ACS Publications. Most Trusted. Most Cited. Most Read
Nanoscale Imaging of Plasmonic Hot Spots and Dark Modes with the Photothermal-Induced Resonance Technique
My Activity
    Letter

    Nanoscale Imaging of Plasmonic Hot Spots and Dark Modes with the Photothermal-Induced Resonance Technique
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Nanoscale Science and Technology, National Institute Standards and Technology, Gaithersburg, 100 Bureau Drive, Maryland 20899, United States
    Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland, College Park, Maryland 20742, United States
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2013, 13, 7, 3218–3224
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl401284m
    Published June 18, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The collective oscillation of conduction electrons, responsible for the localized surface plasmon resonances, enables engineering nanomaterials by tuning their optical response from the visible to terahertz as a function of nanostructure size, shape, and environment. While theoretical calculations helped tremendously in understanding plasmonic nanomaterials and optimizing their light matter interaction, only a few experimental techniques are available to study these materials with high spatial resolution. In this work, the photothermal-induced resonance (PTIR) technique is applied for the first time to image the dark plasmonic resonance of gold asymmetric split ring resonators (A-SRRs) in the mid-infrared (IR) spectral region with nanoscale resolution. Additionally, the chemically specific PTIR signal is used to map the local absorption enhancement of poly(methyl methacrylate) coated on A-SRRs, revealing hot spots with local enhancement factors up to ≈30 at 100 nm lateral resolution. We argue that PTIR nanoscale characterization will facilitate the engineering and application of plasmonic nanomaterials for mid-IR applications.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional A-SRRs FTIR spectra, nanofabrication scheme, SEM images, PTIR spectra, and images as referenced in the main text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 90 publications.

    1. Jiang Zhu, Wei Wei, Bo Chen, Ping Tang, Xiangyu Zhao, Chongzhao Wu. Surface-Enhanced Infrared Absorption Sensor Incorporating Liquid Galinstan with Three-Dimensional Metagratings. ACS Photonics 2024, 11 (5) , 1857-1865. https://doi.org/10.1021/acsphotonics.3c01319
    2. Jeffrey J. Schwartz, Georges Pavlidis, Andrea Centrone. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy. Analytical Chemistry 2022, 94 (38) , 13126-13135. https://doi.org/10.1021/acs.analchem.2c02612
    3. Riko Kiessling, Yujin Tong, Alexander J. Giles, Sandy Gewinner, Wieland Schöllkopf, Joshua D. Caldwell, Martin Wolf, Alexander Paarmann. Surface Phonon Polariton Resonance Imaging Using Long-Wave Infrared-Visible Sum-Frequency Generation Microscopy. ACS Photonics 2019, 6 (11) , 3017-3023. https://doi.org/10.1021/acsphotonics.9b01335
    4. Raul D. Rodriguez, Teresa I. Madeira, Evgeniya Sheremet, Eugene Bortchagovsky, Ashutosh Mukherjee, Michael Hietschold, Dietrich R. T. Zahn. Optical Absorption Imaging by Photothermal Expansion with 4 nm Resolution. ACS Photonics 2018, 5 (8) , 3338-3346. https://doi.org/10.1021/acsphotonics.8b00590
    5. Georg Ramer, Francesco Simone Ruggeri, Aviad Levin, Tuomas P. J. Knowles, Andrea Centrone. Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS Nano 2018, 12 (7) , 6612-6619. https://doi.org/10.1021/acsnano.8b01425
    6. Andrea Mancini, Valeria Giliberti, Alessandro Alabastri, Eugenio Calandrini, Francesco De Angelis, Denis Garoli, Michele Ortolani. Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays. The Journal of Physical Chemistry C 2018, 122 (24) , 13072-13081. https://doi.org/10.1021/acs.jpcc.8b03808
    7. Lisa V. Brown, Marcelo Davanco, Zhiyuan Sun, Andrey Kretinin, Yiguo Chen, Joseph R. Matson, Igor Vurgaftman, Nicholas Sharac, Alexander J. Giles, Michael M. Fogler, Takashi Taniguchi, Kenji Watanabe, Kostya S. Novoselov, Stefan A. Maier, Andrea Centrone, Joshua D. Caldwell. Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures. Nano Letters 2018, 18 (3) , 1628-1636. https://doi.org/10.1021/acs.nanolett.7b04476
    8. Thejaswi Tumkur, Xiao Yang, Chao Zhang, Jian Yang, Yue Zhang, Gururaj V. Naik, Peter Nordlander, Naomi J. Halas. Wavelength-Dependent Optical Force Imaging of Bimetallic Al–Au Heterodimers. Nano Letters 2018, 18 (3) , 2040-2046. https://doi.org/10.1021/acs.nanolett.8b00020
    9. David Perez-Guaita, Kamila Kochan, Mitchell Batty, Christian Doerig, Jose Garcia-Bustos, Shirly Espinoza, Don McNaughton, Phil Heraud, Bayden R. Wood. Multispectral Atomic Force Microscopy-Infrared Nano-Imaging of Malaria Infected Red Blood Cells. Analytical Chemistry 2018, 90 (5) , 3140-3148. https://doi.org/10.1021/acs.analchem.7b04318
    10. Georg Ramer, Vladimir A. Aksyuk, and Andrea Centrone . Quantitative Chemical Analysis at the Nanoscale Using the Photothermal Induced Resonance Technique. Analytical Chemistry 2017, 89 (24) , 13524-13531. https://doi.org/10.1021/acs.analchem.7b03878
    11. Alexandre Dazzi and Craig B. Prater . AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chemical Reviews 2017, 117 (7) , 5146-5173. https://doi.org/10.1021/acs.chemrev.6b00448
    12. Frank Neubrech, Christian Huck, Ksenia Weber, Annemarie Pucci, and Harald Giessen . Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. Chemical Reviews 2017, 117 (7) , 5110-5145. https://doi.org/10.1021/acs.chemrev.6b00743
    13. Z. Fei, J. J. Foley, IV, W. Gannett, M. K. Liu, S. Dai, G. X. Ni, A. Zettl, M. M. Fogler, G. P. Wiederrecht, S. K. Gray, and D. N. Basov . Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles. Nano Letters 2016, 16 (12) , 7842-7848. https://doi.org/10.1021/acs.nanolett.6b04076
    14. Jungseok Chae, Basudev Lahiri, and Andrea Centrone . Engineering Near-Field SEIRA Enhancements in Plasmonic Resonators. ACS Photonics 2016, 3 (1) , 87-95. https://doi.org/10.1021/acsphotonics.5b00466
    15. Jungseok Chae, Qingfeng Dong, Jinsong Huang, and Andrea Centrone . Chloride Incorporation Process in CH3NH3PbI3–xClx Perovskites via Nanoscale Bandgap Maps. Nano Letters 2015, 15 (12) , 8114-8121. https://doi.org/10.1021/acs.nanolett.5b03556
    16. Aaron M. Katzenmeyer, Glenn Holland, Kevin Kjoller, and Andrea Centrone . Absorption Spectroscopy and Imaging from the Visible through Mid-Infrared with 20 nm Resolution. Analytical Chemistry 2015, 87 (6) , 3154-3159. https://doi.org/10.1021/ac504672t
    17. Daniel D. Hickstein, Franklin Dollar, Jennifer L. Ellis, Kyle J. Schnitzenbaumer, K. Ellen Keister, George M. Petrov, Chengyuan Ding, Brett B. Palm, Jim A. Gaffney, Mark E. Foord, Stephen B. Libby, Gordana Dukovic, Jose L. Jimenez, Henry C. Kapteyn, Margaret M. Murnane, and Wei Xiong . Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging. ACS Nano 2014, 8 (9) , 8810-8818. https://doi.org/10.1021/nn503199v
    18. Silvan Schmid, Kaiyu Wu, Peter Emil Larsen, Tomas Rindzevicius, and Anja Boisen . Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators. Nano Letters 2014, 14 (5) , 2318-2321. https://doi.org/10.1021/nl4046679
    19. Seongmin Im, Seyedehniousha Mousavi, Yun-Sheng Chen, Yang Zhao. Perspectives of chiral nanophotonics: from mechanisms to biomedical applications. npj Nanophotonics 2024, 1 (1) https://doi.org/10.1038/s44310-024-00045-2
    20. Hanwei Wang, Sean M. Meyer, Catherine J. Murphy, Yun-Sheng Chen, Yang Zhao. Visualizing ultrafast photothermal dynamics with decoupled optical force nanoscopy. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-42666-9
    21. Menghan Liu, Shilin Chen. Bright and dark plasmon resonance of Ag nanorod dimers. AIP Advances 2023, 13 (12) https://doi.org/10.1063/5.0163797
    22. Matteo Jugovac, Iulia Cojocariu, Carlo Alberto Brondin, Alessandro Crotti, Marin Petrović, Stefano Bonetti, Andrea Locatelli, Tevfik Onur Menteş. Coupling Borophene to Graphene in Air‐Stable Heterostructures. Advanced Electronic Materials 2023, 9 (8) https://doi.org/10.1002/aelm.202300136
    23. Rashmi Kumari, Shubhanshi Sharma, Shailendra Kumar Varshney, Basudev Lahiri. Dual-channel graphene-based optical metasurface switch at telecommunication wavelengths. Journal of the Optical Society of America B 2023, 40 (4) , 753. https://doi.org/10.1364/JOSAB.482687
    24. Kiin Nam, Hyuntae Kim, Woongkyu Park, Jae Sung Ahn, Soobong Choi. Probing the optical near-field of plasmonic nano structure using scanning thermal microscopy. Nanotechnology 2023, 34 (10) , 105202. https://doi.org/10.1088/1361-6528/aca90f
    25. Qibin Zeng, Celine Sim, Anna Marie Yong, Hui Kim Hui, Yunjie Chen, Lei Zhang, Chee Kiang Ivan Tan, Huajun Liu, Kaiyang Zeng. Emerging multi-frequency surface strain force microscopy. Journal of Applied Physics 2023, 133 (4) https://doi.org/10.1063/5.0131075
    26. M. Malerba, S. Sotgiu, A. Schirato, L. Baldassarre, R. Gillibert, V. Giliberti, M. Jeannin, J-M. Manceau, L. Li, A.G. Davies, E.H. Linfield, A. Alabastri, M. Ortolani, R. Colombelli. Detection of strong light-matter interaction and near-field mapping on a single resonator with a thermal transducer. 2022, 1-2. https://doi.org/10.1109/IRMMW-THz50927.2022.9895997
    27. Jeffrey J. Schwartz, Devon S. Jakob, Andrea Centrone. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chemical Society Reviews 2022, 51 (13) , 5248-5267. https://doi.org/10.1039/D2CS00095D
    28. Takuo Tanaka, Taka-aki Yano, Ryo Kato. Nanostructure-enhanced infrared spectroscopy. Nanophotonics 2022, 11 (11) , 2541-2561. https://doi.org/10.1515/nanoph-2021-0661
    29. Qibin Zeng, Qicheng Huang, Hongli Wang, Caiwen Li, Zhen Fan, Deyang Chen, Yuan Cheng, Kaiyang Zeng. Breaking the Fundamental Limitations of Nanoscale Ferroelectric Characterization: Non‐Contact Heterodyne Electrostrain Force Microscopy. Small Methods 2021, 5 (11) https://doi.org/10.1002/smtd.202100639
    30. Georges Pavlidis, Jeffrey J. Schwartz, Joseph Matson, Thomas Folland, Song Liu, James H. Edgar, Josh D. Caldwell, Andrea Centrone. Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic (10B) hexagonal boron nitride at room temperature. APL Materials 2021, 9 (9) https://doi.org/10.1063/5.0061941
    31. Jeffrey J. Schwartz, Son T. Le, Sergiy Krylyuk, Curt A. Richter, Albert V. Davydov, Andrea Centrone. Substrate-mediated hyperbolic phonon polaritons in MoO 3. Nanophotonics 2021, 10 (5) , 1517-1527. https://doi.org/10.1515/nanoph-2020-0640
    32. Hang Yin, Nannan Li, Yubing Si, Han Zhang, Baocheng Yang, Jianfang Wang. Gold nanonails for surface-enhanced infrared absorption. Nanoscale Horizons 2020, 5 (8) , 1200-1212. https://doi.org/10.1039/D0NH00244E
    33. Kevin Gallacher, Ross W. Millar, Douglas J. Paul, Jacopo Frigerio, Andrea Ballabio, Giovanni Isella, Francesco Rusconi, Paolo Biagioni, Valeria Giliberti, Alessia Sorgi, Leonetta Baldassarre, Michele Ortolani. Characterization of integrated waveguides by atomic-force-microscopy-assisted mid-infrared imaging and spectroscopy. Optics Express 2020, 28 (15) , 22186. https://doi.org/10.1364/OE.393748
    34. Georg Ramer, Mohit Tuteja, Joseph R. Matson, Marcelo Davanco, Thomas G. Folland, Andrey Kretinin, Takashi Taniguchi, Kenji Watanabe, Kostya S. Novoselov, Joshua D. Caldwell, Andrea Centrone. High- Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures. Nanophotonics 2020, 9 (6) , 1457-1467. https://doi.org/10.1515/nanoph-2020-0048
    35. Dmitry Kurouski, Alexandre Dazzi, Renato Zenobi, Andrea Centrone. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chemical Society Reviews 2020, 49 (11) , 3315-3347. https://doi.org/10.1039/C8CS00916C
    36. Martin Hrtoň, Andrea Konečná, Michal Horák, Tomáš Šikola, Vlastimil Křápek. Plasmonic Antennas with Electric, Magnetic, and Electromagnetic Hot Spots Based on Babinet’s Principle. Physical Review Applied 2020, 13 (5) https://doi.org/10.1103/PhysRevApplied.13.054045
    37. Cheng Luo, Xiangdong Guo, Hai Hu, Debo Hu, Chenchen Wu, Xiaoxia Yang, Qing Dai. Probing Polaritons in 2D Materials. Advanced Optical Materials 2020, 8 (5) https://doi.org/10.1002/adom.201901416
    38. Kyle Aleshire, Ilia M. Pavlovetc, Robyn Collette, Xiang-Tian Kong, Philip D. Rack, Shubin Zhang, David J. Masiello, Jon P. Camden, Gregory V. Hartland, Masaru Kuno. Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires. Proceedings of the National Academy of Sciences 2020, 117 (5) , 2288-2293. https://doi.org/10.1073/pnas.1916433117
    39. Nusrat Jahan, Hanwei Wang, Shensheng Zhao, Arkajit Dutta, Hsuan-Kai Huang, Yang Zhao, Yun-Sheng Chen. Optical force microscopy: combining light with atomic force microscopy for nanomaterial identification. Nanophotonics 2019, 8 (10) , 1659-1671. https://doi.org/10.1515/nanoph-2019-0181
    40. Emiko Kazuma, Yousoo Kim. Scanning probe microscopy for real-space observations of local chemical reactions induced by a localized surface plasmon. Physical Chemistry Chemical Physics 2019, 21 (36) , 19720-19731. https://doi.org/10.1039/C9CP02100K
    41. K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, A. B. Evlyukhin. Revealing Low-Radiative Modes of Nanoresonators with Internal Raman Scattering. JETP Letters 2019, 110 (1) , 25-30. https://doi.org/10.1134/S0021364019130010
    42. Xinzhong Chen, Debo Hu, Ryan Mescall, Guanjun You, D. N. Basov, Qing Dai, Mengkun Liu. Modern Scattering‐Type Scanning Near‐Field Optical Microscopy for Advanced Material Research. Advanced Materials 2019, 31 (24) https://doi.org/10.1002/adma.201804774
    43. T. G. Folland, L. Nordin, D. Wasserman, J. D. Caldwell. Probing polaritons in the mid- to far-infrared. Journal of Applied Physics 2019, 125 (19) https://doi.org/10.1063/1.5090777
    44. Andrea Mancini, Valeria Giliberti, Alessandro Alabastri, Eugenio Calandrini, Francesco De Angelis, Denis Garoli, Michele Ortolani. Nanoscale thermal gradients activated by antenna-enhanced molecular absorption in the mid-infrared. Applied Physics Letters 2019, 114 (2) https://doi.org/10.1063/1.5079488
    45. Bryan D. Huey, Justin Luria, Dawn A. Bonnell. Scanning Probe Microscopy in Materials Science. 2019, 1239-1277. https://doi.org/10.1007/978-3-030-00069-1_25
    46. Karin Wieland, Georg Ramer, Victor U. Weiss, Guenter Allmaier, Bernhard Lendl, Andrea Centrone. Nanoscale chemical imaging of individual chemotherapeutic cytarabine-loaded liposomal nanocarriers. Nano Research 2019, 12 (1) , 197-203. https://doi.org/10.1007/s12274-018-2202-x
    47. Shubhanshi Sharma, Rajat K. Sinha, Saawan K. Bag, Basudev Lahiri, Shailendra K. Varshney. High frequency dark mode generation in all-dielectric asymmetric metamaterials. 2019, JW3A.82. https://doi.org/10.1364/FIO.2019.JW3A.82
    48. Claire Li, Valentina Krachmalnicoff, Patrick Bouchon, Julien Jaeck, Nathalie Bardou, Riad Haïdar, Yannick De Wilde. Near-Field and Far-Field Thermal Emission of an Individual Patch Nanoantenna. Physical Review Letters 2018, 121 (24) https://doi.org/10.1103/PhysRevLett.121.243901
    49. Natalia Piergies, Ewa Pięta, Czesława Paluszkiewicz, Helena Domin, Wojciech M. Kwiatek. Polarization effect in tip-enhanced infrared nanospectroscopy studies of the selective Y5 receptor antagonist Lu AA33810. Nano Research 2018, 11 (8) , 4401-4411. https://doi.org/10.1007/s12274-018-2030-z
    50. Xiaofang Su, Guanhai Li, Hui Yang, Zengyue Zhao, Xiaoshuang Chen, Wei Lu. Dark Mode Driven Extra-narrow and Multiband Absorber. Plasmonics 2018, 13 (3) , 729-735. https://doi.org/10.1007/s11468-017-0565-6
    51. Yaonan Hou, Zengxia Mei, Aihua Tang, Huili Liang, Xiaolong Du. Surface Plasmon Enhanced Emission From Defects in Gallium Doped ZnO. physica status solidi (a) 2018, 215 (11) https://doi.org/10.1002/pssa.201800037
    52. Karsten Hinrichs, Timur Shaykhutdinov. Polarization-Dependent Atomic Force Microscopy–Infrared Spectroscopy (AFM-IR): Infrared Nanopolarimetric Analysis of Structure and Anisotropy of Thin Films and Surfaces. Applied Spectroscopy 2018, 72 (6) , 817-832. https://doi.org/10.1177/0003702818763604
    53. Amun Jarzembski, Cedric Shaskey, Keunhan Park. Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials. Frontiers in Energy 2018, 12 (1) , 43-71. https://doi.org/10.1007/s11708-018-0524-8
    54. Thomas G. Mayerhöfer, Jürgen Popp. Periodic array-based substrates for surface-enhanced infrared spectroscopy. Nanophotonics 2018, 7 (1) , 39-79. https://doi.org/10.1515/nanoph-2017-0005
    55. Thomas G. Folland, Joshua D. Caldwell. Chapter 12 Semiconductor Nanophotonics Using Surface Polaritons. 2018, 235-254. https://doi.org/10.1007/978-94-024-1544-5_12
    56. N. Balke, A. Tselev. Functional material properties of oxide thin films probed by atomic force microscopy on the nanoscale. 2018, 181-201. https://doi.org/10.1016/B978-0-12-811166-6.00008-X
    57. Mohit Tuteja, Minjee Kang, Cecilia Leal, Andrea Centrone. Nanoscale partitioning of paclitaxel in hybrid lipid–polymer membranes. The Analyst 2018, 143 (16) , 3808-3813. https://doi.org/10.1039/C8AN00838H
    58. Matthew R Rosenberger, Michael Cai Wang, Xu Xie, John A Rogers, SungWoo Nam, William P King. Measuring individual carbon nanotubes and single graphene sheets using atomic force microscope infrared spectroscopy. Nanotechnology 2017, 28 (35) , 355707. https://doi.org/10.1088/1361-6528/aa7c23
    59. Georg Ramer, Florian Reisenbauer, Benedikt Steindl, Wolfgang Tomischko, Bernhard Lendl. Implementation of Resonance Tracking for Assuring Reliability in Resonance Enhanced Photothermal Infrared Spectroscopy and Imaging. Applied Spectroscopy 2017, 71 (8) , 2013-2020. https://doi.org/10.1177/0003702817695290
    60. Mingzhou Jin, Feng Lu, Mikhail A Belkin. High-sensitivity infrared vibrational nanospectroscopy in water. Light: Science & Applications 2017, 6 (7) , e17096-e17096. https://doi.org/10.1038/lsa.2017.96
    61. Vincenzo Amendola, Roberto Pilot, Marco Frasconi, Onofrio M Maragò, Maria Antonia Iatì. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter 2017, 29 (20) , 203002. https://doi.org/10.1088/1361-648X/aa60f3
    62. Gaige Zheng, Linhua Xu, Xiujuan Zou, Yuzhu Liu. Excitation of surface phonon polariton modes in gold gratings with silicon carbide substrate and their potential sensing applications. Applied Surface Science 2017, 396 , 711-716. https://doi.org/10.1016/j.apsusc.2016.11.013
    63. , Eugenio Calandrini, Tommaso Venanzi, Felice Appugliese, Michela Badioli, Valeria Giliberti, Leonetta Baldassarre, Paolo Biagioni, Francesco De Angelis, Wolfgang M. Klesse, Giordano Scappucci, Michele Ortolani. Electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers. 2017, 101110F. https://doi.org/10.1117/12.2253841
    64. Yohan Yoon, Jungseok Chae, Aaron M. Katzenmeyer, Heayoung P. Yoon, Joshua Schumacher, Sangmin An, Andrea Centrone, Nikolai Zhitenev. Nanoscale imaging and spectroscopy of band gap and defects in polycrystalline photovoltaic devices. Nanoscale 2017, 9 (23) , 7771-7780. https://doi.org/10.1039/C7NR01480E
    65. I. G. Mbomson, S. Tabor, B. Lahiri, G. Sharp, S. G. McMeekin, R. M. De La Rue, N. P. Johnson. Asymmetric split H-shape nanoantennas for molecular sensing. Biomedical Optics Express 2017, 8 (1) , 395. https://doi.org/10.1364/BOE.8.000395
    66. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, G. Shvets. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12045
    67. Nina Balke, Stephen Jesse, Pu Yu, Ben Carmichael, Sergei V Kalinin, Alexander Tselev. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology 2016, 27 (42) , 425707. https://doi.org/10.1088/0957-4484/27/42/425707
    68. Eugenio Calandrini, Tommaso Venanzi, Felice Appugliese, Michela Badioli, Valeria Giliberti, Leonetta Baldassarre, Paolo Biagioni, Francesco De Angelis, Wolfgang M. Klesse, Giordano Scappucci, Michele Ortolani. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers. Applied Physics Letters 2016, 109 (12) https://doi.org/10.1063/1.4962976
    69. Graham J. Sharp, Henrique Vilhena, Basudev Lahiri, Scott. G. McMeekin, Richard M. De La Rue, Nigel P. Johnson. Mapping the sensitivity of split ring resonators using a localized analyte. Applied Physics Letters 2016, 108 (25) https://doi.org/10.1063/1.4954797
    70. K. S. Friziuk, V. A. Milichko, M. I. Petrov, D. A. Zuev, A. V. Baranov, M. A. Baranov, S. V. Makarov, A. E. Krasnok, P. A. Belov, I. S. Mukhin. Raman scattering governed by dark resonant modes in silicon nanoparticles. 2016, 155-160. https://doi.org/10.1109/DD.2016.7756833
    71. Zhisen Liang, Zhibin Yin, Hang Yang, Yuanfang Xiao, Wei Hang, Jianfeng Li. Nanoscale surface analysis that combines scanning probe microscopy and mass spectrometry: A critical review. TrAC Trends in Analytical Chemistry 2016, 75 , 24-34. https://doi.org/10.1016/j.trac.2015.07.009
    72. Michael K. F. Lo, Alexandre Dazzi, Curtis A. Marcott, Eoghan Dillon, Qichi Hu, Kevin Kjoller, Craig B. Prater, Sean W. King. Nanoscale Chemical-Mechanical Characterization of Nanoelectronic Low- k Dielectric/Cu Interconnects. ECS Journal of Solid State Science and Technology 2016, 5 (4) , P3018-P3024. https://doi.org/10.1149/2.0041604jss
    73. Mario Malerba, Alessandro Alabastri, Ermanno Miele, Pierfrancesco Zilio, Maddalena Patrini, Daniele Bajoni, Gabriele C. Messina, Michele Dipalo, Andrea Toma, Remo Proietti Zaccaria, Francesco De Angelis. 3D vertical nanostructures for enhanced infrared plasmonics. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep16436
    74. Kamal Kishor, Monu Nath Baitha, R.K. Sinha. Design and simulation of “I” shaped split ring resonator metamaterial at optical communication window around 1.55 μm. Optik 2015, 126 (23) , 4708-4711. https://doi.org/10.1016/j.ijleo.2015.08.086
    75. Jungseok Chae, Basudev Lahiri, John Kohoutek, Glenn Holland, Henri Lezec, Andrea Centrone. Metal-dielectric-metal resonators with deep subwavelength dielectric layers increase the near-field SEIRA enhancement. Optics Express 2015, 23 (20) , 25912. https://doi.org/10.1364/OE.23.025912
    76. Yongbo Yuan, Jungseok Chae, Yuchuan Shao, Qi Wang, Zhengguo Xiao, Andrea Centrone, Jinsong Huang. Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials 2015, 5 (15) https://doi.org/10.1002/aenm.201500615
    77. Andrea Centrone. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit. Annual Review of Analytical Chemistry 2015, 8 (1) , 101-126. https://doi.org/10.1146/annurev-anchem-071114-040435
    78. Joshua D. Caldwell, Lucas Lindsay, Vincenzo Giannini, Igor Vurgaftman, Thomas L. Reinecke, Stefan A. Maier, Orest J. Glembocki. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 2015, 4 (1) , 44-68. https://doi.org/10.1515/nanoph-2014-0003
    79. , , Ifeoma G. Mbomson, Scott McMeekin, Richard De La Rue, Nigel P. Johnson. Matching plasmon resonances to the C=C and C-H bonds in estradiol. 2015, 93400G. https://doi.org/10.1117/12.2081409
    80. Vladimir Aksyuk, Basudev Lahiri, Glenn Holland, Andrea Centrone. Near-field asymmetries in plasmonic resonators. Nanoscale 2015, 7 (8) , 3634-3644. https://doi.org/10.1039/C4NR06755J
    81. Vincenzo Amendola, Rosalba Saija, Onofrio M. Maragò, Maria Antonia Iatì. Superior plasmon absorption in iron-doped gold nanoparticles. Nanoscale 2015, 7 (19) , 8782-8792. https://doi.org/10.1039/C5NR00823A
    82. Gennady Shvets, Nihal Arju, Mikhail A. Belkin, Rainer Hillenbrand, Feng Lu, Martin Schnell, JONGWON LEE, Alexander B. Khanikaev. Ohmic Loss Produces Chiral Dichroism in Plasmonic Metasurfaces: First Experimental Demonstration. 2015, FTu1C.1. https://doi.org/10.1364/CLEO_QELS.2015.FTu1C.1
    83. Aaron M. Katzenmeyer, Jungseok Chae, Richard Kasica, Glenn Holland, Basudev Lahiri, Andrea Centrone. Nanoscale Imaging and Spectroscopy of Plasmonic Modes with the PTIR Technique. Advanced Optical Materials 2014, 2 (8) , 718-722. https://doi.org/10.1002/adom.201400005
    84. Kamal Kishor, Monu Nath Baitha, R. K. Sinha, Basudev Lahiri. Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization. Journal of the Optical Society of America B 2014, 31 (7) , 1410. https://doi.org/10.1364/JOSAB.31.001410
    85. Georg Ramer, Bernhard Lendl. Nanoskopie im mittleren Infrarot. Nachrichten aus der Chemie 2014, 62 (7-8) , 780-781. https://doi.org/10.1002/nadc.201490262
    86. Feng Lu, Mingzhou Jin, Mikhail A. Belkin. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photonics 2014, 8 (4) , 307-312. https://doi.org/10.1038/nphoton.2013.373
    87. Fan Zhang, Xiaoyong Hu, Hong Yang, Qihuang Gong. Low-power all-optical tunable plasmonic-mode coupling in nonlinear metamaterials. Applied Physics Letters 2014, 104 (13) https://doi.org/10.1063/1.4870527
    88. Aaron M. Katzenmeyer, Jerome Canivet, Glenn Holland, David Farrusseng, Andrea Centrone. Assessing Chemical Heterogeneity at the Nanoscale in Mixed‐Ligand Metal–Organic Frameworks with the PTIR Technique. Angewandte Chemie International Edition 2014, 53 (11) , 2852-2856. https://doi.org/10.1002/anie.201309295
    89. Aaron M. Katzenmeyer, Jerome Canivet, Glenn Holland, David Farrusseng, Andrea Centrone. Assessing Chemical Heterogeneity at the Nanoscale in Mixed‐Ligand Metal–Organic Frameworks with the PTIR Technique. Angewandte Chemie 2014, 126 (11) , 2896-2900. https://doi.org/10.1002/ange.201309295
    90. Silvan Schmid, Kaiyu Wu, Tomas Rindzevicius, Anja Boisen. Photothermal probing of plasmonic hotspots with nanomechanical resonator. 2014, 1205-1208. https://doi.org/10.1109/MEMSYS.2014.6765864

    Nano Letters

    Cite this: Nano Lett. 2013, 13, 7, 3218–3224
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl401284m
    Published June 18, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    3490

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.