ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Temperature-Dependent Hall and Field-Effect Mobility in Strongly Coupled All-Inorganic Nanocrystal Arrays

View Author Information
Department of Chemistry and James Franck Institute, University of Chicago, Illinois 60637, United States
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
*E-mail: [email protected]. Phone: +1-773-834-2607. Fax: +1-773-832-5863.
Cite this: Nano Lett. 2014, 14, 2, 653–662
Publication Date (Web):January 27, 2014
Copyright © 2014 American Chemical Society

    Article Views





    Read OnlinePDF (2 MB)
    Supporting Info (1)»


    Abstract Image

    We report on the temperature-dependent Hall effect characteristics of nanocrystal (NC) arrays prepared from colloidal InAs NCs capped with metal chalcogenide complex (MCC) ligands (In2Se42– and Cu7S4). Our study demonstrates that Hall effect measurements are a powerful way of exploring the fundamental properties of NC solids. We found that solution-cast 5.3 nm InAs NC films capped with copper sulfide MCC ligands exhibited high Hall mobility values over 16 cm2/(V s). We also showed that the nature of MCC ligands can control doping in NC solids. The comparative study of the temperature-dependent Hall and field-effect mobility values provides valuable insights concerning the charge transport mechanism and points to the transition from a weak to a strong coupling regime in all-inorganic InAs NC solids.

    Supporting Information

    Jump To

    Additional experimental details and figures. This material is available free of charge via the Internet at

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 70 publications.

    1. Lei Wang, Arup Sarkar, Garrett L. Grocke, Daniel William Laorenza, Baorui Cheng, Andrew Ritchhart, Alexander S. Filatov, Shrayesh N. Patel, Laura Gagliardi, John S. Anderson. Broad Electronic Modulation of Two-Dimensional Metal–Organic Frameworks over Four Distinct Redox States. Journal of the American Chemical Society 2023, 145 (15) , 8486-8497.
    2. Wenyong Liu, Vishwas Srivastava, J. Matthew Kurley, Chengyang Jiang, Dmitri V. Talapin. Thermal Stability of Semiconductor Nanocrystal Solids: Understanding Nanocrystal Sintering and Grain Growth. The Journal of Physical Chemistry C 2022, 126 (49) , 21136-21148.
    3. Kaijian Xing, Patjaree Aukarasereenont, Sergey Rubanov, Ali Zavabeti, Daniel L. Creedon, Wei Li, Brett C. Johnson, Christopher I. Pakes, Jeffrey C. McCallum, Torben Daeneke, Dong-Chen Qi. Hydrogen-Terminated Diamond MOSFETs Using Ultrathin Glassy Ga2O3 Dielectric Formed by Low-Temperature Liquid Metal Printing Method. ACS Applied Electronic Materials 2022, 4 (5) , 2272-2280.
    4. Santanu Jana, Rodrigo Martins, Elvira Fortunato. Stacking-Dependent Electrical Transport in a Colloidal CdSe Nanoplatelet Thin-Film Transistor. Nano Letters 2022, 22 (7) , 2780-2785.
    5. Wenran Wang, Meng Zhang, Zhenxiao Pan, Gill M. Biesold, Shuang Liang, Huashang Rao, Zhiqun Lin, Xinhua Zhong. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews 2022, 122 (3) , 4091-4162.
    6. Margaret H. Hudson, Aritrajit Gupta, Vishwas Srivastava, Eric M. Janke, Dmitri V. Talapin. Synthesis of In1–xGaxP Quantum Dots in Lewis Basic Molten Salts: The Effects of Surface Chemistry, Reaction Conditions, and Molten Salt Composition. The Journal of Physical Chemistry C 2022, 126 (3) , 1564-1580.
    7. Charlie Gréboval, Audrey Chu, Nicolas Goubet, Clément Livache, Sandrine Ithurria, Emmanuel Lhuillier. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. Chemical Reviews 2021, 121 (7) , 3627-3700.
    8. Han Sol Yang, Sung Hoon Noh, Eui Hyun Suh, Jaemin Jung, Jong Gyu Oh, Kyeong Ho Lee, Jaeyoung Jang. Enhanced Stabilities and Production Yields of MAPbBr3 Quantum Dots and Their Applications as Stretchable and Self-Healable Color Filters. ACS Applied Materials & Interfaces 2021, 13 (3) , 4374-4384.
    9. Paris Papagiorgis, Demetra Tsokkou, Kushagra Gahlot, Loredana Protesescu, Andreas Manoli, Felix Hermerschmidt, Constantinos Christodoulou, Stelios A. Choulis, Maksym V. Kovalenko, Andreas Othonos, Grigorios Itskos. Exciton–Ligand Interactions in PbS Quantum Dots Capped with Metal Chalcogenides. The Journal of Physical Chemistry C 2020, 124 (50) , 27848-27857.
    10. Durgesh C. Tripathi, Lior Asor, Gil Zaharoni, Uri Banin, Nir Tessler. Surface Versus Impurity-Doping Contributions in InAs Nanocrystal Field Effect Transistor Performance. The Journal of Physical Chemistry C 2019, 123 (30) , 18717-18725.
    11. Han Wang, Derrick J. Butler, Daniel B. Straus, Nuri Oh, Fengkai Wu, Jiacen Guo, Kun Xue, Jennifer D. Lee, Christopher B. Murray, Cherie R. Kagan. Air-Stable CuInSe2 Nanocrystal Transistors and Circuits via Post-Deposition Cation Exchange. ACS Nano 2019, 13 (2) , 2324-2333.
    12. I-Ya Chang, DaeGwi Kim, Kim Hyeon-Deuk. Correlated Roles of Temperature and Dimensionality for Multiple Exciton Generation and Electronic Structures in Quantum Dot Superlattices. The Journal of Physical Chemistry C 2019, 123 (4) , 2549-2556.
    13. Vishwas Srivastava, Vladislav Kamysbayev, Liang Hong, Eleanor Dunietz, Robert F. Klie, Dmitri V. Talapin. Colloidal Chemistry in Molten Salts: Synthesis of Luminescent In1–xGaxP and In1–xGaxAs Quantum Dots. Journal of the American Chemical Society 2018, 140 (38) , 12144-12151.
    14. Haoran Yang, Eric Wong, Tianshuo Zhao, Jennifer D. Lee, Huolin L. Xin, Miaofang Chi, Blaise Fleury, Han-Yu Tang, E. Ashley Gaulding, Cherie R. Kagan, Christopher B. Murray. Charge Transport Modulation in PbSe Nanocrystal Solids by AuxAg1–x Nanoparticle Doping. ACS Nano 2018, 12 (9) , 9091-9100.
    15. Rachel H. Gilmore, Samuel W. Winslow, Elizabeth M. Y. Lee, Matthew Nickol Ashner, Kevin G. Yager, Adam P. Willard, William A. Tisdale. Inverse Temperature Dependence of Charge Carrier Hopping in Quantum Dot Solids. ACS Nano 2018, 12 (8) , 7741-7749.
    16. Alexander André, Michelle Weber, Kai M. Wurst, Santanu Maiti, Frank Schreiber, Marcus Scheele. Electron-Conducting PbS Nanocrystal Superlattices with Long-Range Order Enabled by Terthiophene Molecular Linkers. ACS Applied Materials & Interfaces 2018, 10 (29) , 24708-24714.
    17. Su Min Jung, Han Lim Kang, Jong Kook Won, JaeHyun Kim, ChaHwan Hwang, KyungHan Ahn, In Chung, Byeong-Kwon Ju, Myung-Gil Kim, and Sung Kyu Park . High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation. ACS Applied Materials & Interfaces 2018, 10 (4) , 3739-3749.
    18. M. Alimoradi Jazi, V. A. E. C. Janssen, W. H. Evers, A. Tadjine, C. Delerue, L. D. A. Siebbeles, H. S. J. van der Zant, A. J. Houtepen, and D. Vanmaekelbergh . Transport Properties of a Two-Dimensional PbSe Square Superstructure in an Electrolyte-Gated Transistor. Nano Letters 2017, 17 (9) , 5238-5243.
    19. Qinyi Chen, Jeffrey R. Guest, and Elijah Thimsen . Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2017, 121 (29) , 15619-15629.
    20. Mohamad Insan Nugraha, Shohei Kumagai, Shun Watanabe, Mykhailo Sytnyk, Wolfgang Heiss, Maria Antonietta Loi, and Jun Takeya . Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules. ACS Applied Materials & Interfaces 2017, 9 (21) , 18039-18045.
    21. Simanta Kundu and Amitava Patra . Nanoscale Strategies for Light Harvesting. Chemical Reviews 2017, 117 (2) , 712-757.
    22. Ingmar Swart, Peter Liljeroth, and Daniel Vanmaekelbergh . Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews 2016, 116 (18) , 11181-11219.
    23. Chengjun Sun, Amir Hossein Goharpey, Ayush Rai, Teng Zhang, and Dong-Kyun Ko . Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material. ACS Applied Materials & Interfaces 2016, 8 (34) , 22182-22189.
    24. Lilei Hu, Zhenyu Yang, Andreas Mandelis, Alexander Melnikov, Xinzheng Lan, Grant Walters, Sjoerd Hoogland, and Edward H. Sargent . Quantitative Analysis of Trap-State-Mediated Exciton Transport in Perovskite-Shelled PbS Quantum Dot Thin Films Using Photocarrier Diffusion-Wave Nondestructive Evaluation and Imaging. The Journal of Physical Chemistry C 2016, 120 (26) , 14416-14427.
    25. Ah Ra Kim, Yonghun Kim, Jaewook Nam, Hee-Suk Chung, Dong Jae Kim, Jung-Dae Kwon, Sang Won Park, Jucheol Park, Sun Young Choi, Byoung Hun Lee, Ji Hyeon Park, Kyu Hwan Lee, Dong-Ho Kim, Sung Mook Choi, Pulickel M. Ajayan, Myung Gwan Hahm, and Byungjin Cho . Alloyed 2D Metal–Semiconductor Atomic Layer Junctions. Nano Letters 2016, 16 (3) , 1890-1895.
    26. Graham H. Carey, Ahmed L. Abdelhady, Zhijun Ning, Susanna M. Thon, Osman M. Bakr, and Edward H. Sargent . Colloidal Quantum Dot Solar Cells. Chemical Reviews 2015, 115 (23) , 12732-12763.
    27. Zhenyu Yang, Alyf Janmohamed, Xinzheng Lan, F. Pelayo García de Arquer, Oleksandr Voznyy, Emre Yassitepe, Gi-Hwan Kim, Zhijun Ning, Xiwen Gong, Riccardo Comin, and Edward H. Sargent . Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling. Nano Letters 2015, 15 (11) , 7539-7543.
    28. Laura Piveteau, Ta-Chung Ong, Aaron J. Rossini, Lyndon Emsley, Christophe Copéret, and Maksym V. Kovalenko . Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy. Journal of the American Chemical Society 2015, 137 (43) , 13964-13971.
    29. Jaeyoung Jang, Dmitriy S. Dolzhnikov, Wenyong Liu, Sooji Nam, Moonsub Shim, and Dmitri V. Talapin . Solution-Processed Transistors Using Colloidal Nanocrystals with Composition-Matched Molecular “Solders”: Approaching Single Crystal Mobility. Nano Letters 2015, 15 (10) , 6309-6317.
    30. Hien Thu Pham and Hyun-Dam Jeong . Newly Observed Temperature and Surface Ligand Dependence of Electron Mobility in Indium Oxide Nanocrystals Solids. ACS Applied Materials & Interfaces 2015, 7 (21) , 11660-11667.
    31. Maksym V. Kovalenko, Liberato Manna, Andreu Cabot, Zeger Hens, Dmitri V. Talapin, Cherie R. Kagan, Victor I. Klimov, Andrey L. Rogach, Peter Reiss, Delia J. Milliron, Philippe Guyot-Sionnnest, Gerasimos Konstantatos, Wolfgang J. Parak, Taeghwan Hyeon, Brian A. Korgel, Christopher B. Murray, and Wolfgang Heiss . Prospects of Nanoscience with Nanocrystals. ACS Nano 2015, 9 (2) , 1012-1057.
    32. Loredana Protesescu, Maarten Nachtegaal, Oleksandr Voznyy, Olga Borovinskaya, Aaron J. Rossini, Lyndon Emsley, Christophe Copéret, Detlef Günther, Edward H. Sargent, and Maksym V. Kovalenko . Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry. Journal of the American Chemical Society 2015, 137 (5) , 1862-1874.
    33. Sergii Yakunin, Dmitry N. Dirin, Loredana Protesescu, Mykhailo Sytnyk, Sajjad Tollabimazraehno, Markus Humer, Florian Hackl, Thomas Fromherz, Maryna I. Bodnarchuk, Maksym V. Kovalenko, and Wolfgang Heiss . High Infrared Photoconductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals. ACS Nano 2014, 8 (12) , 12883-12894.
    34. Obafemi O. Otelaja, Don-Hyung Ha, Tiffany Ly, Haitao Zhang, and Richard D. Robinson . Highly Conductive Cu2–xS Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition. ACS Applied Materials & Interfaces 2014, 6 (21) , 18911-18920.
    35. Hao Zhang, Jaeyoung Jang, Wenyong Liu, and Dmitri V. Talapin . Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands. ACS Nano 2014, 8 (7) , 7359-7369.
    36. Sang Eun Yoon, Yongjin Kim, Hyeongjun Kim, Hyo‐Geun Kwon, Unjeong Kim, Sang Yeon Lee, Ju Hyun Park, Hyungtak Seo, Sang Kyu Kwak, Sang‐Wook Kim, Jong H. Kim. Remarkable Electrical Conductivity Increase and Pure Metallic Properties from Semiconducting Colloidal Nanocrystals by Cation Exchange for Solution‐Processable Optoelectronic Applications. Small 2023, 19 (23)
    37. Haewoon Seo, Hyeong Ju Eun, Donghyeuk Choi, Hyon Bin Na, Yeongseok Shim, Junseok Heo, Kyung‐Sang Cho, Jong H. Kim, Sang‐Wook Kim. Cationic Molecular Metal Chalcogenide Ligand‐Passivated Colloidal Quantum Dots and Their Application to Suppressed Dark‐Current Near‐Infrared Photodetectors. Advanced Materials Technologies 2023, 8 (11)
    38. Lucas Cuadra, Sancho Salcedo-Sanz, José Carlos Nieto-Borge. Carrier Transport in Colloidal Quantum Dot Intermediate Band Solar Cell Materials Using Network Science. International Journal of Molecular Sciences 2023, 24 (4) , 3797.
    39. Lior Asor, Jing Liu, Shuting Xiang, Nir Tessler, Anatoly I. Frenkel, Uri Banin. Zn‐Doped P‐Type InAs Nanocrystal Quantum Dots. Advanced Materials 2023, 35 (5)
    40. Korath Shivan Sugi, Andre Maier, Marcus Scheele. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chemical Communications 2022, 58 (50) , 6998-7017.
    41. TaeGi Lee, Kazuma Ohshiro, Taichi Watanabe, Kim Hyeon‐Deuk, DaeGwi Kim. Temperature‐Dependent Exciton Dynamics in CdTe Quantum Dot Superlattices Fabricated via Layer‐by‐Layer Assembly. Advanced Optical Materials 2022, 10 (11)
    42. Mostafa Esmaeili, Zhiqing Wu, Dechao Chen, Amandeep Singh, Prashant Sonar, David Thiel, Qin Li. Composition and concentration-dependent photoluminescence of nitrogen-doped carbon dots. Advanced Powder Technology 2022, 33 (5) , 103560.
    43. Lingju Meng, Xihua Wang. Doping Colloidal Quantum Dot Materials and Devices for Photovoltaics. Energies 2022, 15 (7) , 2458.
    44. Chase Hansen, Davis Unruh, Miguel Alba, Caroline Qian, Alex Abelson, Matt Law, Gergely T. Zimanyi. Hierarchical carrier transport simulator for defected nanoparticle solids. Scientific Reports 2021, 11 (1)
    45. Junwei Liu, Kaihu Xian, Long Ye, Zhihua Zhou. Open‐Circuit Voltage Loss in Lead Chalcogenide Quantum Dot Solar Cells. Advanced Materials 2021, 33 (29)
    46. Luman Qu, Davis Unruh, Gergely T. Zimanyi. Percolative charge transport in binary nanocrystal solids. Physical Review B 2021, 103 (19)
    47. Lior Asor, Jing Liu, Yonatan Ossia, Durgesh C. Tripathi, Nir Tessler, Anatoly I. Frenkel, Uri Banin. InAs Nanocrystals with Robust p‐Type Doping. Advanced Functional Materials 2021, 31 (6)
    48. Muhammad Tanveer Riaz, Saeed Ahmad, Sheikh Muhammad Aaqib, Umar Farooq, Haider Ali, Hassan Mujtaba. Wireless Model for High Voltage Direct Current Measurement using Hall Sensor. 2021, 642-647.
    49. TaeGi Lee, Kazushi Enomoto, Kazuma Ohshiro, Daishi Inoue, Tomoka Kikitsu, Kim Hyeon-Deuk, Yong-Jin Pu, DaeGwi Kim. Controlling the dimension of the quantum resonance in CdTe quantum dot superlattices fabricated via layer-by-layer assembly. Nature Communications 2020, 11 (1)
    50. Luman Qu, Chase Hansen, Márton Vörös, Gergely T. Zimanyi. Commensuration effects in layered nanoparticle solids. Physical Review B 2020, 101 (4)
    51. Xiaoyu Ma, Jingjing Min, Zaiping Zeng, Christos S. Garoufalis, Sotirios Baskoutas, Yu Jia, Zuliang Du. Excitons in InP, GaP, and Ga x In 1 − x P quantum dots: Insights from time-dependent density functional theory. Physical Review B 2019, 100 (24)
    52. Cherie R. Kagan. Flexible colloidal nanocrystal electronics. Chemical Society Reviews 2019, 48 (6) , 1626-1641.
    53. Zhen Wang, Zhaosheng Hu, Muhammad Akmal Kamarudin, Gaurav Kapil, Atul Tripathi, Qing Shen, Kenji Yoshino, Takashi Minemoto, Sham S. Pandey, Shuzi Hayase. Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots. Solar Energy 2018, 174 , 399-408.
    54. Hyun Ho Choi, Yaroslav I. Rodionov, Alexandra F. Paterson, Julianna Panidi, Danila Saranin, Nikolai Kharlamov, Sergei I. Didenko, Thomas D. Anthopoulos, Kilwon Cho, Vitaly Podzorov. Accurate Extraction of Charge Carrier Mobility in 4‐Probe Field‐Effect Transistors. Advanced Functional Materials 2018, 28 (26) , 1707105.
    55. Tung Duy Dao, Hyun‐Dam Jeong. Solution‐processed Tetrafluoroborate‐capped In 2 O 3 Nanocrystal Thin‐Film Transistors. Bulletin of the Korean Chemical Society 2018, 39 (4) , 453-460.
    56. Willi Aigner, Oliver Bienek, Bruno P. Falcão, Safwan U. Ahmed, Hartmut Wiggers, Martin Stutzmann, Rui N. Pereira. Intra- and inter-nanocrystal charge transport in nanocrystal films. Nanoscale 2018, 10 (17) , 8042-8057.
    57. Hyun Ho Choi, Kilwon Cho, C. Daniel Frisbie, Henning Sirringhaus, Vitaly Podzorov. Critical assessment of charge mobility extraction in FETs. Nature Materials 2018, 17 (1) , 2-7.
    58. Luman Qu, Márton Vörös, Gergely T. Zimanyi. Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations. Scientific Reports 2017, 7 (1)
    59. Daniel M. Balazs, Klaas I. Bijlsma, Hong-Hua Fang, Dmitry N. Dirin, Max Döbeli, Maksym V. Kovalenko, Maria A. Loi. Stoichiometric control of the density of states in PbS colloidal quantum dot solids. Science Advances 2017, 3 (9)
    60. Dehui Li, Gongming Wang, Hung-Chieh Cheng, Chih-Yen Chen, Hao Wu, Yuan Liu, Yu Huang, Xiangfeng Duan. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nature Communications 2016, 7 (1)
    61. P. Moroz, N. Kholmicheva, N. Razgoniaeva, D. Burchfield, N. Sharma, A. Acharya, M. Zamkov. Optical techniques for probing the excited state dynamics of quantum dot solids. Chemical Physics 2016, 471 , 59-68.
    62. Vladimir Sayevich, Chris Guhrenz, Maria Sin, Volodymyr M. Dzhagan, Alexander Weiz, Daniel Kasemann, Eike Brunner, Michael Ruck, Dietrich R. T. Zahn, Karl Leo, Nikolai Gaponik, Alexander Eychmüller. Chloride and Indium‐Chloride‐Complex Inorganic Ligands for Efficient Stabilization of Nanocrystals in Solution and Doping of Nanocrystal Solids. Advanced Functional Materials 2016, 26 (13) , 2163-2175.
    63. Michael A. Boles, Daishun Ling, Taeghwan Hyeon, Dmitri V. Talapin. The surface science of nanocrystals. Nature Materials 2016, 15 (2) , 141-153.
    64. Mark J. Speirs, Dmitry N. Dirin, Mustapha Abdu-Aguye, Daniel M. Balazs, Maksym V. Kovalenko, Maria Antonietta Loi. Temperature dependent behaviour of lead sulfide quantum dot solar cells and films. Energy & Environmental Science 2016, 9 (9) , 2916-2924.
    65. Maryna I. Bodnarchuk, Sergii Yakunin, Laura Piveteau, Maksym V. Kovalenko. Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals. Nature Communications 2015, 6 (1)
    66. Cherie R. Kagan, Christopher B. Murray. Charge transport in strongly coupled quantum dot solids. Nature Nanotechnology 2015, 10 (12) , 1013-1026.
    67. Wiel H. Evers, Juleon M. Schins, Michiel Aerts, Aditya Kulkarni, Pierre Capiod, Maxime Berthe, Bruno Grandidier, Christophe Delerue, Herre S. J. van der Zant, Carlo van Overbeek, Joep L. Peters, Daniel Vanmaekelbergh, Laurens D. A. Siebbeles. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds. Nature Communications 2015, 6 (1)
    68. Hideo Uesugi, Masao Kita, Takahisa Omata. Synthesis of size-controlled colloidal InAs quantum dots using triphenylarsine as a stable arsenic source. Journal of Crystal Growth 2015, 416 , 134-141.
    69. Donghyeuk Choi, Seungyeol Lee, Junho Lee, Kyung-Sang Cho, Sang-Wook Kim. Disodium diselenide in colloidal nanocrystals: acting as an anion exchange precursor, a metal selenide precursor, and a chalcogenide ligand. Chemical Communications 2015, 51 (5) , 899-902.
    70. Elijah Thimsen, Melissa Johnson, Xin Zhang, Andrew J. Wagner, K. Andre Mkhoyan, Uwe R. Kortshagen, Eray S. Aydil. High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas. Nature Communications 2014, 5 (1)

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect