ACS Publications. Most Trusted. Most Cited. Most Read
Control of Schottky Barriers in Single Layer MoS2 Transistors with Ferromagnetic Contacts
My Activity
    Letter

    Control of Schottky Barriers in Single Layer MoS2 Transistors with Ferromagnetic Contacts
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics and Astronomy, University of California, Riverside, California, United States
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2013, 13, 7, 3106–3110
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl4010157
    Published June 7, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    MoS2 and related metal dichalcogenides (MoSe2, WS2, WSe2) are layered two-dimensional materials that are promising for nanoelectronics and spintronics. For instance, large spin–orbit coupling and spin splitting in the valence band of single layer (SL) MoS2 could lead to enhanced spin lifetimes and large spin Hall angles. Understanding the nature of the contacts is a critical first step for realizing spin injection and spin transport in MoS2. Here, we have investigated Co contacts to SL MoS2 and find that the Schottky barrier height can be significantly decreased with the addition of a thin oxide barrier (MgO). Further, we show that the barrier height can be reduced to zero by tuning the carrier density with back gate. Therefore, the MgO could simultaneously provide a tunnel barrier to alleviate conductance mismatch while minimizing carrier depletion near the contacts. Such control over the barrier height should allow for careful engineering of the contacts to realize spin injection in these materials.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 364 publications.

    1. Md. Anamul Hoque, Alexander Yu. Polyakov, Battulga Munkhbat, Konstantina Iordanidou, Abhay V. Agrawal, Andrew B. Yankovich, Sameer K. Mallik, Bing Zhao, Richa Mitra, Alexei Kalaboukhov, Eva Olsson, Sergey Kubatkin, Julia Wiktor, Samuel Lara Avila, Timur O. Shegai, Saroj P. Dash. Ultranarrow Semiconductor WS2 Nanoribbon Field-Effect Transistors. Nano Letters 2025, 25 (5) , 1750-1757. https://doi.org/10.1021/acs.nanolett.4c01076
    2. Rui Su, Dunbao Chen, Weiming Cheng, Ruizi Xiao, Yuheng Deng, Yufeng Duan, Yi Li, Lei Ye, Hongyu An, Jingping Xu, Peter To Lai, Xiangshui Miao. Oxygen Vacancy Compensation-Induced Analog Resistive Switching in the SrFeO3−δ/Nb:SrTiO3 Epitaxial Heterojunction for Noise-Tolerant High-Precision Image Recognition. ACS Applied Materials & Interfaces 2024, 16 (40) , 54115-54128. https://doi.org/10.1021/acsami.4c07951
    3. Xuan Phu Le, Annadurai Venkatesan, Debottam Daw, Tien Anh Nguyen, Mallesh Baithi, Houcine Bouzid, Tuan Dung Nguyen. High-Performance p-Type Quasi-Ohmic of WSe2 Transistors Using Vanadium-Doped WSe2 as Intermediate Layer Contact. ACS Applied Materials & Interfaces 2024, 16 (39) , 52645-52652. https://doi.org/10.1021/acsami.4c10249
    4. Viacheslav Sorkin, Hangbo Zhou, Zhi Gen Yu, Kah-Wee Ang, Yong-Wei Zhang. An Atomically Resolved Schottky Barrier Height Approach for Bridging the Gap between Theory and Experiment at Metal–Semiconductor Heterojunctions. ACS Applied Materials & Interfaces 2024, 16 (17) , 22166-22176. https://doi.org/10.1021/acsami.4c02294
    5. Likuan Ma, Yiliu Wang, Yuan Liu. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chemical Reviews 2024, 124 (5) , 2583-2616. https://doi.org/10.1021/acs.chemrev.3c00697
    6. Xiaoyu Zhao, Ke Sun, Zhenxing Lv, Zhefu Liao, Sheng Liu, Shengjun Zhou. Contact Engineering of III-Nitrides and Metal Schemes toward Efficient Deep-Ultraviolet Light-Emitting Diodes. ACS Applied Materials & Interfaces 2024, 16 (5) , 6605-6613. https://doi.org/10.1021/acsami.3c15303
    7. Rajat Kumar, Ramesh Naidu Jenjeti, Srinivasan Sampath. Layered 2D MoSe2(1–x)Te2x Alloys: Promising Thermoelectric Material with Tunable Thermal and Electrical Transport. The Journal of Physical Chemistry C 2024, 128 (4) , 1562-1573. https://doi.org/10.1021/acs.jpcc.3c06529
    8. Xiaokun Wen, Wenyu Lei, Xinlu Li, Boyuan Di, Ye Zhou, Jia Zhang, Yuhui Zhang, Liufan Li, Haixin Chang, Wenfeng Zhang. ZrTe2 Compound Dirac Semimetal Contacts for High-Performance MoS2 Transistors. Nano Letters 2023, 23 (18) , 8419-8425. https://doi.org/10.1021/acs.nanolett.3c01554
    9. Chit Siong Lau, Sarthak Das, Ivan A. Verzhbitskiy, Ding Huang, Yiyu Zhang, Teymour Talha-Dean, Wei Fu, Dasari Venkatakrishnarao, Kuan Eng Johnson Goh. Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS Nano 2023, 17 (11) , 9870-9905. https://doi.org/10.1021/acsnano.3c03455
    10. Zhongjun Li, Yahui Zheng, Guojun Li, Hanxi Wang, Weiduo Zhu, Haidi Wang, Zhao Chen, Yupeng Yuan, Xiao Cheng Zeng, Yucheng Wu. Resolving Interface Barrier Deviation from the Schottky–Mott Rule: A Mitigation Strategy via Engineering MoS2–Metal van der Waals Contact. The Journal of Physical Chemistry Letters 2023, 14 (12) , 2940-2949. https://doi.org/10.1021/acs.jpclett.3c00056
    11. Er-Xiong Ding, Peng Liu, Hoon Hahn Yoon, Faisal Ahmed, Mingde Du, Abde Mayeen Shafi, Naveed Mehmood, Esko I. Kauppinen, Zhipei Sun, Harri Lipsanen. Highly Sensitive MoS2 Photodetectors Enabled with a Dry-Transferred Transparent Carbon Nanotube Electrode. ACS Applied Materials & Interfaces 2023, 15 (3) , 4216-4225. https://doi.org/10.1021/acsami.2c19917
    12. Inayat Uddin, Nhat Anh Nguyen Phan, Hai Yen Le Thi, Hanul Kim, Dongmok Whang, Gil-Ho Kim. MoTe2-Based Schottky Barrier Photodiode Enabled by Contact Engineering. ACS Applied Nano Materials 2023, 6 (1) , 445-452. https://doi.org/10.1021/acsanm.2c04569
    13. Teng-Fei Lu, Sraddha Agrawal, Marina Tokina, Weibin Chu, Daniel Hirt, Patrick E. Hopkins, Oleg V. Prezhdo. Control of Charge Carrier Relaxation at the Au/WSe2 Interface by Ti and TiO2 Adhesion Layers: Ab Initio Quantum Dynamics. ACS Applied Materials & Interfaces 2022, 14 (51) , 57197-57205. https://doi.org/10.1021/acsami.2c18793
    14. Jialei Miao, Linlu Wu, Zheng Bian, Qinghai Zhu, Tianjiao Zhang, Xin Pan, Jiayang Hu, Wei Xu, Yeliang Wang, Yang Xu, Bin Yu, Wei Ji, Xiaowei Zhang, Jingsi Qiao, Paolo Samorì, Yuda Zhao. A “Click” Reaction to Engineer MoS2 Field-Effect Transistors with Low Contact Resistance. ACS Nano 2022, 16 (12) , 20647-20655. https://doi.org/10.1021/acsnano.2c07670
    15. Na Shen. Interlayer Doping of Cu on Bilayer Black Phosphorus for Enhanced Charge Transfer and Transport Properties. The Journal of Physical Chemistry Letters 2022, 13 (49) , 11489-11495. https://doi.org/10.1021/acs.jpclett.2c03060
    16. Binxi Liang, Anjian Wang, Jian Zhou, Shihao Ju, Jian Chen, Kenji Watanabe, Takashi Taniguchi, Yi Shi, Songlin Li. Clean BN-Encapsulated 2D FETs with Lithography-Compatible Contacts. ACS Applied Materials & Interfaces 2022, 14 (16) , 18697-18703. https://doi.org/10.1021/acsami.2c02956
    17. Yuda Zhao, Marco Gobbi, Luis E. Hueso, Paolo Samorì. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chemical Reviews 2022, 122 (1) , 50-131. https://doi.org/10.1021/acs.chemrev.1c00497
    18. Xia Liu, Arnob Islam, Ning Yang, Bradley Odhner, Mary Anne Tupta, Jing Guo, Philip X.-L. Feng. Atomic Layer MoTe2 Field-Effect Transistors and Monolithic Logic Circuits Configured by Scanning Laser Annealing. ACS Nano 2021, 15 (12) , 19733-19742. https://doi.org/10.1021/acsnano.1c07169
    19. Yue Zhao, Tsung-Yin Tsai, Gang Wu, Cormac Ó Coileáin, Yan-Feng Zhao, Duan Zhang, Kuan-Ming Hung, Ching-Ray Chang, Yuh-Renn Wu, Han-Chun Wu. Graphene/SnS2 van der Waals Photodetector with High Photoresponsivity and High Photodetectivity for Broadband 365–2240 nm Detection. ACS Applied Materials & Interfaces 2021, 13 (39) , 47198-47207. https://doi.org/10.1021/acsami.1c11534
    20. Ziqi Zhou, Paul Marcon, Xavier Devaux, Philippe Pigeat, Alexandre Bouché, Sylvie Migot, Abdallah Jaafar, Rémi Arras, Michel Vergnat, Lei Ren, Hans Tornatzky, Cedric Robert, Xavier Marie, Jean-Marie George, Henri-Yves Jaffrès, Mathieu Stoffel, Hervé Rinnert, Zhongming Wei, Pierre Renucci, Lionel Calmels, Yuan Lu. Large Perpendicular Magnetic Anisotropy in Ta/CoFeB/MgO on Full-Coverage Monolayer MoS2 and First-Principles Study of Its Electronic Structure. ACS Applied Materials & Interfaces 2021, 13 (27) , 32579-32589. https://doi.org/10.1021/acsami.1c08805
    21. Kraig Andrews, Upendra Rijal, Arthur Bowman, Hsun-Jen Chuang, Michael R. Koehler, Jiaqiang Yan, David G. Mandrus, Pai-Yen Chen, Zhixian Zhou. Accumulation-Type Ohmic van der Waals Contacts to Nearly Intrinsic WSe2 Nanosheet-Based Channels: Implications for Field-Effect Transistors. ACS Applied Nano Materials 2021, 4 (5) , 5598-5610. https://doi.org/10.1021/acsanm.1c01138
    22. Youwei Zhang, Kankan Ma, Chun Zhao, Wei Hong, Changjiang Nie, Zhi-Jun Qiu, Shun Wang. An Ultrafast WSe2 Photodiode Based on a Lateral p-i-n Homojunction. ACS Nano 2021, 15 (3) , 4405-4415. https://doi.org/10.1021/acsnano.0c08075
    23. Jinho Lim, Arman Kadyrov, Dasom Jeon, Yongsu Choi, Junho Bae, Seunghyun Lee. Contact Engineering of Vertically Grown ReS2 with Schottky Barrier Modulation. ACS Applied Materials & Interfaces 2021, 13 (6) , 7529-7538. https://doi.org/10.1021/acsami.0c20108
    24. Chengming Jiang, Qikun Li, Jijie Huang, Sheng Bi, Ruonan Ji, Qinglei Guo. Single-Layer MoS2 Mechanical Resonant Piezo-Sensors with High Mass Sensitivity. ACS Applied Materials & Interfaces 2020, 12 (37) , 41991-41998. https://doi.org/10.1021/acsami.0c11913
    25. Anishkumar Soman, Robert A. Burke, Qiu Li, Michael D. Valentin, Tiantian Li, Dun Mao, Madan Dubey, Tingyi Gu. Hydrogen Plasma Exposure of Monolayer MoS2 Field-Effect Transistors and Prevention of Desulfurization by Monolayer Graphene. ACS Applied Materials & Interfaces 2020, 12 (33) , 37305-37312. https://doi.org/10.1021/acsami.0c07818
    26. Wenzhao Wang, Xiangbin Zeng, Jamie H. Warner, Zhengyu Guo, Yishuo Hu, Yang Zeng, Jingjing Lu, Wen Jin, Shibo Wang, Jichang Lu, Yirong Zeng, Yonghong Xiao. Photoresponse-Bias Modulation of a High-Performance MoS2 Photodetector with a Unique Vertically Stacked 2H-MoS2/1T@2H-MoS2 Structure. ACS Applied Materials & Interfaces 2020, 12 (29) , 33325-33335. https://doi.org/10.1021/acsami.0c04048
    27. Wenjie Yan, Chengzhai Lv, Duan Zhang, Yanhui Chen, Lei Zhang, Cormac Ó Coileáin, Zhi Wang, Zhaotan Jiang, Kuan-Ming Hung, Ching-Ray Chang, Han-Chun Wu. Enhanced NO2 Sensitivity in Schottky-Contacted n-Type SnS2 Gas Sensors. ACS Applied Materials & Interfaces 2020, 12 (23) , 26746-26754. https://doi.org/10.1021/acsami.0c07193
    28. Eunho Lee, Seung Goo Lee, Wi Hyoung Lee, Hyo Chan Lee, Nguyen Ngan Nguyen, Min Seok Yoo, Kilwon Cho. Direct CVD Growth of a Graphene/MoS2 Heterostructure with Interfacial Bonding for Two-Dimensional Electronics. Chemistry of Materials 2020, 32 (11) , 4544-4552. https://doi.org/10.1021/acs.chemmater.0c00503
    29. Kraig Andrews, Arthur Bowman, Upendra Rijal, Pai-Yen Chen, Zhixian Zhou. Improved Contacts and Device Performance in MoS2 Transistors Using a 2D Semiconductor Interlayer. ACS Nano 2020, 14 (5) , 6232-6241. https://doi.org/10.1021/acsnano.0c02303
    30. Anders C. Riis-Jensen, Simone Manti, Kristian S. Thygesen. Engineering Atomically Sharp Potential Steps and Band Alignment at Solid Interfaces using 2D Janus Layers. The Journal of Physical Chemistry C 2020, 124 (17) , 9572-9580. https://doi.org/10.1021/acs.jpcc.0c01286
    31. Gaurav Pande, Jyun-Yan Siao, Wei-Liang Chen, Chien-Ju Lee, Raman Sankar, Yu-Ming Chang, Chii-Dong Chen, Wen-Hao Chang, Fang-Cheng Chou, Minn-Tsong Lin. Ultralow Schottky Barriers in Hexagonal Boron Nitride-Encapsulated Monolayer WSe2 Tunnel Field-Effect Transistors. ACS Applied Materials & Interfaces 2020, 12 (16) , 18667-18673. https://doi.org/10.1021/acsami.0c01025
    32. Chengzhai Lv, Wenjie Yan, Tung-Ho Shieh, Yue Zhao, Gang Wu, Yanfeng Zhao, Yanhui Lv, Duan Zhang, Yanhui Chen, Sunil K. Arora, Cormac Ó Coileáin, Ching-Ray Chang, Hung Hsiang Cheng, Kuan-Ming Hung, Han-Chun Wu. Electrical Contact Barriers between a Three-Dimensional Metal and Layered SnS2. ACS Applied Materials & Interfaces 2020, 12 (13) , 15830-15836. https://doi.org/10.1021/acsami.9b21996
    33. Jisu Jang, Yunseob Kim, Sang-Soo Chee, Hanul Kim, Dongmok Whang, Gil-Ho Kim, Sun Jin Yun. Clean Interface Contact Using a ZnO Interlayer for Low-Contact-Resistance MoS2 Transistors. ACS Applied Materials & Interfaces 2020, 12 (4) , 5031-5039. https://doi.org/10.1021/acsami.9b18591
    34. Woo Young Yoon, Hye-Jin Jin, William Jo. Reconfigurable Dipole-Induced Resistive Switching of MoS2 Thin Layers on Nb:SrTiO3. ACS Applied Materials & Interfaces 2019, 11 (49) , 46344-46349. https://doi.org/10.1021/acsami.9b15097
    35. Homin Choi, Byoung Hee Moon, Jung Ho Kim, Seok Joon Yun, Gang Hee Han, Sung-gyu Lee, Hamza Zad Gul, Young Hee Lee. Edge Contact for Carrier Injection and Transport in MoS2 Field-Effect Transistors. ACS Nano 2019, 13 (11) , 13169-13175. https://doi.org/10.1021/acsnano.9b05965
    36. Mahito Yamamoto, Ryo Nouchi, Teruo Kanki, Shu Nakaharai, Azusa N. Hattori, Kenji Watanabe, Takashi Taniguchi, Yutaka Wakayama, Keiji Ueno, Hidekazu Tanaka. Barrier Formation at the Contacts of Vanadium Dioxide and Transition-Metal Dichalcogenides. ACS Applied Materials & Interfaces 2019, 11 (40) , 36871-36879. https://doi.org/10.1021/acsami.9b13763
    37. Xiaozong Hu, Pu Huang, Kailang Liu, Bao Jin, Xun Zhang, Xiuwen Zhang, Xing Zhou, Tianyou Zhai. Salt-Assisted Growth of Ultrathin GeSe Rectangular Flakes for Phototransistors with Ultrahigh Responsivity. ACS Applied Materials & Interfaces 2019, 11 (26) , 23353-23360. https://doi.org/10.1021/acsami.9b06425
    38. Junhong Na, Youngwook Kim, Jurgen H. Smet, Marko Burghard, Klaus Kern. Gate-Tunable Tunneling Transistor Based on a Thin Black Phosphorus–SnSe2 Heterostructure. ACS Applied Materials & Interfaces 2019, 11 (23) , 20973-20978. https://doi.org/10.1021/acsami.9b02589
    39. Zhibin Gao, Zhixian Zhou, David Tománek. Degenerately Doped Transition Metal Dichalcogenides as Ohmic Homojunction Contacts to Transition Metal Dichalcogenide Semiconductors. ACS Nano 2019, 13 (5) , 5103-5111. https://doi.org/10.1021/acsnano.8b08190
    40. C. K. Safeer, Josep Ingla-Aynés, Franz Herling, José H. Garcia, Marc Vila, Nerea Ontoso, M. Reyes Calvo, Stephan Roche, Luis E. Hueso, Fèlix Casanova. Room-Temperature Spin Hall Effect in Graphene/MoS2 van der Waals Heterostructures. Nano Letters 2019, 19 (2) , 1074-1082. https://doi.org/10.1021/acs.nanolett.8b04368
    41. Yan Aung Moe, Yinghui Sun, Huanyu Ye, Kai Liu, Rongming Wang. Probing Evolution of Local Strain at MoS2-Metal Boundaries by Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2018, 10 (46) , 40246-40254. https://doi.org/10.1021/acsami.8b13241
    42. Po-Hsun Ho, Yi-Siang Shih, Min-Ken Li, Tzu-Pei Chen, Fu-Yu Shih, Wei-Hua Wang, Chun-Wei Chen. Spatially and Precisely Controlled Large-Scale and Persistent Optical Gating in a TiOx–MoS2 Heterostructure. ACS Applied Materials & Interfaces 2018, 10 (44) , 38319-38325. https://doi.org/10.1021/acsami.8b11374
    43. Da Li, Bin Wu, Xiaojian Zhu, Juntong Wang, Byunghoon Ryu, Wei D. Lu, Wei Lu, Xiaogan Liang. MoS2 Memristors Exhibiting Variable Switching Characteristics toward Biorealistic Synaptic Emulation. ACS Nano 2018, 12 (9) , 9240-9252. https://doi.org/10.1021/acsnano.8b03977
    44. Gwang-Sik Kim, Seung-Hwan Kim, June Park, Kyu Hyun Han, Jiyoung Kim, Hyun-Yong Yu. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States. ACS Nano 2018, 12 (6) , 6292-6300. https://doi.org/10.1021/acsnano.8b03331
    45. Xuefei Li, Roberto Grassi, Sichao Li, Tiaoyang Li, Xiong Xiong, Tony Low, and Yanqing Wu . Anomalous Temperature Dependence in Metal–Black Phosphorus Contact. Nano Letters 2018, 18 (1) , 26-31. https://doi.org/10.1021/acs.nanolett.7b02278
    46. Jie Su, Li-ping Feng, Xiaoqi Zheng, Chenlu Hu, Hongcheng Lu, and Zhengtang Liu . Promising Approach for High-Performance MoS2 Nanodevice: Doping the BN Buffer Layer to Eliminate the Schottky Barriers. ACS Applied Materials & Interfaces 2017, 9 (46) , 40940-40948. https://doi.org/10.1021/acsami.7b10967
    47. Ahmet Avsar, Jun Y. Tan, Xin Luo, Khoong Hong Khoo, Yuting Yeo, Kenji Watanabe, Takashi Taniguchi, Su Ying Quek, and Barbaros Özyilmaz . van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices. Nano Letters 2017, 17 (9) , 5361-5367. https://doi.org/10.1021/acs.nanolett.7b01817
    48. Lingming Yang, Adam Charnas, Gang Qiu, Yu-Ming Lin, Chun-Chieh Lu, Wilman Tsai, Qing Paduano, Michael Snure, and Peide D. Ye . How Important Is the Metal–Semiconductor Contact for Schottky Barrier Transistors: A Case Study on Few-Layer Black Phosphorus?. ACS Omega 2017, 2 (8) , 4173-4179. https://doi.org/10.1021/acsomega.7b00634
    49. Xu Cui, En-Min Shih, Luis A. Jauregui, Sang Hoon Chae, Young Duck Kim, Baichang Li, Dongjea Seo, Kateryna Pistunova, Jun Yin, Ji-Hoon Park, Heon-Jin Choi, Young Hee Lee, Kenji Watanabe, Takashi Taniguchi, Philip Kim, Cory R. Dean, and James C. Hone . Low-Temperature Ohmic Contact to Monolayer MoS2 by van der Waals Bonded Co/h-BN Electrodes. Nano Letters 2017, 17 (8) , 4781-4786. https://doi.org/10.1021/acs.nanolett.7b01536
    50. Wenjing Jie, Zhibin Yang, Fan Zhang, Gongxun Bai, Chi Wah Leung, and Jianhua Hao . Observation of Room-Temperature Magnetoresistance in Monolayer MoS2 by Ferromagnetic Gating. ACS Nano 2017, 11 (7) , 6950-6958. https://doi.org/10.1021/acsnano.7b02253
    51. Po-Hsun Ho, Yih-Ren Chang, Yu-Cheng Chu, Min-Ken Li, Che-An Tsai, Wei-Hua Wang, Ching-Hwa Ho, Chun-Wei Chen, and Po-Wen Chiu . High-Mobility InSe Transistors: The Role of Surface Oxides. ACS Nano 2017, 11 (7) , 7362-7370. https://doi.org/10.1021/acsnano.7b03531
    52. Yudan Zhao, Xiaoyang Xiao, Yujia Huo, Yingcheng Wang, Tianfu Zhang, Kaili Jiang, Jiaping Wang, Shoushan Fan, and Qunqing Li . Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode. ACS Applied Materials & Interfaces 2017, 9 (22) , 18945-18955. https://doi.org/10.1021/acsami.7b04076
    53. Yingjie Sun, Zhiwen Zhuo, Xiaojun Wu, and Jinlong Yang . Room-Temperature Ferromagnetism in Two-Dimensional Fe2Si Nanosheet with Enhanced Spin-Polarization Ratio. Nano Letters 2017, 17 (5) , 2771-2777. https://doi.org/10.1021/acs.nanolett.6b04884
    54. Yongsuk Choi, Junmo Kang, Deep Jariwala, Spencer A. Wells, Moon Sung Kang, Tobin J. Marks, Mark C. Hersam, and Jeong Ho Cho . Low-Voltage 2D Material Field-Effect Transistors Enabled by Ion Gel Capacitive Coupling. Chemistry of Materials 2017, 29 (9) , 4008-4013. https://doi.org/10.1021/acs.chemmater.7b00573
    55. Mikai Chen, Yifan Wang, Nathan Shepherd, Chad Huard, Jiantao Zhou, L. J. Guo, Wei Lu, and Xiaogan Liang . Abnormal Multiple Charge Memory States in Exfoliated Few-Layer WSe2 Transistors. ACS Nano 2017, 11 (1) , 1091-1102. https://doi.org/10.1021/acsnano.6b08156
    56. Jun Suk Kim, Jaesu Kim, Jiong Zhao, Sungho Kim, Jin Hee Lee, Youngjo Jin, Homin Choi, Byoung Hee Moon, Jung Jun Bae, Young Hee Lee, and Seong Chu Lim . Electrical Transport Properties of Polymorphic MoS2. ACS Nano 2016, 10 (8) , 7500-7506. https://doi.org/10.1021/acsnano.6b02267
    57. Seon Jae Choi, Bum-Kyu Kim, Tae-Ho Lee, Yun Ho Kim, Zuanyi Li, Eric Pop, Ju-Jin Kim, Jong Hyun Song, and Myung-Ho Bae . Electrical and Thermoelectric Transport by Variable Range Hopping in Thin Black Phosphorus Devices. Nano Letters 2016, 16 (7) , 3969-3975. https://doi.org/10.1021/acs.nanolett.5b04957
    58. Yang Xu, Cheng Cheng, Sichao Du, Jianyi Yang, Bin Yu, Jack Luo, Wenyan Yin, Erping Li, Shurong Dong, Peide Ye, and Xiangfeng Duan . Contacts between Two- and Three-Dimensional Materials: Ohmic, Schottky, and p–n Heterojunctions. ACS Nano 2016, 10 (5) , 4895-4919. https://doi.org/10.1021/acsnano.6b01842
    59. Mahito Yamamoto, Shu Nakaharai, Keiji Ueno, and Kazuhito Tsukagoshi . Self-Limiting Oxides on WSe2 as Controlled Surface Acceptors and Low-Resistance Hole Contacts. Nano Letters 2016, 16 (4) , 2720-2727. https://doi.org/10.1021/acs.nanolett.6b00390
    60. Ah Ra Kim, Yonghun Kim, Jaewook Nam, Hee-Suk Chung, Dong Jae Kim, Jung-Dae Kwon, Sang Won Park, Jucheol Park, Sun Young Choi, Byoung Hun Lee, Ji Hyeon Park, Kyu Hwan Lee, Dong-Ho Kim, Sung Mook Choi, Pulickel M. Ajayan, Myung Gwan Hahm, and Byungjin Cho . Alloyed 2D Metal–Semiconductor Atomic Layer Junctions. Nano Letters 2016, 16 (3) , 1890-1895. https://doi.org/10.1021/acs.nanolett.5b05036
    61. Seunghyun Lee, Alvin Tang, Shaul Aloni, and H.-S. Philip Wong . Statistical Study on the Schottky Barrier Reduction of Tunneling Contacts to CVD Synthesized MoS2. Nano Letters 2016, 16 (1) , 276-281. https://doi.org/10.1021/acs.nanolett.5b03727
    62. Naveen Kaushik, Debjani Karmakar, Ankur Nipane, Shruti Karande, and Saurabh Lodha . Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2. ACS Applied Materials & Interfaces 2016, 8 (1) , 256-263. https://doi.org/10.1021/acsami.5b08559
    63. Hafiz M. W. Khalil, Muhammad Farooq Khan, Jonghwa Eom, and Hwayong Noh . Highly Stable and Tunable Chemical Doping of Multilayer WS2 Field Effect Transistor: Reduction in Contact Resistance. ACS Applied Materials & Interfaces 2015, 7 (42) , 23589-23596. https://doi.org/10.1021/acsami.5b06825
    64. Ariana Nguyen, Pankaj Sharma, Thomas Scott, Edwin Preciado, Velveth Klee, Dezheng Sun, I-Hsi (Daniel) Lu, David Barroso, SukHyun Kim, Vladimir Ya. Shur, Andrey R. Akhmatkhanov, Alexei Gruverman, Ludwig Bartels, and Peter A. Dowben . Toward Ferroelectric Control of Monolayer MoS2. Nano Letters 2015, 15 (5) , 3364-3369. https://doi.org/10.1021/acs.nanolett.5b00687
    65. Yuan Liu, Hao Wu, Hung-Chieh Cheng, Sen Yang, Enbo Zhu, Qiyuan He, Mengning Ding, Dehui Li, Jian Guo, Nathan O. Weiss, Yu Huang, and Xiangfeng Duan . Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Letters 2015, 15 (5) , 3030-3034. https://doi.org/10.1021/nl504957p
    66. Ahmet Avsar, Ivan J. Vera-Marun, Jun You Tan, Kenji Watanabe, Takashi Taniguchi, Antonio H. Castro Neto, and Barbaros Özyilmaz . Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors. ACS Nano 2015, 9 (4) , 4138-4145. https://doi.org/10.1021/acsnano.5b00289
    67. Qiannan Cui and Hui Zhao . Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2. ACS Nano 2015, 9 (4) , 3935-3941. https://doi.org/10.1021/acsnano.5b01111
    68. Mahito Yamamoto, Sudipta Dutta, Shinya Aikawa, Shu Nakaharai, Katsunori Wakabayashi, Michael S. Fuhrer, Keiji Ueno, and Kazuhito Tsukagoshi . Self-Limiting Layer-by-Layer Oxidation of Atomically Thin WSe2. Nano Letters 2015, 15 (3) , 2067-2073. https://doi.org/10.1021/nl5049753
    69. Tiziana Musso, Priyank V. Kumar, Adam S. Foster, and Jeffrey C. Grossman . Graphene Oxide as a Promising Hole Injection Layer for MoS2-Based Electronic Devices. ACS Nano 2014, 8 (11) , 11432-11439. https://doi.org/10.1021/nn504507u
    70. Qian Chen, Yixin Ouyang, Shijun Yuan, Runze Li, and Jinlan Wang . Uniformly Wetting Deposition of Co Atoms on MoS2 Monolayer: A Promising Two-Dimensional Robust Half-Metallic Ferromagnet. ACS Applied Materials & Interfaces 2014, 6 (19) , 16835-16840. https://doi.org/10.1021/am504216k
    71. Nihar R. Pradhan, Daniel Rhodes, Yan Xin, Shahriar Memaran, Lakshmi Bhaskaran, Muhandis Siddiq, Stephen Hill, Pulickel M. Ajayan, and Luis Balicas . Ambipolar Molybdenum Diselenide Field-Effect Transistors: Field-Effect and Hall Mobilities. ACS Nano 2014, 8 (8) , 7923-7929. https://doi.org/10.1021/nn501693d
    72. Yao Guo, Yuxiang Han, Jiapeng Li, An Xiang, Xianlong Wei, Song Gao, and Qing Chen . Study on the Resistance Distribution at the Contact between Molybdenum Disulfide and Metals. ACS Nano 2014, 8 (8) , 7771-7779. https://doi.org/10.1021/nn503152r
    73. Nihar R. Pradhan, Daniel Rhodes, Simin Feng, Yan Xin, Shahriar Memaran, Byoung-Hee Moon, Humberto Terrones, Mauricio Terrones, and Luis Balicas . Field-Effect Transistors Based on Few-Layered α-MoTe2. ACS Nano 2014, 8 (6) , 5911-5920. https://doi.org/10.1021/nn501013c
    74. Lili Yu, Yi-Hsien Lee, Xi Ling, Elton J. G. Santos, Yong Cheol Shin, Yuxuan Lin, Madan Dubey, Efthimios Kaxiras, Jing Kong, Han Wang, and Tomás Palacios . Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano Letters 2014, 14 (6) , 3055-3063. https://doi.org/10.1021/nl404795z
    75. Bilu Liu, Liang Chen, Gang Liu, Ahmad N. Abbas, Mohammad Fathi, and Chongwu Zhou . High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS2 Transistors. ACS Nano 2014, 8 (5) , 5304-5314. https://doi.org/10.1021/nn5015215
    76. Mikai Chen, Hongsuk Nam, Sungjin Wi, Greg Priessnitz, Ivan Manuel Gunawan, and Xiaogan Liang . Multibit Data Storage States Formed in Plasma-Treated MoS2 Transistors. ACS Nano 2014, 8 (4) , 4023-4032. https://doi.org/10.1021/nn501181t
    77. Nan Feng, Wenbo Mi, Yingchun Cheng, Zaibing Guo, Udo Schwingenschlögl, and Haili Bai . Magnetism by Interfacial Hybridization and p-type Doping of MoS2 in Fe4N/MoS2 Superlattices: A First-Principles Study. ACS Applied Materials & Interfaces 2014, 6 (6) , 4587-4594. https://doi.org/10.1021/am500754p
    78. Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam . Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8 (2) , 1102-1120. https://doi.org/10.1021/nn500064s
    79. Qiang Xi, Dian-Ming Zhou, Ying-Ya Kan, Jia Ge, Zhen-Kun Wu, Ru-Qin Yu, and Jian-Hui Jiang . Highly Sensitive and Selective Strategy for MicroRNA Detection Based on WS2 Nanosheet Mediated Fluorescence Quenching and Duplex-Specific Nuclease Signal Amplification. Analytical Chemistry 2014, 86 (3) , 1361-1365. https://doi.org/10.1021/ac403944c
    80. André Dankert, Lennart Langouche, Mutta Venkata Kamalakar, and Saroj Prasad Dash . High-Performance Molybdenum Disulfide Field-Effect Transistors with Spin Tunnel Contacts. ACS Nano 2014, 8 (1) , 476-482. https://doi.org/10.1021/nn404961e
    81. Jiachen Tang, Shuaixing Li, Li Zhan, Songlin Li. Contact engineering for two-dimensional van der Waals semiconductors. Materials Today Electronics 2025, 11 , 100132. https://doi.org/10.1016/j.mtelec.2024.100132
    82. Zhe Chen, Wen Zhu, Lanxin Xu, Minghao An, Xiaorui Zheng. Hybrid Contact for High‐Performance MoS 2 Transistors via Hard‐Mask Scanning Probe Lithography. Advanced Materials Technologies 2025, 10 (9) https://doi.org/10.1002/admt.202401682
    83. Xianghong Niu, Wenchao Shan, Zifan Niu, Xinxin Wang, Xiuyun Zhang, Anqi Shi. Reasonable designing interfacial charge transfer channels in 2D metal–semiconductor contact: A time-domain ultrafast dynamic study. Applied Physics Letters 2025, 126 (17) https://doi.org/10.1063/5.0267874
    84. Ziqi Han, Chun-Sheng Liu, Xiaohong Zheng, Da-Yong Liu, Weiyang Wang, Yushen Liu. An Ab initio study on the enhancement of tunneling magnetoresistance and spin injection in Ni/vacuum/Ni magnetic tunnel junctions by h-BN stacking. Physical Chemistry Chemical Physics 2025, 27 (13) , 6669-6676. https://doi.org/10.1039/D4CP04428B
    85. Jin‐Liang Lin, Ang Zheng, Yu Xie, Ningyue Chen, Rui‐Lin He, Bangchen Yin, Wenkun Lv, Yongge Wei, Yuan Li. Transition from Tunneling to Schottky Barriers in Molecular Junctions Based on Polyoxometalate Monolayers. Angewandte Chemie International Edition 2025, 13 https://doi.org/10.1002/anie.202501763
    86. Jin-Liang Lin, Ang Zheng, Yu Xie, Ningyue Chen, Rui-Lin He, Bangchen Yin, Wenkun Lv, Yongge Wei, Yuan Li. Transition from Tunneling to Schottky Barriers in Molecular Junctions Based on Polyoxometalate Monolayers. Angewandte Chemie 2025, https://doi.org/10.1002/ange.202501763
    87. Boxiang Gao, Yan Yan, Shuai Zhang, Zenghui Wu, You Meng, Yuxuan Zhang, Weijun Wang, Yi Shen, Siliang Hu, Bowen Li, He Shao, Pengshan Xie, SenPo Yip, Johnny C. Ho. Precise p‐Type Substitutional Doping Enables WS 2 p‐n Anti‐Ambipolar Homojunction Phototransistor Arrays. Advanced Functional Materials 2025, 591 https://doi.org/10.1002/adfm.202425884
    88. Robin T. K. Schock, Stefan Obloh, Jonathan Neuwald, Matthias Kronseder, Wolfgang Möckel, Matjaž Malok, Luka Pirker, Maja Remškar, Andreas K. Hüttel. Material Transfer and Contact Optimization in MoS 2 Nanotube Devices. physica status solidi (b) 2025, 262 (3) https://doi.org/10.1002/pssb.202400366
    89. Li-Ming Chiang, Chi-Peng Tu, James Singh Konthoujam, Hai-Pang Chiang, Tsung-Sheng Kao, Min-Hsiung Shih. A linearly polarized AC-driven perovskite light emitting device with nanoscale metal contact. Nanoscale 2025, 17 (8) , 4732-4739. https://doi.org/10.1039/D4NR04894F
    90. Chun Sun, Longlu Wang, Yuxing Liu, Hance Su, Peng Cui. Electrocatalytic microdevices based on transition metal dichalcogenides for hydrogen evolution. Journal of Materials Chemistry A 2025, 13 (6) , 3991-4011. https://doi.org/10.1039/D4TA07238C
    91. Siwei Wang, Yun-Hao Shao, Baifan Qian, Qingqing Sun, David Wei Zhang, Qingxuan Li, Lin Chen. IGZO-Based High-Performance Asymmetrical Negative-Capacitance Tunneling FET With Ti Low Schottky Barrier Contact. IEEE Transactions on Electron Devices 2025, 72 (2) , 906-910. https://doi.org/10.1109/TED.2024.3512474
    92. Viacheslav Sorkin, Hangbo Zhou, Zhi Gen Yu, Kah-Wee Ang, Yong-Wei Zhang. Impact of grain boundaries on the electronic properties and Schottky barrier height in MoS 2 @Au heterojunctions. Physical Chemistry Chemical Physics 2025, 27 (2) , 905-914. https://doi.org/10.1039/D4CP03686G
    93. Abhay Kumar Singh. Applications of TMDs Materials. 2025, 523-633. https://doi.org/10.1007/978-981-96-0247-6_8
    94. Dipak Maity, Rajesh Kumar Yadav, Adi Levi, Rahul Sharma, Emanuel Ber, Eilam Yalon, Ravi. K. Biroju, Viliam Vretenár, Tharangattu N. Narayanan, Doron Naveh. Interfacial Engineering of Degenerately Doped V 0.25 Mo 0.75 S 2 for Improved Contacts in MoS 2 Field Effect Transistors. Small Methods 2024, 80 https://doi.org/10.1002/smtd.202401938
    95. Olugbenga Ogunbiyi, Yingchao Yang. Mechanics of Two‐Dimensional Materials. 2024, 87-138. https://doi.org/10.1002/9783527842308.ch4
    96. Xin Feng, Yiran Ma, Tian Huang, Shenghong Liu, Lixin Liu, Erjuan Guo, Kailang Liu, Yuan Li, Xing Zhou, Huiqiao Li, Tianyou Zhai. Wafer‐scale single‐crystal two‐dimensional materials for integrated optoelectronics. InfoScience 2024, 1 (1) https://doi.org/10.1002/inc2.12015
    97. Xumei Zhao, Caijuan Xia, Lianbi Li, Anxiang Wang, Dezhong Cao, Baiyu Zhang, Qinglong Fang. Tuning the Schottky barrier height in single- and bi-layer graphene-inserted MoS2/metal contacts. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-67150-2
    98. Md. Anamul Hoque, Antony George, Vasudev Ramachandra, Emad Najafidehaghani, Ziyang Gan, Richa Mitra, Bing Zhao, Satyaprakash Sahoo, Maria Abrahamsson, Qiuhua Liang, Julia Wiktor, Andrey Turchanin, Sergey Kubatkin, Samuel Lara-Avila, Saroj P. Dash. All-2D CVD-grown semiconductor field-effect transistors with van der Waals graphene contacts. npj 2D Materials and Applications 2024, 8 (1) https://doi.org/10.1038/s41699-024-00489-2
    99. Dexing Liu, Ziyi Liu, Xinyu Gao, Jiahao Zhu, Zifan Wang, Rui Qiu, Qinqi Ren, Yiming Zhang, Shengdong Zhang, Min Zhang. Hydrogen‐Bonding Integrated Low‐Dimensional Flexible Electronics Beyond the Limitations of van der Waals Contacts. Advanced Materials 2024, 36 (35) https://doi.org/10.1002/adma.202404626
    100. Wonjun Shin, Junsung Byeon, Ryun‐Han Koo, Jungmoon Lim, Jung Hyeon Kang, A‐Rang Jang, Jong‐Ho Lee, Jae‐Joon Kim, SeungNam Cha, Sangyeon Pak, Sung‐Tae Lee. Toward Ideal Low‐Frequency Noise in Monolayer CVD MoS 2 FETs: Influence of van der Waals Junctions and Sulfur Vacancy Management. Advanced Science 2024, 11 (28) https://doi.org/10.1002/advs.202307196
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2013, 13, 7, 3106–3110
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl4010157
    Published June 7, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.