ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Self-Trapping of Excitons, Violation of Condon Approximation, and Efficient Fluorescence in Conjugated Cycloparaphenylenes

View Author Information
Theoretical Division, Center for Nonlinear Studies and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
Department of Electrical and Computer Engineering, and Photonics Center, Boston University, Boston, Massachusetts 02215, United States
§ Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal, Argentina
Department of Chemistry and Biochemistry and Materials Science Institute 1253, University of Oregon, Eugene, Oregon 97403, United States
Cite this: Nano Lett. 2014, 14, 11, 6539–6546
Publication Date (Web):October 13, 2014
https://doi.org/10.1021/nl503133e
Copyright © 2014 American Chemical Society

    Article Views

    2770

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (3)»

    Abstract

    Abstract Image

    Cycloparaphenylenes, the simplest structural unit of armchair carbon nanotubes, have unique optoelectronic properties counterintuitive in the class of conjugated organic materials. Our time-dependent density functional theory study and excited state dynamics simulations of cycloparaphenylene chromophores provide a simple and conceptually appealing physical picture explaining experimentally observed trends in optical properties in this family of molecules. Fully delocalized degenerate second and third excitonic states define linear absorption spectra. Self-trapping of the lowest excitonic state due to electron–phonon coupling leads to the formation of spatially localized excitation in large cycloparaphenylenes within 100 fs. This invalidates the commonly used Condon approximation and breaks optical selection rules, making these materials superior fluorophores. This process does not occur in the small molecules, which remain inefficient emitters. A complex interplay of symmetry, π-conjugation, conformational distortion and bending strain controls all photophysics of cycloparaphenylenes.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional computational results and plots of natural transition orbitals for excited states. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 137 publications.

    1. Victor M. Freixas, Walter Malone, Xinyang Li, Huajing Song, Hassiel Negrin-Yuvero, Royle Pérez-Castillo, Alexander White, Tammie R. Gibson, Dmitry V. Makhov, Dmitrii V. Shalashilin, Yu Zhang, Nikita Fedik, Maksim Kulichenko, Richard Messerly, Luke Nambi Mohanam, Sahar Sharifzadeh, Adolfo Bastida, Shaul Mukamel, Sebastian Fernandez-Alberti, Sergei Tretiak. NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2023, 19 (16) , 5356-5368. https://doi.org/10.1021/acs.jctc.3c00583
    2. Hideya Kono, Yuanming Li, Riccardo Zanasi, Guglielmo Monaco, Francesco F. Summa, Lawrence T. Scott, Akiko Yagi, Kenichiro Itami. Methylene-Bridged [6]-, [8]-, and [10]Cycloparaphenylenes: Size-Dependent Properties and Paratropic Belt Currents. Journal of the American Chemical Society 2023, 145 (16) , 8939-8946. https://doi.org/10.1021/jacs.2c13208
    3. Hassiel Negrin-Yuvero, Victor M. Freixas, Dianelys Ondarse-Alvarez, Ana E. Ledesma, Sergei Tretiak, Sebastian Fernandez-Alberti. Photoexcited Energy Relaxation in a Zigzag Carbon Nanobelt. The Journal of Physical Chemistry C 2023, 127 (11) , 5449-5456. https://doi.org/10.1021/acs.jpcc.2c08676
    4. Deejan Debnath, Sudip Kumar Pal, Hirak Chatterjee, Sujit Kumar Ghosh. Critical Crystallographic Transition in Violation of Kasha’s Rule of Size-Specific ZnO Quantum Dots. Crystal Growth & Design 2023, 23 (3) , 1941-1950. https://doi.org/10.1021/acs.cgd.2c01481
    5. Shunwei Chen, Xiaoyu Miao, Huanyi Zhou, Cunjin Peng, Ruiqin Zhang, Xiujun Han. Steric Hindrance Governs the Photoinduced Structural Planarization of Cycloparaphenylene Materials. The Journal of Physical Chemistry A 2022, 126 (41) , 7452-7459. https://doi.org/10.1021/acs.jpca.2c05030
    6. Oleg P. Dimitriev. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chemical Reviews 2022, 122 (9) , 8487-8593. https://doi.org/10.1021/acs.chemrev.1c00648
    7. Beatriz Rodríguez-Hernández, Tammie Nelson, Nicolas Oldani, Aliezer Martínez-Mesa, Llinersy Uranga-Piña, Yasutomo Segawa, Sergei Tretiak, Kenichiro Itami, Sebastian Fernandez-Alberti. Exciton Spatial Dynamics and Self-Trapping in Carbon Nanocages. The Journal of Physical Chemistry Letters 2021, 12 (1) , 224-231. https://doi.org/10.1021/acs.jpclett.0c03364
    8. Brendan J. Gifford, Svetlana Kilina, Han Htoon, Stephen K. Doorn, Sergei Tretiak. Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes. Accounts of Chemical Research 2020, 53 (9) , 1791-1801. https://doi.org/10.1021/acs.accounts.0c00210
    9. Giovanni Bressan, Michael Jirasek, Harry L. Anderson, Ismael A. Heisler, Stephen R. Meech. Exciton–Exciton Annihilation as a Probe of Exciton Diffusion in Large Porphyrin Nanorings. The Journal of Physical Chemistry C 2020, 124 (34) , 18416-18425. https://doi.org/10.1021/acs.jpcc.0c04546
    10. Yuanming Li, Yasutomo Segawa, Akiko Yagi, Kenichiro Itami. A Nonalternant Aromatic Belt: Methylene-Bridged [6]Cycloparaphenylene Synthesized from Pillar[6]arene. Journal of the American Chemical Society 2020, 142 (29) , 12850-12856. https://doi.org/10.1021/jacs.0c06007
    11. V. M. Freixas, N. Oldani, R. Franklin-Mergarejo, S. Tretiak, S. Fernandez-Alberti. Electronic Energy Relaxation in a Photoexcited Fully Fused Edge-Sharing Carbon Nanobelt. The Journal of Physical Chemistry Letters 2020, 11 (12) , 4711-4719. https://doi.org/10.1021/acs.jpclett.0c01351
    12. Tobias A. Schaub, Ephraim A. Prantl, Julia Kohn, Markus Bursch, Checkers R. Marshall, Erik J. Leonhardt, Terri C. Lovell, Lev N. Zakharov, Carl K. Brozek, Siegfried R. Waldvogel, Stefan Grimme, Ramesh Jasti. Exploration of the Solid-State Sorption Properties of Shape-Persistent Macrocyclic Nanocarbons as Bulk Materials and Small Aggregates. Journal of the American Chemical Society 2020, 142 (19) , 8763-8775. https://doi.org/10.1021/jacs.0c01117
    13. Tammie R. Nelson, Alexander J. White, Josiah A. Bjorgaard, Andrew E. Sifain, Yu Zhang, Benjamin Nebgen, Sebastian Fernandez-Alberti, Dmitry Mozyrsky, Adrian E. Roitberg, Sergei Tretiak. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chemical Reviews 2020, 120 (4) , 2215-2287. https://doi.org/10.1021/acs.chemrev.9b00447
    14. Garvin M. Peters, Girishma Grover, Ruth L. Maust, Curtis E. Colwell, Haley Bates, William A. Edgell, Ramesh Jasti, Miklos Kertesz, John D. Tovar. Linear and Radial Conjugation in Extended π-Electron Systems. Journal of the American Chemical Society 2020, 142 (5) , 2293-2300. https://doi.org/10.1021/jacs.9b10785
    15. Giovanni Bressan, Martin D. Peeks, Harry L. Anderson, Stephen R. Meech, Ismael A. Heisler. Time-Resolved Structural Dynamics of Extended π-Electron Porphyrin Nanoring. The Journal of Physical Chemistry C 2019, 123 (44) , 27222-27229. https://doi.org/10.1021/acs.jpcc.9b07494
    16. Philipp Wilhelm, Jan Vogelsang, Sigurd Höger, John M. Lupton. Homo-FRET in π-Conjugated Polygons: Intermediate-Strength Dipole–Dipole Coupling Makes Energy Transfer Reversible. Nano Letters 2019, 19 (8) , 5483-5488. https://doi.org/10.1021/acs.nanolett.9b01998
    17. Sang Hyeon Lee, Suhwan Song, Jumi Park, Eunji Sim, Jaesung Yang, Dongho Kim. Conformational Heterogeneity in Large Macrocyclic Thiophenes. The Journal of Physical Chemistry Letters 2019, 10 (14) , 4136-4141. https://doi.org/10.1021/acs.jpclett.9b01671
    18. Martin D. Peeks, Juliane Q. Gong, Kirstie McLoughlin, Takayuki Kobatake, Renée Haver, Laura M. Herz, Harry L. Anderson. Aromaticity and Antiaromaticity in the Excited States of Porphyrin Nanorings. The Journal of Physical Chemistry Letters 2019, 10 (8) , 2017-2022. https://doi.org/10.1021/acs.jpclett.9b00623
    19. Brendan Barrow Dhara J. Trivedi . Time-Domain ab Initio Studies of Excited State Dynamics at Nanoscale Interfaces. 2019, 101-136. https://doi.org/10.1021/bk-2019-1331.ch005
    20. Brendan J. Gifford . Functionalized Carbon Nanotube Excited States and Optical Properties. 2019, 181-207. https://doi.org/10.1021/bk-2019-1331.ch008
    21. Andrew E. Sifain, Brendan J. Gifford, David W. Gao, Levi Lystrom, Tammie R. Nelson, Sergei Tretiak. NEXMD Modeling of Photoisomerization Dynamics of 4-Styrylquinoline. The Journal of Physical Chemistry A 2018, 122 (49) , 9403-9411. https://doi.org/10.1021/acs.jpca.8b09103
    22. Fei Ma. Dynamics and Coherent Control of Exciton–Exciton Annihilation in Aqueous J-Aggregate. The Journal of Physical Chemistry B 2018, 122 (47) , 10746-10753. https://doi.org/10.1021/acs.jpcb.8b09891
    23. Brittany M. White, Yu Zhao, Taryn E. Kawashima, Bruce P. Branchaud, Michael D. Pluth, Ramesh Jasti. Expanding the Chemical Space of Biocompatible Fluorophores: Nanohoops in Cells. ACS Central Science 2018, 4 (9) , 1173-1178. https://doi.org/10.1021/acscentsci.8b00346
    24. Rathawat Daengngern, Cristopher Camacho, Nawee Kungwan, Stephan Irle. Theoretical Prediction and Analysis of the UV/Visible Absorption and Emission Spectra of Chiral Carbon Nanorings. The Journal of Physical Chemistry A 2018, 122 (37) , 7284-7292. https://doi.org/10.1021/acs.jpca.8b07270
    25. Shunwei Chen, Naeem Ullah, Ruiqin Zhang. Exciton Self-Trapping in sp2 Carbon Nanostructures Induced by Edge Ether Groups. The Journal of Physical Chemistry Letters 2018, 9 (17) , 4857-4864. https://doi.org/10.1021/acs.jpclett.8b01972
    26. Andrew E. Sifain, Josiah A. Bjorgaard, Tammie R. Nelson, Benjamin T. Nebgen, Alexander J. White, Brendan J. Gifford, David W. Gao, Oleg V. Prezhdo, Sebastian Fernandez-Alberti, Adrian E. Roitberg, Sergei Tretiak. Photoexcited Nonadiabatic Dynamics of Solvated Push–Pull π-Conjugated Oligomers with the NEXMD Software. Journal of Chemical Theory and Computation 2018, 14 (8) , 3955-3966. https://doi.org/10.1021/acs.jctc.8b00103
    27. B. Rodríguez-Hernández, D. Ondarse-Álvarez, N. Oldani, A. Martínez-Mesa, Ll. Uranga-Piña, S. Tretiak, S. Fernández-Alberti. Modification of Optical Properties and Excited-State Dynamics by Linearizing Cyclic Paraphenylene Chromophores. The Journal of Physical Chemistry C 2018, 122 (29) , 16639-16648. https://doi.org/10.1021/acs.jpcc.8b05582
    28. Christoph Allolio, Thomas Stangl, Theresa Eder, Daniela Schmitz, Jan Vogelsang, Sigurd Höger, Dominik Horinek, John M. Lupton. H-Aggregation Effects between π-Conjugated Chromophores in Cofacial Dimers and Trimers: Comparison of Theory and Single-Molecule Experiment. The Journal of Physical Chemistry B 2018, 122 (24) , 6431-6441. https://doi.org/10.1021/acs.jpcb.8b01188
    29. Yui Masumoto, Naoyuki Toriumi, Atsuya Muranaka, Eiichi Kayahara, Shigeru Yamago, Masanobu Uchiyama. Near-Infrared Fluorescence from In-Plane-Aromatic Cycloparaphenylene Dications. The Journal of Physical Chemistry A 2018, 122 (23) , 5162-5167. https://doi.org/10.1021/acs.jpca.8b03105
    30. Brendan J. Gifford, Andrew E. Sifain, Han Htoon, Stephen K. Doorn, Svetlana Kilina, Sergei Tretiak. Correction Scheme for Comparison of Computed and Experimental Optical Transition Energies in Functionalized Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry Letters 2018, 9 (10) , 2460-2468. https://doi.org/10.1021/acs.jpclett.8b00653
    31. Paolo Della Sala, Amedeo Capobianco, Tonino Caruso, Carmen Talotta, Margherita De Rosa, Placido Neri, Andrea Peluso, and Carmine Gaeta . An Anthracene-Incorporated [8]Cycloparaphenylene Derivative as an Emitter in Photon Upconversion. The Journal of Organic Chemistry 2018, 83 (1) , 220-227. https://doi.org/10.1021/acs.joc.7b02590
    32. Ljiljana Stojanović, Saadullah G. Aziz, Rifaat H. Hilal, Felix Plasser, Thomas A. Niehaus, and Mario Barbatti . Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping. Journal of Chemical Theory and Computation 2017, 13 (12) , 5846-5860. https://doi.org/10.1021/acs.jctc.7b01000
    33. Vennapusa Sivaranjana Reddy and S. Irle . Indirect Intersystem Crossing (S1 → T3/T2 → T1) Promoted by the Jahn–Teller Effect in Cycloparaphenylenes. Journal of Chemical Theory and Computation 2017, 13 (10) , 4944-4949. https://doi.org/10.1021/acs.jctc.7b00166
    34. Tammie Nelson, Sebastian Fernandez-Alberti, Adrian E. Roitberg, and Sergei Tretiak . Electronic Delocalization, Vibrational Dynamics, and Energy Transfer in Organic Chromophores. The Journal of Physical Chemistry Letters 2017, 8 (13) , 3020-3031. https://doi.org/10.1021/acs.jpclett.7b00790
    35. Fulu Zheng, Sebastian Fernandez-Alberti, Sergei Tretiak, and Yang Zhao . Photoinduced Intra- and Intermolecular Energy Transfer in Chlorophyll a Dimer. The Journal of Physical Chemistry B 2017, 121 (21) , 5331-5339. https://doi.org/10.1021/acs.jpcb.7b02021
    36. Laura Alfonso Hernandez, Tammie Nelson, Maxim F. Gelin, John M. Lupton, Sergei Tretiak, and Sebastian Fernandez-Alberti . Interference of Interchromophoric Energy-Transfer Pathways in π-Conjugated Macrocycles. The Journal of Physical Chemistry Letters 2016, 7 (23) , 4936-4944. https://doi.org/10.1021/acs.jpclett.6b02236
    37. Patrick Parkinson, Nuntaporn Kamonsutthipaijit, Harry L. Anderson, and Laura M. Herz . Size-Independent Energy Transfer in Biomimetic Nanoring Complexes. ACS Nano 2016, 10 (6) , 5933-5940. https://doi.org/10.1021/acsnano.6b01265
    38. Kyu Hyung Park, Jae-Won Cho, Tae-Woo Kim, Hideyuki Shimizu, Kazumi Nakao, Masahiko Iyoda, and Dongho Kim . Defining Cyclic–Acyclic Exciton Transition at the Single-Molecule Level: Size-Dependent Conformational Heterogeneity and Exciton Delocalization in Ethynylene-Bridged Cyclic Oligothiophenes. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1260-1266. https://doi.org/10.1021/acs.jpclett.6b00360
    39. Penghao Li, Bryan M. Wong, Lev N. Zakharov, and Ramesh Jasti . Investigating the Reactivity of 1,4-Anthracene-Incorporated Cycloparaphenylene. Organic Letters 2016, 18 (7) , 1574-1577. https://doi.org/10.1021/acs.orglett.6b00430
    40. Juliane Q. Gong, Ludovic Favereau, Harry L. Anderson, and Laura M. Herz . Breaking the Symmetry in Molecular Nanorings. The Journal of Physical Chemistry Letters 2016, 7 (2) , 332-338. https://doi.org/10.1021/acs.jpclett.5b02617
    41. Yu-Yu Liu, Jin-Yi Lin, Yi-Fan Bo, Ling-Hai Xie, Ming-Dong Yi, Xin-Wen Zhang, Hong-Mei Zhang, Teck-Peng Loh, and Wei Huang . Synthesis and Crystal Structure of Highly Strained [4]Cyclofluorene: Green-Emitting Fluorophore. Organic Letters 2016, 18 (2) , 172-175. https://doi.org/10.1021/acs.orglett.5b03038
    42. Marat R. Talipov, Ramesh Jasti, and Rajendra Rathore . A Circle Has No End: Role of Cyclic Topology and Accompanying Structural Reorganization on the Hole Distribution in Cyclic and Linear Poly-p-phenylene Molecular Wires. Journal of the American Chemical Society 2015, 137 (47) , 14999-15006. https://doi.org/10.1021/jacs.5b09596
    43. Woojae Kim, Jooyoung Sung, Kyu Hyung Park, Hideyuki Shimizu, Mika Imamura, Minwoo Han, Eunji Sim, Masahiko Iyoda, and Dongho Kim . The Role of Linkers in the Excited-State Dynamic Planarization Processes of Macrocyclic Oligothiophene 12-Mers. The Journal of Physical Chemistry Letters 2015, 6 (21) , 4444-4450. https://doi.org/10.1021/acs.jpclett.5b02189
    44. Lyudmyla Adamska, George V. Nazin, Stephen K. Doorn, and Sergei Tretiak . Self-Trapping of Charge Carriers in Semiconducting Carbon Nanotubes: Structural Analysis. The Journal of Physical Chemistry Letters 2015, 6 (19) , 3873-3879. https://doi.org/10.1021/acs.jpclett.5b01729
    45. Qishui Chen, M. Tuan Trinh, Daniel W. Paley, Molleigh B. Preefer, Haiming Zhu, Brandon S. Fowler, X.-Y. Zhu, Michael L. Steigerwald, and Colin Nuckolls . Strain-Induced Stereoselective Formation of Blue-Emitting Cyclostilbenes. Journal of the American Chemical Society 2015, 137 (38) , 12282-12288. https://doi.org/10.1021/jacs.5b06258
    46. Evan R. Darzi, Elizabeth S. Hirst, Christopher D. Weber, Lev N. Zakharov, Mark C. Lonergan, and Ramesh Jasti . Synthesis, Properties, and Design Principles of Donor–Acceptor Nanohoops. ACS Central Science 2015, 1 (6) , 335-342. https://doi.org/10.1021/acscentsci.5b00269
    47. Alexander Thiessen, Dominik Würsch, Stefan-S. Jester, A. Vikas Aggarwal, Alissa Idelson, Sebastian Bange, Jan Vogelsang, Sigurd Höger, and John M. Lupton . Exciton Localization in Extended π-Electron Systems: Comparison of Linear and Cyclic Structures. The Journal of Physical Chemistry B 2015, 119 (30) , 9949-9958. https://doi.org/10.1021/acs.jpcb.5b02091
    48. Douglas A. Hines, Evan R. Darzi, Elizabeth S. Hirst, Ramesh Jasti, and Prashant V. Kamat . Carbon Nanohoops: Excited Singlet and Triplet Behavior of Aza[8]CPP and 1,15-Diaza[8]CPP. The Journal of Physical Chemistry A 2015, 119 (29) , 8083-8089. https://doi.org/10.1021/acs.jpca.5b04404
    49. Svetlana Kilina, Dmitri Kilin, and Sergei Tretiak . Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chemical Reviews 2015, 115 (12) , 5929-5978. https://doi.org/10.1021/acs.chemrev.5b00012
    50. Hideyuki Shimizu, José D. Cojal González, Masashi Hasegawa, Tohru Nishinaga, Tahmina Haque, Masayoshi Takase, Hiroyuki Otani, Jürgen P. Rabe, and Masahiko Iyoda . Synthesis, Structures, and Photophysical Properties of π-Expanded Oligothiophene 8-mers and Their Saturn-Like C60 Complexes. Journal of the American Chemical Society 2015, 137 (11) , 3877-3885. https://doi.org/10.1021/jacs.5b00291
    51. Juliane Q. Gong, Patrick Parkinson, Dmitry V. Kondratuk, Guzmán Gil-Ramírez, Harry L. Anderson, and Laura M. Herz . Structure-Directed Exciton Dynamics in Templated Molecular Nanorings. The Journal of Physical Chemistry C 2015, 119 (11) , 6414-6420. https://doi.org/10.1021/acs.jpcc.5b00210
    52. Matthew R. Golder and Ramesh Jasti . Syntheses of the Smallest Carbon Nanohoops and the Emergence of Unique Physical Phenomena. Accounts of Chemical Research 2015, 48 (3) , 557-566. https://doi.org/10.1021/ar5004253
    53. Jaesung Yang, Sujin Ham, Tae-Woo Kim, Kyu Hyung Park, Kazumi Nakao, Hideyuki Shimizu, Masahiko Iyoda, and Dongho Kim . Inhomogeneity in the Excited-State Torsional Disorder of a Conjugated Macrocycle. The Journal of Physical Chemistry B 2015, 119 (10) , 4116-4126. https://doi.org/10.1021/jp5123689
    54. Hang Chen, Matthew R. Golder, Feng Wang, Stephen K. Doorn, Ramesh Jasti, Sergei Tretiak, and Anna K. Swan . Raman-Active Modes of Even-Numbered Cycloparaphenylenes: Comparisons between Experiments and Density Functional Theory (DFT) Calculations with Group Theory Arguments. The Journal of Physical Chemistry C 2015, 119 (5) , 2879-2887. https://doi.org/10.1021/jp5117195
    55. Pyosang Kim, Kyu Hyung Park, Woojae Kim, Tomoya Tamachi, Masahiko Iyoda, and Dongho Kim . Relationship between Dynamic Planarization Processes and Exciton Delocalization in Cyclic Oligothiophenes. The Journal of Physical Chemistry Letters 2015, 6 (3) , 451-456. https://doi.org/10.1021/jz502395z
    56. Damian Myśliwiec, Mateusz Kondratowicz, Tadeusz Lis, Piotr J. Chmielewski, and Marcin Stępień . Highly Strained Nonclassical Nanotube End-caps. A Single-Step Solution Synthesis from Strain-Free, Non-Macrocyclic Precursors. Journal of the American Chemical Society 2015, 137 (4) , 1643-1649. https://doi.org/10.1021/ja511951x
    57. Natsumi Kubota, Yasutomo Segawa, and Kenichiro Itami . η6-Cycloparaphenylene Transition Metal Complexes: Synthesis, Structure, Photophysical Properties, and Application to the Selective Monofunctionalization of Cycloparaphenylenes. Journal of the American Chemical Society 2015, 137 (3) , 1356-1361. https://doi.org/10.1021/ja512271p
    58. Chengqiang Wang, Tao Song, Pingyuan Yan, Shu Hu, Chenhong Xiang, Zihan Wu, Heng Li, Haibin Zhao, Lili Han, Chuanxiang Sheng. Observation of electron–phonon coupling and linear dichroism in PL spectra of ultra-small CsPbBr3 nanoparticle solution. eScience 2023, 3 (6) , 100185. https://doi.org/10.1016/j.esci.2023.100185
    59. Wei Liu, Huotian Zhang, Songting Liang, Tong Wang, Siqing He, Yunbin Hu, Rui Zhang, Haoqing Ning, Jie Ren, Artem Bakulin, Feng Gao, Jun Yuan, Yingping Zou. The Synthesis of a Multiple D–A Conjugated Macrocycle and Its Application in Organic Photovoltaic. Angewandte Chemie 2023, 135 (48) https://doi.org/10.1002/ange.202311645
    60. Wei Liu, Huotian Zhang, Songting Liang, Tong Wang, Siqing He, Yunbin Hu, Rui Zhang, Haoqing Ning, Jie Ren, Artem Bakulin, Feng Gao, Jun Yuan, Yingping Zou. The Synthesis of a Multiple D–A Conjugated Macrocycle and Its Application in Organic Photovoltaic. Angewandte Chemie International Edition 2023, 62 (48) https://doi.org/10.1002/anie.202311645
    61. Shengzhu Guo, Lin Liu, Xiaonan Li, Guoqin Liu, Yanqing Fan, Jing He, Zhe Lian, Huiji Yang, Xuebo Chen, Hua Jiang. Highly Luminescent Chiral Carbon Nanohoops via Symmetry Breaking with a Triptycene Unit: Bright Circularly Polarized Luminescence and Size‐Dependent Properties. Small 2023, 62 https://doi.org/10.1002/smll.202308429
    62. D. Condado, E. Sadurní, R. A. Méndez-Sánchez. Algebraically solvable model for electron-phonon interactions in cycloacene molecules. Physical Review A 2023, 108 (5) https://doi.org/10.1103/PhysRevA.108.052823
    63. Rui Liu, Hengxin Liu, Can Shi, Yunfei Wang, Zhuping Chu, Tianlu Wu, Yaru Liu, Wen-Mei Wei, Ren-Hui Zheng, Pingwu Du, Dapeng Lu. Synthesis and photophysical properties of helical carbon nanohoops with twisted acene panels. Organic Chemistry Frontiers 2023, 10 (16) , 4030-4037. https://doi.org/10.1039/D3QO00763D
    64. Felix Bernt, Hermann A. Wegner. Substituted meta [ n ]Cycloparaphenylenes: Synthesis, Photophysical Properties and Host–guest Chemistry. Chemistry – A European Journal 2023, 29 (42) https://doi.org/10.1002/chem.202301001
    65. Remigiusz B. Kręcijasz, Juraj Malinčík, Tomáš Šolomek. Exploring Silyl Protecting Groups for the Synthesis of Carbon Nanohoops. Synthesis 2023, 55 (09) , 1355-1366. https://doi.org/10.1055/a-2008-9505
    66. Julia M. Fehr, Nathalie Myrthil, Anna L. Garrison, Tavis W. Price, Steven A. Lopez, Ramesh Jasti. Experimental and theoretical elucidation of SPAAC kinetics for strained alkyne-containing cycloparaphenylenes. Chemical Science 2023, 14 (11) , 2839-2848. https://doi.org/10.1039/D2SC06816H
    67. Han Deng, Zilong Guo, Yaxin Wang, Ke Li, Qin Zhou, Chang Ge, Zhanqiang Xu, Sota Sato, Xiaonan Ma, Zhe Sun. Modular synthesis, host–guest complexation and solvation-controlled relaxation of nanohoops with donor–acceptor structures. Chemical Science 2022, 13 (47) , 14080-14089. https://doi.org/10.1039/D2SC05804A
    68. Laura Alfonso Hernandez, Victor M. Freixas, Beatriz Rodriguez-Hernandez, Sergei Tretiak, Sebastian Fernandez-Alberti, Nicolas Oldani. Exciton-vibrational dynamics induces efficient self-trapping in a substituted nanoring. Physical Chemistry Chemical Physics 2022, 24 (39) , 24095-24104. https://doi.org/10.1039/D2CP03162K
    69. Fabien Lucas, Joëlle Rault-Berthelot, Cassandre Quinton, Cyril Poriel. Synthesis and electronic properties of bridged [8]-, [12]- and [16]-cyclo- para -phenylenes. Journal of Materials Chemistry C 2022, 10 (37) , 14000-14009. https://doi.org/10.1039/D2TC00881E
    70. Xiaoyan Wu, Shizheng Wen, Huajing Song, Thomas Frauenheim, Sergei Tretiak, ChiYung Yam, Yu Zhang. Nonadiabatic molecular dynamics simulations based on time-dependent density functional tight-binding method. The Journal of Chemical Physics 2022, 157 (8) https://doi.org/10.1063/5.0100339
    71. Nadine C. Bradbury, Minh Nguyen, Justin R. Caram, Daniel Neuhauser. Bethe–Salpeter equation spectra for very large systems. The Journal of Chemical Physics 2022, 157 (3) https://doi.org/10.1063/5.0100213
    72. Indranil Roy, Arthur H. G. David, Partha Jyoti Das, David J. Pe, J. Fraser Stoddart. Fluorescent cyclophanes and their applications. Chemical Society Reviews 2022, 51 (13) , 5557-5605. https://doi.org/10.1039/D0CS00352B
    73. Takaya Furuichi, Takuya Inoue, Kouki Miyaji, Kaname Kanai. Anomalous Interfacial Electronic Structure of Solid Films of Non‐Planar π‐Conjugated Molecule 6‐Cycloparaphenylene. Advanced Materials Interfaces 2022, 9 (16) https://doi.org/10.1002/admi.202200242
    74. Fabian Schwer, Simon Zank, Markus Freiberger, Ramandeep Kaur, Stefan Frühwald, Craig C. Robertson, Andreas Görling, Thomas Drewello, Dirk M. Guldi, Max von Delius. Synthesis and C60 Binding of Aza[10]CPP and N-Methylaza[10]CPP. Organic Materials 2022, 4 (02) , 7-17. https://doi.org/10.1055/a-1814-7686
    75. Daniel Kohrs, Jonathan Becker, Hermann A. Wegner. A Modular Synthesis of Substituted Cycloparaphenylenes. Chemistry – A European Journal 2022, 28 (8) https://doi.org/10.1002/chem.202104239
    76. Jannis Volkmann, Daniel Kohrs, Felix Bernt, Hermann A. Wegner. Synthesis of a Substituted [10]Cycloparaphenylene through [2+2+2] Cycloaddition. European Journal of Organic Chemistry 2022, 2022 (4) https://doi.org/10.1002/ejoc.202101357
    77. Li Zhang, Guilan Zhang, Hang Qu, Yogesh Todarwal, Yun Wang, Patrick Norman, Mathieu Linares, Mathieu Surin, Hui‐Jun Zhang, Jianbin Lin, Yun‐Bao Jiang. Naphthodithiophene Diimide Based Chiral π‐Conjugated Nanopillar Molecules. Angewandte Chemie 2021, 133 (46) , 24748-24753. https://doi.org/10.1002/ange.202107893
    78. Li Zhang, Guilan Zhang, Hang Qu, Yogesh Todarwal, Yun Wang, Patrick Norman, Mathieu Linares, Mathieu Surin, Hui‐Jun Zhang, Jianbin Lin, Yun‐Bao Jiang. Naphthodithiophene Diimide Based Chiral π‐Conjugated Nanopillar Molecules. Angewandte Chemie International Edition 2021, 60 (46) , 24543-24548. https://doi.org/10.1002/anie.202107893
    79. Zhen‐Lin Qiu, Mu‐bin He, Ke‐Shan Chu, Chun Tang, Xuan‐Wen Chen, Liang Zhu, Li‐Ping Zhang, Di Sun, Jun Qian, Yuan‐Zhi Tan. Well‐Defined Segment of Carbon Nanotube with Bright Red Emission for Three‐Photon Fluorescence Cerebrovascular Imaging. Advanced Optical Materials 2021, 9 (19) https://doi.org/10.1002/adom.202100482
    80. Ke Li, Zhe Sun. Recent Advances in Dimeric Cycloparaphenylenes as Nanotube Fragments. Synlett 2021, 32 (16) , 1581-1587. https://doi.org/10.1055/a-1534-3103
    81. Xinyu Zhang, Hong Shi, Guilin Zhuang, Shengda Wang, Jinyi Wang, Shangfeng Yang, Xiang Shao, Pingwu Du. A Highly Strained All‐Phenylene Conjoined Bismacrocycle. Angewandte Chemie 2021, 133 (32) , 17508-17512. https://doi.org/10.1002/ange.202104669
    82. Xinyu Zhang, Hong Shi, Guilin Zhuang, Shengda Wang, Jinyi Wang, Shangfeng Yang, Xiang Shao, Pingwu Du. A Highly Strained All‐Phenylene Conjoined Bismacrocycle. Angewandte Chemie International Edition 2021, 60 (32) , 17368-17372. https://doi.org/10.1002/anie.202104669
    83. Zhen-Lin Qiu, Dandan Chen, Zeying Deng, Ke-Shan Chu, Yuan-Zhi Tan, Jun Zhu. Isolation of a carbon nanohoop with Möbius topology. Science China Chemistry 2021, 64 (6) , 1004-1008. https://doi.org/10.1007/s11426-021-9981-3
    84. Chong Zhao, Fupin Liu, Lai Feng, Mingzhe Nie, Yuxi Lu, Jie Zhang, Chunru Wang, Taishan Wang. Construction of a double-walled carbon nanoring. Nanoscale 2021, 13 (9) , 4880-4886. https://doi.org/10.1039/D0NR08931A
    85. Min Chen, Kiran S. Unikela, Rongala Ramalakshmi, Bo Li, Clovis Darrigan, Anna Chrostowska, Shih‐Yuan Liu. A BN‐Doped Cycloparaphenylene Debuts. Angewandte Chemie 2021, 133 (3) , 1580-1584. https://doi.org/10.1002/ange.202010556
    86. Min Chen, Kiran S. Unikela, Rongala Ramalakshmi, Bo Li, Clovis Darrigan, Anna Chrostowska, Shih‐Yuan Liu. A BN‐Doped Cycloparaphenylene Debuts. Angewandte Chemie International Edition 2021, 60 (3) , 1556-1560. https://doi.org/10.1002/anie.202010556
    87. Terri C. Lovell, Kaylin G. Fosnacht, Curtis E. Colwell, Ramesh Jasti. Effect of curvature and placement of donor and acceptor units in cycloparaphenylenes: a computational study. Chemical Science 2020, 11 (44) , 12029-12035. https://doi.org/10.1039/D0SC03923C
    88. Ángel J. Pérez‐Jiménez, Juan C. Sancho‐García. Theoretical Insights for Materials Properties of Cyclic Organic Nanorings. Advanced Theory and Simulations 2020, 3 (10) https://doi.org/10.1002/adts.202000110
    89. Juno Kim, Ryohei Kishi, Eiichi Kayahara, Woojae Kim, Shigeru Yamago, Masayoshi Nakano, Dongho Kim. Ultrafast Exciton Self‐Trapping and Delocalization in Cycloparaphenylenes: The Role of Excited‐State Symmetry in Electron‐Vibrational Coupling. Angewandte Chemie 2020, 132 (39) , 17137-17144. https://doi.org/10.1002/ange.202006066
    90. Juno Kim, Ryohei Kishi, Eiichi Kayahara, Woojae Kim, Shigeru Yamago, Masayoshi Nakano, Dongho Kim. Ultrafast Exciton Self‐Trapping and Delocalization in Cycloparaphenylenes: The Role of Excited‐State Symmetry in Electron‐Vibrational Coupling. Angewandte Chemie International Edition 2020, 59 (39) , 16989-16996. https://doi.org/10.1002/anie.202006066
    91. Terri C. Lovell, Zachary R. Garrison, Ramesh Jasti. Synthesis, Characterization, and Computational Investigation of Bright Orange‐Emitting Benzothiadiazole [10]Cycloparaphenylene. Angewandte Chemie 2020, 132 (34) , 14469-14473. https://doi.org/10.1002/ange.202006350
    92. Terri C. Lovell, Zachary R. Garrison, Ramesh Jasti. Synthesis, Characterization, and Computational Investigation of Bright Orange‐Emitting Benzothiadiazole [10]Cycloparaphenylene. Angewandte Chemie International Edition 2020, 59 (34) , 14363-14367. https://doi.org/10.1002/anie.202006350
    93. Jeff M. Van Raden, Nanette N. Jarenwattananon, Lev N. Zakharov, Ramesh Jasti. Active Metal Template Synthesis and Characterization of a Nanohoop [ c 2]Daisy Chain Rotaxane. Chemistry – A European Journal 2020, 26 (45) , 10205-10209. https://doi.org/10.1002/chem.202001389
    94. B. Rodríguez-Hernández, N. Oldani, A. Martínez-Mesa, L. Uranga-Piña, S. Tretiak, S. Fernandez-Alberti. Photoexcited energy relaxation and vibronic couplings in π-conjugated carbon nanorings. Physical Chemistry Chemical Physics 2020, 22 (27) , 15321-15332. https://doi.org/10.1039/D0CP01452D
    95. Yuan Zhang, Hong-Qiang Wang, Yuan-Yuan Zhao, Yong-Qing Qiu. Novel cyclic and linearizing cyclic Pd(II) nanohoop-based cordination complexes achieving nonlinear optical activity transparency trade-off optimization. Organic Electronics 2020, 78 , 105564. https://doi.org/10.1016/j.orgel.2019.105564
    96. Brendan Smith, Alexey V Akimov. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. Journal of Physics: Condensed Matter 2020, 32 (7) , 073001. https://doi.org/10.1088/1361-648X/ab5246
    97. Erik J. Leonhardt, Ramesh Jasti. Emerging applications of carbon nanohoops. Nature Reviews Chemistry 2019, 3 (12) , 672-686. https://doi.org/10.1038/s41570-019-0140-0
    98. Miriam Peña-Álvarez, Samuele Fanetti, Naomi Falsini, Giulia Novelli, Juan Casado, Valentín G. Baonza, Mercedes Taravillo, Simon Parsons, Roberto Bini, Margherita Citroni. Linear, Non-Conjugated Cyclic and Conjugated Cyclic Paraphenylene under Pressure. Molecules 2019, 24 (19) , 3496. https://doi.org/10.3390/molecules24193496
    99. Shunwei Chen, Yanling Zhao, Naeem Ullah, Qun Wan, Ruiqin Zhang. Revealing the trap emission in graphene-based nanostructures. Carbon 2019, 150 , 439-445. https://doi.org/10.1016/j.carbon.2019.05.054
    100. Fabien Lucas, Lambert Sicard, Olivier Jeannin, Joëlle Rault‐Berthelot, Emmanuel Jacques, Cassandre Quinton, Cyril Poriel. [4]Cyclo‐ N ‐ethyl‐2,7‐carbazole: Synthesis, Structural, Electronic and Charge Transport Properties. Chemistry – A European Journal 2019, 25 (32) , 7740-7748. https://doi.org/10.1002/chem.201901066
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect