ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides

View Author Information
Experimental Solid State Group and Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, SW7 2AZ London, United Kingdom
§ Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, United States
Cite this: Nano Lett. 2012, 12, 5, 2504–2508
Publication Date (Web):March 27, 2012
https://doi.org/10.1021/nl300671w
Copyright © 2012 American Chemical Society

    Article Views

    3055

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Heralded single surface plasmon polaritons are excited using photons generated via spontaneous parametric down conversion. The mean excitation rates, intensity correlations, and Fock state populations are studied. The observed dependence of the second-order coherence in our experiment is consistent with a linear uncorrelated Markovian environment in the quantum regime. Our results provide important information about the effect of loss for assessing the potential of plasmonic waveguides for future nanophotonic circuitry in the quantum regime.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 80 publications.

    1. Rocío Sáez-Blázquez, Álvaro Cuartero-González, Johannes Feist, Francisco J. García-Vidal, Antonio I. Fernández-Domínguez. Plexcitonic Quantum Light Emission from Nanoparticle-on-Mirror Cavities. Nano Letters 2022, 22 (6) , 2365-2373. https://doi.org/10.1021/acs.nanolett.1c04872
    2. Yocefu Hattori, Jie Meng, Kaibo Zheng, Ageo Meier de Andrade, Jolla Kullgren, Peter Broqvist, Peter Nordlander, Jacinto Sá. Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems. Nano Letters 2021, 21 (2) , 1083-1089. https://doi.org/10.1021/acs.nanolett.0c04419
    3. Charlie Readman, Bart de Nijs, István Szabó, Angela Demetriadou, Ryan Greenhalgh, Colm Durkan, Edina Rosta, Oren A. Scherman, Jeremy J. Baumberg. Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution. Nano Letters 2019, 19 (3) , 2051-2058. https://doi.org/10.1021/acs.nanolett.9b00199
    4. F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier . Experimental Verification of Entanglement Generated in a Plasmonic System. Nano Letters 2017, 17 (12) , 7455-7461. https://doi.org/10.1021/acs.nanolett.7b03372
    5. Hamidreza Siampour, Shailesh Kumar, and Sergey I. Bozhevolnyi . Nanofabrication of Plasmonic Circuits Containing Single Photon Sources. ACS Photonics 2017, 4 (8) , 1879-1884. https://doi.org/10.1021/acsphotonics.7b00374
    6. Yang Ming, Weihua Zhang, Zhaoxian Chen, Zijian Wu, Jie Tang, Fei Xu, Lijian Zhang, and Yanqing Lu . Squeezing a Surface Plasmon through Quadratic Nonlinear Interactions. ACS Photonics 2016, 3 (11) , 2074-2082. https://doi.org/10.1021/acsphotonics.6b00420
    7. Mehmet Günay, Priyam Das, Emre Yüce, Emre Ozan Polat, Alpan Bek, Mehmet Emre Tasgin. On-demand continuous-variable quantum entanglement source for integrated circuits. Nanophotonics 2023, 12 (2) , 229-237. https://doi.org/10.1515/nanoph-2022-0555
    8. Wen-Jie Zhou, Jia-bin You, Xiao Xiong, Yu-Wei Lu, Lay Kee Ang, Jing-Feng Liu, Lin Wu. Cavity spectral-hole-burning to boost coherence in plasmon-emitter strong coupling systems. Nanotechnology 2022, 33 (47) , 475001. https://doi.org/10.1088/1361-6528/ac8aa3
    9. Fatemeh Mostafavi, Zeinab Jafari, Michelle L. J. Lollie, Chenglong You, Israel De Leon, Omar S. Magaña-Loaiza. Conditional quantum plasmonic sensing. Nanophotonics 2022, 11 (14) , 3299-3306. https://doi.org/10.1515/nanoph-2022-0160
    10. Qian Zhao, Wen-Jie Zhou, Yan-Hui Deng, Ya-Qin Zheng, Zhong-Hong Shi, Lay Kee Ang, Zhang-Kai Zhou, Lin Wu. Plexcitonic strong coupling: unique features, applications, and challenges. Journal of Physics D: Applied Physics 2022, 55 (20) , 203002. https://doi.org/10.1088/1361-6463/ac3fdf
    11. Chenglong You, Mingyuan Hong, Narayan Bhusal, Jinnan Chen, Mario A. Quiroz-Juárez, Joshua Fabre, Fatemeh Mostafavi, Junpeng Guo, Israel De Leon, Roberto de J. León-Montiel, Omar S. Magaña-Loaiza. Observation of the modification of quantum statistics of plasmonic systems. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25489-4
    12. Shulei Li, Lidan Zhou, Mingcheng Panmai, Jin Xiang, Sheng Lan. Magnetic plasmons induced in a dielectric-metal heterostructure by optical magnetism. Nanophotonics 2021, 10 (10) , 2639-2649. https://doi.org/10.1515/nanoph-2021-0146
    13. M. Moaied, K. Ostrikov, S. Palomba. Non-local Quantum Plasmon Resonance in Ultra-small Silver Nanoparticles. Plasmonics 2021, 16 (4) , 1261-1267. https://doi.org/10.1007/s11468-021-01403-y
    14. Heming Yang, Zhiguo Li, Kai Liu, Huibing Mao, Changsheng Song, Jiqing Wang. Systematic Evolution of Resonant Coupling Behavior Between Surface Plasmon Polaritons and Multi-waveguide Modes in Metal-Dielectric Multi-layers. Plasmonics 2020, 15 (6) , 1967-1975. https://doi.org/10.1007/s11468-020-01219-2
    15. Xin-He Jiang, Peng Chen, Kai-Yi Qian, Zhao-Zhong Chen, Shu-Qi Xu, Yu-Bo Xie, Shi-Ning Zhu, Xiao-Song Ma. Quantum teleportation mediated by surface plasmon polariton. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-67773-1
    16. J. T. Francis, M. S. Tame. Photon-added coherent states using the continuous-mode formalism. Physical Review A 2020, 102 (4) https://doi.org/10.1103/PhysRevA.102.043709
    17. Chenglong You, Apurv Chaitanya Nellikka, Israel De Leon, Omar S. Magaña-Loaiza. Multiparticle quantum plasmonics. Nanophotonics 2020, 9 (6) , 1243-1269. https://doi.org/10.1515/nanoph-2019-0517
    18. Mehmet Emre Tasgin, Mehmet Gunay, M. Suhail Zubairy. Nonclassicality and entanglement for wave packets. Physical Review A 2020, 101 (6) https://doi.org/10.1103/PhysRevA.101.062316
    19. Xiaojian Fu, Tie Jun Cui. Recent progress on metamaterials: From effective medium model to real-time information processing system. Progress in Quantum Electronics 2019, 67 , 100223. https://doi.org/10.1016/j.pquantelec.2019.05.001
    20. Mathilde Remy, Bojana Bokic, Mirko Cormann, Wakana Kubo, Yves Caudano, Branko Kolaric. Transmission of entangled photons studied by quantum tomography: do we need plasmonic resonances?. Journal of Physics Communications 2019, 3 (6) , 065011. https://doi.org/10.1088/2399-6528/ab292f
    21. Lei Tang, Kaimin Zheng, Jiale Guo, Yi Ouyang, Yang Wu, Chuanqing Xia, Long Li, Fang Liu, Yong Zhang, Lijian Zhang, Min Xiao. Quantum tomography of the photon-plasmon conversion process in a metal hole array. Optics Express 2019, 27 (10) , 13809. https://doi.org/10.1364/OE.27.013809
    22. Ming Li, Xiao Xiong, Le Yu, Chang-Ling Zou, Yang Chen, Di Liu, Lan-Tian Feng, Guo-Ping Guo, Guang-Can Guo, Xi-Feng Ren. Collecting quantum dot fluorescence with a hybrid plasmonic probe. OSA Continuum 2019, 2 (3) , 881. https://doi.org/10.1364/OSAC.2.000881
    23. Z Allameh, R Roknizadeh. Exploring the transfer squeezing properties from photons to symmetric and asymmetric surface plasmon polariton modes. Journal of Optics 2019, 21 (1) , 015201. https://doi.org/10.1088/2040-8986/aaf0f8
    24. Da Xu, Xiao Xiong, Lin Wu, Xi-Feng Ren, Ching Eng Png, Guang-Can Guo, Qihuang Gong, Yun-Feng Xiao. Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics 2018, 10 (4) , 703. https://doi.org/10.1364/AOP.10.000703
    25. S. G. Dlamini, J. T. Francis, X. Zhang, Ş. K. Özdemir, S. Nic Chormaic, F. Petruccione, M. S. Tame. Probing Decoherence in Plasmonic Waveguides in the Quantum Regime. Physical Review Applied 2018, 9 (2) https://doi.org/10.1103/PhysRevApplied.9.024003
    26. Mehmet Emre Taşgın, Alpan Bek, Selen Postacı. Fano Resonances in the Linear and Nonlinear Plasmonic Response. 2018, 1-31. https://doi.org/10.1007/978-3-319-99731-5_1
    27. 姝漩 宋. Thermal Radiation Research of Silicon Carbide with Periodic Structure. Modern Physics 2018, 08 (03) , 115-126. https://doi.org/10.12677/MP.2018.83014
    28. M Moaied, S Palomba, K Ostrikov. Quantum plasmonics: longitudinal quantum plasmons in copper, gold, and silver. Journal of Optics 2017, 19 (10) , 105402. https://doi.org/10.1088/2040-8986/aa856a
    29. Jason T Francis, Xia Zhang, Şahin K Özdemir, Mark Tame. Quantum random number generation using an on-chip plasmonic beamsplitter. Quantum Science and Technology 2017, 2 (3) , 035004. https://doi.org/10.1088/2058-9565/aa7d42
    30. Saeed Asgarnezhad-Zorgabad, Rasoul Sadighi-Bonabi, Chao Hang. Coupler-free surface polariton excitation and propagation with cold four-level atomic medium. Journal of the Optical Society of America B 2017, 34 (9) , 1787. https://doi.org/10.1364/JOSAB.34.001787
    31. Andrea Di Falco, Xin Li, Zhang-Kai Zhou, Ying Yu, Malte C. Gather, , . Nanophotonic enhanced quantum emitters. 2017, 8. https://doi.org/10.1117/12.2273786
    32. Rúben Azinheira Alves, Miguel B. T. Gomes, Nuno A. Silva, Ariel R. N. S. Guerreiro, João C. Costa, . Doppler broadening effects in plasmonic quantum dots. 2017, 78. https://doi.org/10.1117/12.2272049
    33. E. Zubizarreta Casalengua, J. C. López Carreño, E. del Valle, F. P. Laussy. Structure of the harmonic oscillator in the space of n -particle Glauber correlators. Journal of Mathematical Physics 2017, 58 (6) https://doi.org/10.1063/1.4987023
    34. Takahide Sakaidani, Ryo Kobayashi, Naoto Namekata, Go Fujii, Daiji Fukuda, Shuichiro Inoue. Investigation of third-order dispersion of long-range surface-plasmon-polariton waveguides using a Hong-Ou-Mandel interferometer. Optics Express 2017, 25 (8) , 9490. https://doi.org/10.1364/OE.25.009490
    35. M. Durach, N. Noginova. Plasmon Drag Effect. Theory and Experiment. 2017, 233-270. https://doi.org/10.1007/978-3-319-59662-4_8
    36. Hai-Yao Deng, Katsunori Wakabayashi, Chi-Hang Lam. Universal self-amplification channel for surface plasma waves. Physical Review B 2017, 95 (4) https://doi.org/10.1103/PhysRevB.95.045428
    37. Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng, , . Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica 2017, 66 (14) , 144202. https://doi.org/10.7498/aps.66.144202
    38. J. C. López Carreño, F. P. Laussy. Excitation with quantum light. I. Exciting a harmonic oscillator. Physical Review A 2016, 94 (6) https://doi.org/10.1103/PhysRevA.94.063825
    39. Jamie M. Fitzgerald, Prineha Narang, Richard V. Craster, Stefan A. Maier, Vincenzo Giannini. Quantum Plasmonics. Proceedings of the IEEE 2016, 104 (12) , 2307-2322. https://doi.org/10.1109/JPROC.2016.2584860
    40. M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, A. M. Marino. Toward quantum plasmonic networks. Optica 2016, 3 (9) , 985. https://doi.org/10.1364/OPTICA.3.000985
    41. Alexander N. Poddubny, Ivan V. Iorsh, Andrey A. Sukhorukov. Generation of Photon-Plasmon Quantum States in Nonlinear Hyperbolic Metamaterials. Physical Review Letters 2016, 117 (12) https://doi.org/10.1103/PhysRevLett.117.123901
    42. Christopher R. Gubbin, Francesco Martini, Alberto Politi, Stefan A. Maier, Simone De Liberato. Strong and Coherent Coupling between Localized and Propagating Phonon Polaritons. Physical Review Letters 2016, 116 (24) https://doi.org/10.1103/PhysRevLett.116.246402
    43. M. Durach, N. Noginova. On the nature of the plasmon drag effect. Physical Review B 2016, 93 (16) https://doi.org/10.1103/PhysRevB.93.161406
    44. Chengwei Sun, Kexiu Rong, Yujia Wang, Hongyun Li, Qihuang Gong, Jianjun Chen. Plasmonic ridge waveguides with deep-subwavelength outside-field confinements. Nanotechnology 2016, 27 (6) , 065501. https://doi.org/10.1088/0957-4484/27/6/065501
    45. Nancy Rahbany, Wei Geng, Rafael Salas-Montiel, Sergio de la Cruz, Eugenio R. Méndez, Sylvain Blaize, Renaud Bachelot, Christophe Couteau. A Concentric Plasmonic Platform for the Efficient Excitation of Surface Plasmon Polaritons. Plasmonics 2016, 11 (1) , 175-182. https://doi.org/10.1007/s11468-015-0032-1
    46. Giuliana Di Martino. Quantum Plasmonics: From Quantum Statistics to Quantum Interferences. 2016, 295-313. https://doi.org/10.1007/978-3-319-24606-2_12
    47. Yang Shen, Guisheng Fang, Alexander Cerjan, Zhenguo Chi, Shanhui Fan, Chongjun Jin. Slanted gold mushroom array: a switchable bi/tridirectional surface plasmon polariton splitter. Nanoscale 2016, 8 (34) , 15505-15513. https://doi.org/10.1039/C6NR03488H
    48. Martin Berthel, Serge Huant, Aurélien Drezet. Spatio-temporal second-order quantum correlations of surface plasmon polaritons. Optics Letters 2016, 41 (1) , 37. https://doi.org/10.1364/OL.41.000037
    49. Felix Benz, Bart de Nijs, Christos Tserkezis, Rohit Chikkaraddy, Daniel O. Sigle, Laurynas Pukenas, Stephen D. Evans, Javier Aizpurua, Jeremy J. Baumberg. Generalized circuit model for coupled plasmonic systems. Optics Express 2015, 23 (26) , 33255. https://doi.org/10.1364/OE.23.033255
    50. Modjtaba Moaied, Mir Massoud Aghili Yajadda, Kostya Ostrikov. Quantum Effects of Nonlocal Plasmons in Epsilon-Near-Zero Properties of a Thin Gold Film Slab. Plasmonics 2015, 10 (6) , 1615-1623. https://doi.org/10.1007/s11468-015-9951-0
    51. Jian Zhang, Mehrdad Irannejad, Mustafa Yavuz, Bo Cui. Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor. Nanoscale Research Letters 2015, 10 (1) https://doi.org/10.1186/s11671-015-0944-x
    52. Yong Jun Li, Xiao Xiong, Chang‐Ling Zou, Xi Feng Ren, Yong Sheng Zhao. One‐Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications. Small 2015, 11 (31) , 3728-3743. https://doi.org/10.1002/smll.201500199
    53. George W. Hanson, S. A. Hassani Gangaraj, Changhyoup Lee, Dimitris G. Angelakis, Mark Tame. Quantum plasmonic excitation in graphene and loss-insensitive propagation. Physical Review A 2015, 92 (1) https://doi.org/10.1103/PhysRevA.92.013828
    54. Ming Li, Chang-Ling Zou, Xi-Feng Ren, Xiao Xiong, Yong-Jing Cai, Guo-Ping Guo, Li-Min Tong, Guang-Can Guo. Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide. Nano Letters 2015, 15 (4) , 2380-2384. https://doi.org/10.1021/nl504636x
    55. Dong Wang, Chuanqing Xia, Qianjin Wang, Yang Wu, Fang Liu, Yong Zhang, Min Xiao. Feedback-optimized extraordinary optical transmission of continuous-variable entangled states. Physical Review B 2015, 91 (12) https://doi.org/10.1103/PhysRevB.91.121406
    56. James S Fakonas, Anna Mitskovets, Harry A Atwater. Path entanglement of surface plasmons. New Journal of Physics 2015, 17 (2) , 023002. https://doi.org/10.1088/1367-2630/17/2/023002
    57. N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, C. Couteau. Integrated plasmonic double bowtie / ring grating structure for enhanced electric field confinement. Nanospectroscopy 2015, 1 (1) https://doi.org/10.1515/nansp-2015-0005
    58. Laurent Olislager, Wakana Kubo, Takuo Tanaka, Simona Ungureanu, Renaud A. L. Vallée, Branko Kolaric, Philippe Emplit, Serge Massar. Propagation and survival of frequency-bin entangled photons in metallic nanostructures. Nanophotonics 2015, 4 (3) , 324-331. https://doi.org/10.1515/nanoph-2015-0011
    59. Ravishankar Sundararaman, Prineha Narang, Adam S. Jermyn, William A. Goddard III, Harry A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms6788
    60. Go Fujii, Daiji Fukuda, Shuichiro Inoue. Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors. Physical Review B 2014, 90 (8) https://doi.org/10.1103/PhysRevB.90.085430
    61. Angela C. Narváez, I. Gerward C. Weppelman, Robert J. Moerland, Jacob P. Hoogenboom, Pieter Kruit. Confocal filtering in cathodoluminescence microscopy of nanostructures. Applied Physics Letters 2014, 104 (25) https://doi.org/10.1063/1.4885833
    62. Yuan Zhang, Volkhard May. Plasmon-enhanced molecular electroluminescence: Effects of nonlinear excitation and molecular cooperativity. Physical Review B 2014, 89 (24) https://doi.org/10.1103/PhysRevB.89.245441
    63. James S. Fakonas, Hyunseok Lee, Yousif A. Kelaita, Harry A. Atwater. Two-plasmon quantum interference. Nature Photonics 2014, 8 (4) , 317-320. https://doi.org/10.1038/nphoton.2014.40
    64. G. Di Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, S. A. Maier. Observation of Quantum Interference in the Plasmonic Hong-Ou-Mandel Effect. Physical Review Applied 2014, 1 (3) https://doi.org/10.1103/PhysRevApplied.1.034004
    65. S. Dutta Gupta, G. S. Agarwal. Two-photon quantum interference in plasmonics: theory and applications. Optics Letters 2014, 39 (2) , 390. https://doi.org/10.1364/OL.39.000390
    66. S. Derom, A. Bouhelier, A. Kumar, A. Leray, J-C. Weeber, S. Buil, X. Quélin, J. P. Hermier, G. Colas des Francs. Single-molecule controlled emission in planar plasmonic cavities. Physical Review B 2014, 89 (3) https://doi.org/10.1103/PhysRevB.89.035401
    67. Wang Hai-Yan, Dou Xiu-Ming, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan, . Photoluminescence from plasmon-enhanced single InAs quantum dots. Acta Physica Sinica 2014, 63 (2) , 027801. https://doi.org/10.7498/aps.63.027801
    68. Yusheng Bian, Qihuang Gong. Deep-subwavelength light routing in nanowire-loaded surface plasmon polariton waveguides: an alternative to the hybrid guiding scheme. Journal of Physics D: Applied Physics 2013, 46 (44) , 445105. https://doi.org/10.1088/0022-3727/46/44/445105
    69. Changhyoup Lee, Mark Tame, Changsuk Noh, James Lim, Stefan A Maier, Jinhyoung Lee, Dimitris G Angelakis. Robust-to-loss entanglement generation using a quantum plasmonic nanoparticle array. New Journal of Physics 2013, 15 (8) , 083017. https://doi.org/10.1088/1367-2630/15/8/083017
    70. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, M. S. Kim. Quantum plasmonics. Nature Physics 2013, 9 (6) , 329-340. https://doi.org/10.1038/nphys2615
    71. Jiao Lin, J. P. Balthasar Mueller, Qian Wang, Guanghui Yuan, Nicholas Antoniou, Xiao-Cong Yuan, Federico Capasso. Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science 2013, 340 (6130) , 331-334. https://doi.org/10.1126/science.1233746
    72. B. J. Lawrie, P. G. Evans, R. C. Pooser. Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons. Physical Review Letters 2013, 110 (15) https://doi.org/10.1103/PhysRevLett.110.156802
    73. Ward D. Newman, Cristian L. Cortes, Zubin Jacob. Enhanced and directional single-photon emission in hyperbolic metamaterials. Journal of the Optical Society of America B 2013, 30 (4) , 766. https://doi.org/10.1364/JOSAB.30.000766
    74. Ryan D. Artuso, Garnett W. Bryant. Quantum dot–quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model. Physical Review B 2013, 87 (12) https://doi.org/10.1103/PhysRevB.87.125423
    75. D. Dominguez, C. J. Regan, A. A. Bernussi, L. Grave de Peralta. Toward surface plasmon polariton quantum-state tomography. Journal of Applied Physics 2013, 113 (7) https://doi.org/10.1063/1.4792305
    76. L. Grave de Peralta, D. Domínguez. SPP tomography experiments with surface plasmon polariton standing waves. Optics Communications 2013, 286 , 151-155. https://doi.org/10.1016/j.optcom.2012.08.061
    77. H. W. Lee, M. A. Schmidt, P. St. J. Russell. Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber. Optics Letters 2012, 37 (14) , 2946. https://doi.org/10.1364/OL.37.002946
    78. Oriane Mollet, Serge Huant, Géraldine Dantelle, Thierry Gacoin, Aurélien Drezet. Quantum plasmonics: Second-order coherence of surface plasmons launched by quantum emitters into a metallic film. Physical Review B 2012, 86 (4) https://doi.org/10.1103/PhysRevB.86.045401
    79. Yannick Sonnefraud, Stefan A. Maier. Surface Plasmon Polaritons: Excitation and effect of loss in the quantum regime. 2012, 1-1. https://doi.org/10.1109/ICTON.2012.6254437
    80. Changhyoup Lee, Mark Tame, James Lim, Jinhyoung Lee. Quantum plasmonics with a metal nanoparticle array. Physical Review A 2012, 85 (6) https://doi.org/10.1103/PhysRevA.85.063823

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect