and Practical Limitations. Nano Energy 2022, 96 , 107083. https://doi.org/10.1016/j.nanoen.2022.107083
    54. G Thamarai Selvi, Shailendra K Jha. Anomalous interfacial stress generation and role of elasto-plasticity in mechanical failure of Si-based thin film anodes of Li-ion batteries. Bulletin of Materials Science 2022, 45 (1) https://doi.org/10.1007/s12034-021-02602-3
    55. Kejie Zhao. Mechanics in Li-Ion Batteries. 2022, 66-97. https://doi.org/10.1016/B978-0-12-819723-3.00047-0
    56. Arief Suriadi Budiman. Latest Updates in Next-Generation Energy Technologies and Systems. 2022, 161-199. https://doi.org/10.1007/978-981-15-6720-9_5
    57. Shuibin Tu, Xin Ai, Xiancheng Wang, Siwei Gui, Zhao Cai, Renming Zhan, Yuchen Tan, Weiwei Liu, Hui Yang, Chenhui Li, Yongming Sun. Circumventing chemo-mechanical failure of Sn foil battery anode by grain refinement and elaborate porosity design. Journal of Energy Chemistry 2021, 62 , 477-484. https://doi.org/10.1016/j.jechem.2021.03.053
    58. Shuang Yuan, Xiao Duan, Jiaqi Liu, Yun Ye, Fusen Lv, Tie Liu, Qiang Wang, Xinbo Zhang. Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials 2021, 42 , 317-369. https://doi.org/10.1016/j.ensm.2021.07.007
    59. Ryota Okuno, Mari Yamamoto, Atsutaka Kato, Masanari Takahashi. Microscopic observation of nanoporous Si-Li3PS4 interface in composite anodes with stable cyclability. Electrochemistry Communications 2021, 130 , 107100. https://doi.org/10.1016/j.elecom.2021.107100
    60. Chun-Yu Tsai, Chao-Hung Chang, Tzu-Lun Kao, Kuan-Ting Chen, Hsing-Yu Tuan. Shape matters: SnP0.94 teardrop nanorods with boosted performance for potassium ion storage. Chemical Engineering Journal 2021, 417 , 128552. https://doi.org/10.1016/j.cej.2021.128552
    61. Amit Bhowmick, Jeevanjyoti Chakraborty. Improving predictions of amorphous-crystalline silicon interface velocity through alloying-dealloying reactions in lithium-ion battery anode particles. International Journal of Solids and Structures 2021, 224 , 111046. https://doi.org/10.1016/j.ijsolstr.2021.111046
    62. Xuli Ding, Hongda Zhao, Daowei Liang, Pengfei He. Enhanced electrochemical performance of silicon monoxide anode materials prompted by germanium. Materials Chemistry and Physics 2021, 267 , 124611. https://doi.org/10.1016/j.matchemphys.2021.124611
    63. Meng Dai, Rui Wang. Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. Small 2021, 17 (29) https://doi.org/10.1002/smll.202006813
    64. Yong‐Seok Choi, David O. Scanlon, Jae‐Chul Lee. Extending the Performance Limit of Anodes: Insights from Diffusion Kinetics of Alloying Anodes. Advanced Energy Materials 2021, 11 (27) , 2003078. https://doi.org/10.1002/aenm.202003078
    65. Marcelino Anguiano, Arif Masud. Reduced mixture model and elastic response of chemically swollen solids: Application to Si oxidation and lithiation. Applications in Engineering Science 2021, 6 , 100039. https://doi.org/10.1016/j.apples.2021.100039
    66. Yutaka Shimauchi, Sachi Ikemoto, Shigekazu Ohmori, Takaomi Itoi. Ex Situ Electron Microscopy Study of the Lithiation of Single-Crystal Si Negative Electrodes during Charge Reaction in a Lithium-Ion Battery. Journal of the Japan Institute of Metals and Materials 2021, 85 (5) , 182-189. https://doi.org/10.2320/jinstmet.J2020050
    67. Elena Vilchevskaya. Modeling stress‐affected chemical reactions in composite materials. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 2021, 101 (4) https://doi.org/10.1002/zamm.202000281
    68. Jiamei Guo, Zheng Jia. Stress evolution during the two-step charging of high-capacity electrode materials. Journal of Power Sources 2021, 486 , 229371. https://doi.org/10.1016/j.jpowsour.2020.229371
    69. E. Yu. Evshchik, A.V. Korchun, A.V. Levchenko, Y.A. Dobrovolsky. Degradation Processes of the Single-Crystal Silicon Electrodes during lithiation. International Journal of Electrochemical Science 2021, 16 (1) , 151035. https://doi.org/10.20964/2021.01.23
    70. . Modern Directions of Development of Lithium-Ion Battery Technology. Nanosistemi, Nanomateriali, Nanotehnologii 2020https://doi.org/10.15407/nnn.18.04.1041
    71. Haimei Xie, Yilan Kang, Haibin Song, Jiangang Guo, Qian Zhang. In situ method for stress measurements in film-substrate electrodes during electrochemical processes: key role of softening and stiffening. Acta Mechanica Sinica 2020, 36 (6) , 1319-1335. https://doi.org/10.1007/s10409-020-00995-8
    72. Ataollah Mesgarnejad, Alain Karma. Vulnerable window of yield strength for swelling-driven fracture of phase-transforming battery materials. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-0315-8
    73. Ryota Okuno, Mari Yamamoto, Atsutaka Kato, Masanari Takahashi. Stable Cyclability Caused by Highly Dispersed Nanoporous Si Composite Anodes with Sulfide-based Solid Electrolyte. Journal of The Electrochemical Society 2020, 167 (14) , 140522. https://doi.org/10.1149/1945-7111/abc3ff
    74. Chung Su Hong, Seung Min Han. Mechanical properties of electrochemically lithiated Sn. Extreme Mechanics Letters 2020, 40 , 100907. https://doi.org/10.1016/j.eml.2020.100907
    75. Wenping Liu, Huarui Xu, Haiqing Qin, Yanlu Lv, Guisheng Zhu, Feng Lin, Xiaoxu Lei, Zhenjun Zhang, Lihui Wang. Silicon Nanoparticles Preparation by Induction Plasma Technology for Li-ion Batteries Anode Material. Silicon 2020, 12 (9) , 2259-2269. https://doi.org/10.1007/s12633-019-00320-4
    76. Xuan Wu, Guang He, Yi Ding. Dealloyed nanoporous materials for rechargeable lithium batteries. Electrochemical Energy Reviews 2020, 3 (3) , 541-580. https://doi.org/10.1007/s41918-020-00070-7
    77. Chengkun Zhang, Qiulin Chen, Xin Ai, Xiaogang Li, Qingshui Xie, Yong Cheng, Hufan Kong, Wanjie Xu, Laisen Wang, Ming-Sheng Wang, Hui Yang, Dong-Liang Peng. Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties. Journal of Materials Chemistry A 2020, 8 (32) , 16323-16331. https://doi.org/10.1039/D0TA04389C
    78. Ning Wang, Tao Hang, Ming Li. Robust Cu microcone-array supported silicon film with superb cycling stability for negative electrode of lithium battery. 2020, 1-4. https://doi.org/10.1109/ICEPT50128.2020.9202964
    79. Liukang Xiong, Hongrun Jin, Yucheng Lu, Xiaogang Li, Xin Ai, Hui Yang, Liang Huang. A Solvent Molecule Driven Pure PEDOT:PSS Actuator. Macromolecular Materials and Engineering 2020, 305 (8) https://doi.org/10.1002/mame.202000327
    80. Yao-Ting Zheng, Min He, Guang-xu Cheng, Zaoxiao Zhang, Fu-Zhen Xuan, Zhengdong Wang. Electrostatic-field-triggered stress in the lithiation of carbon-coated silicon. Journal of Power Sources 2020, 459 , 228100. https://doi.org/10.1016/j.jpowsour.2020.228100
    81. Joseph Nzabahimana, Zhifang Liu, Songtao Guo, Libin Wang, Xianluo Hu. Top‐Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium‐Ion Batteries: Mechanical Milling and Etching. ChemSusChem 2020, 13 (8) , 1923-1946. https://doi.org/10.1002/cssc.201903155
    82. Ying Liu, Zhiwen Che, Xuyun Lu, Xiaosi Zhou, Min Han, Jianchun Bao, Zhihui Dai. Nanostructured metal chalcogenides confined in hollow structures for promoting energy storage. Nanoscale Advances 2020, 2 (2) , 583-604. https://doi.org/10.1039/C9NA00753A
    83. K. Saleem, U. Schürmann, S. Hansen, H. Cavers, R. Adelung, L. Kienle. TEM and Electrochemical Investigation of Different Morphology Silicon Anodes. 2020, 93-96. https://doi.org/10.1007/978-3-030-31866-6_20
    84. Abhishek Bansal, Arihant Bhandari, Pritam Chakraborty, Jishnu Bhattacharya, Raj Ganesh S. Pala. Alloying with Ge and Hollowing Reduces Lithiation-Induced Stresses in Si Nanopillar Anodes. Journal of The Electrochemical Society 2020, 167 (1) , 013542. https://doi.org/10.1149/1945-7111/ab6318
    85. Fenglin Wang, Gen Chen, Ning Zhang, Xiaohe Liu, Renzhi Ma. Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. Carbon Energy 2019, 1 (2) , 219-245. https://doi.org/10.1002/cey2.24
    86. Gyu-Bong Cho, Sang-Hui Park, Sang-Hee Park, Jin-Hoon Ju, Kwon-Koo Cho, Hyo-Jun Ahn, Ki-Won Kim. Si film electrodes adopting a dual thermal effect of metal-induced crystallization (MIC) and Kirkendall effect. Journal of Alloys and Compounds 2019, 809 , 151810. https://doi.org/10.1016/j.jallcom.2019.151810
    87. Luoxia Cao, Hui Yang, Feifei Fan. Stress generation during anisotropic lithiation in silicon nanopillar electrodes: A reactive force field study. Physics Letters A 2019, 383 (33) , 125955. https://doi.org/10.1016/j.physleta.2019.125955
    88. Yutaka Shimauchi, Sachi Ikemoto, Shigekazu Ohmori, Takaomi Itoi. Ex Situ Electron Microscopy Study of the Lithiation of Single-Crystal Si Negative Electrodes during Charge Reaction in a Lithium–Ion Battery. MATERIALS TRANSACTIONS 2019, 60 (11) , 2328-2335. https://doi.org/10.2320/matertrans.MT-M2019193
    89. Hui Zhang, Hui Xu, Xiaofei Lou, Hong Jin, Ping Zong, Shiwei Li, Yu Bai, Fei Ma. Micro-structured Si@Cu3Si@C ternary composite anodes for high-performance Li-ion batteries. Ionics 2019, 25 (10) , 4667-4673. https://doi.org/10.1007/s11581-019-03043-z
    90. Hui Yang, Jianmin Qu. Fracture toughness of Li x Si alloys in lithium ion battery. Extreme Mechanics Letters 2019, 32 , 100555. https://doi.org/10.1016/j.eml.2019.100555
    91. Teutë Bunjaku, Dominik Bauer, Mathieu Luisier. Structural and electronic properties of lithiated Si nanowires: An ab initio study. Physical Review Materials 2019, 3 (10) https://doi.org/10.1103/PhysRevMaterials.3.105402
    92. Yongchuan Xu, Bailin Zheng, Kai Zhang, Yingzha Peng, Feng Wang. Effect of combining local velocity and chemical reaction on the interaction between diffusion and stresses in large deformed electrodes. AIP Advances 2019, 9 (10) , 105103. https://doi.org/10.1063/1.5079615
    93. Xiaoyu Wu, Songmei Li, Bin Yang, Chongmin Wang. In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries. Electrochemical Energy Reviews 2019, 2 (3) , 467-491. https://doi.org/10.1007/s41918-019-00046-2
    94. Swastik Basu, Nikhil Koratkar, Yunfeng Shi. Structural transformation and embrittlement during lithiation and delithiation cycles in an amorphous silicon electrode. Acta Materialia 2019, 175 , 11-20. https://doi.org/10.1016/j.actamat.2019.05.055
    95. Xing Li, Mei Sun, Shaobo Cheng, Xiaoyan Ren, Jinhao Zang, Tingting Xu, Xianlong Wei, Shunfang Li, Qing Chen, Chongxin Shan. Crystallographic-orientation dependent Li ion migration and reactions in layered MoSe 2. 2D Materials 2019, 6 (3) , 035027. https://doi.org/10.1088/2053-1583/ab1dff
    96. Chao Wang, Jici Wen, Fei Luo, Baogang Quan, Hong Li, Yujie Wei, Changzhi Gu, Junjie Li. Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation. Journal of Materials Chemistry A 2019, 7 (25) , 15113-15122. https://doi.org/10.1039/C9TA00519F
    97. Sasi Kumar Tippabhotla, Ihor Radchenko, Camelia V. Stan, Nobumichi Tamura, Arief Suriadi Budiman. Stress evolution in silicon nanowires during electrochemical lithiation using in situ synchrotron X-ray microdiffraction. Journal of Materials Research 2019, 34 (9) , 1622-1631. https://doi.org/10.1557/jmr.2019.27
    98. M. Poluektov, Ł. Figiel. A numerical method for finite-strain mechanochemistry with localised chemical reactions treated using a Nitsche approach. Computational Mechanics 2019, 63 (5) , 885-911. https://doi.org/10.1007/s00466-018-1628-z
    99. Shaobo Han, Yuanmin Zhu, Chao Cai, Jiakun Zhu, Wenbin Han, Lang Chen, Xiaotao Zu, Hui Yang, Meng Gu. Failure mechanism of Au@Co9S8 yolk-shell anode in Li-ion batteries unveiled by in-situ transmission electron microscopy. Applied Physics Letters 2019, 114 (11) https://doi.org/10.1063/1.5089660
    100. Dandan Lyu, Bo Ren, Shaofan Li. Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review. Acta Mechanica 2019, 230 (3) , 701-727. https://doi.org/10.1007/s00707-018-2327-8
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect