Magic-Number Gold Nanoclusters with Diameters from 1 to 3.5 nm: Relative Stability and Catalytic Activity for CO OxidationClick to copy article linkArticle link copied!
Abstract
Relative stability of geometric magic-number gold nanoclusters with high point-group symmetry (Ih, D5h, Oh) and size up to 3.5 nm, as well as structures obtained by global optimization using an empirical potential, is investigated using density functional theory (DFT) calculations. Among high-symmetry nanoclusters, our calculations suggest that from Au(147) to Au(923), the stability follows the order Ih > D5h > Oh. However, at the largest size of Au(923), the computed cohesive energy differences among high-symmetry Ih, D5h and Oh isomers are less than 4 meV/atom (at PBE level of theory), suggesting the larger high-symmetry clusters are similar in stability. This conclusion supports a recent experimental demonstration of controlling morphologies of high-symmetry Au(923) clusters (
Cited By
This article is cited by 95 publications.
- Riya Gupta, Sameeksha Agrawal, Saurabh Rai, Jayasri Sarkar, Sweta Kumari, Debanggana Shil, Saptarshi Mukherjee. Photoinduced Formation and Intercluster Conversion of a Thiol-Templated Copper Nanocluster. ACS Applied Optical Materials 2024, 2
(9)
, 1880-1890. https://doi.org/10.1021/acsaom.4c00291
- Daniela Caschera, Benedetta Brugnoli, Ludovica Primitivo, Martina De Angelis, Giuliana Righi, Luciano Pilloni, Gaetano Campi, Patrizia Imperatori, Marzia Pentimalli, Andrea Masi, Andrea Liscio, Giuseppina Rea, Lorenza Suber. Synthesis of Photoluminescent 2D Self-Assembled Silver Thiolate Nanoclusters for Sensors and Biomolecule Support. Inorganic Chemistry 2024, 63
(8)
, 3724-3734. https://doi.org/10.1021/acs.inorgchem.3c03738
- Tianyu Yan, Huaizhong Zhang, Kristen A. Fichthorn. Minimum Free-Energy Shapes of Ag Nanocrystals: Vacuum vs Solution. ACS Nano 2023, 17
(19)
, 19288-19304. https://doi.org/10.1021/acsnano.3c06395
- Kristen A. Fichthorn. Theory of Anisotropic Metal Nanostructures. Chemical Reviews 2023, 123
(7)
, 4146-4183. https://doi.org/10.1021/acs.chemrev.2c00831
- Jette K. Mathiesen, Jonathan Quinson, Sonja Blaseio, Emil T. S. Kjær, Alexandra Dworzak, Susan R. Cooper, Jack K. Pedersen, Baiyu Wang, Francesco Bizzotto, Johanna Schröder, Tiffany L. Kinnibrugh, Søren B. Simonsen, Luise Theil Kuhn, Jacob J. K. Kirkensgaard, Jan Rossmeisl, Mehtap Oezaslan, Matthias Arenz, Kirsten M. Ø. Jensen. Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering: Influence of Precursors and Cations on the Reaction Pathway. Journal of the American Chemical Society 2023, 145
(3)
, 1769-1782. https://doi.org/10.1021/jacs.2c10814
- David Deibert, Navneet Singh Khetrapal, Xiao Cheng Zeng. Large-Sized Aun– Core–Shell Clusters (n = 61–66): Enduring Structure of the Icosahedral Au13 Core. The Journal of Physical Chemistry Letters 2022, 13
(6)
, 1389-1397. https://doi.org/10.1021/acs.jpclett.1c04177
- Forrest H. Kaatz, Dmitry Yu. Murzin, Adhemar Bultheel. Coordination-Dependent Kinetics in the Catalysis of Gold Nanoclusters. ACS Catalysis 2021, 11
(15)
, 9073-9085. https://doi.org/10.1021/acscatal.1c00892
- Navneet Singh Khetrapal, David Deibert, Rhitankar Pal, Ling Fung Cheung, Lai-Sheng Wang, Xiao Cheng Zeng. How O2-Binding Affects Structural Evolution of Medium Even-Sized Gold Clusters Aun– (n = 20–34). The Journal of Physical Chemistry Letters 2021, 12
(14)
, 3560-3570. https://doi.org/10.1021/acs.jpclett.1c00546
- Ramadurai Murugan, Mandapati Bhargava Reddy, Prabhu Pandurangan, Ramasamy Anandhan. Gold-like Thiolate-Protected Ultrasmall Cubic Copper Nanocluster-Based Metal–Organic Framework as a Selective Catalyst for Stepwise Synthesis of Unsymmetric Bistriazole by Click Reaction. ACS Applied Materials & Interfaces 2020, 12
(50)
, 56004-56016. https://doi.org/10.1021/acsami.0c17324
- Matias Berdakin, Oscar A. Douglas-Gallardo, Cristián G. Sánchez. Interplay between Intra- and Interband Transitions Associated with the Plasmon-Induced Hot Carrier Generation Process in Silver and Gold Nanoclusters. The Journal of Physical Chemistry C 2020, 124
(2)
, 1631-1639. https://doi.org/10.1021/acs.jpcc.9b10871
- Aidan Thorn, Javier Rojas-Nunez, Samad Hajinazar, Samuel E. Baltazar, Aleksey N. Kolmogorov. Toward ab Initio Ground States of Gold Clusters via Neural Network Modeling. The Journal of Physical Chemistry C 2019, 123
(50)
, 30088-30098. https://doi.org/10.1021/acs.jpcc.9b08517
- King C. Lai, Xun Zha, James W. Evans, Alex Travesset. Structure of Polydisperse fcc Nanocrystals: Implications for Crystal Fractionalization. The Journal of Physical Chemistry C 2019, 123
(14)
, 9528-9537. https://doi.org/10.1021/acs.jpcc.9b00146
- Chen-Hui Chan, Floriane Poignant, Michaël Beuve, Elise Dumont, David Loffreda. A Water Solvation Shell Can Transform Gold Metastable Nanoparticles in the Fluxional Regime. The Journal of Physical Chemistry Letters 2019, 10
(5)
, 1092-1098. https://doi.org/10.1021/acs.jpclett.8b03822
- Andreas Schneemann, James L. White, ShinYoung Kang, Sohee Jeong, Liwen F. Wan, Eun Seon Cho, Tae Wook Heo, David Prendergast, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf, Vitalie Stavila. Nanostructured Metal Hydrides for Hydrogen Storage. Chemical Reviews 2018, 118
(22)
, 10775-10839. https://doi.org/10.1021/acs.chemrev.8b00313
- Dhruba K. Pattadar, Francis P. Zamborini. Size Stability Study of Catalytically Active Sub-2 nm Diameter Gold Nanoparticles Synthesized with Weak Stabilizers. Journal of the American Chemical Society 2018, 140
(43)
, 14126-14133. https://doi.org/10.1021/jacs.8b06830
- Navneet
Singh Khetrapal, Lai-Sheng Wang, Xiao Cheng Zeng. Determination of CO Adsorption Sites on Gold Clusters Aun– (n = 21–25): A Size Region That Bridges the Pyramidal and Core–Shell Structures. The Journal of Physical Chemistry Letters 2018, 9
(18)
, 5430-5439. https://doi.org/10.1021/acs.jpclett.8b02372
- Jin-Xun Liu, Ivo A. W. Filot, Yaqiong Su, Bart Zijlstra, Emiel J. M. Hensen. Optimum Particle Size for Gold-Catalyzed CO Oxidation. The Journal of Physical Chemistry C 2018, 122
(15)
, 8327-8340. https://doi.org/10.1021/acs.jpcc.7b12711
- Zihao Yan, Michael G. Taylor, Ashley Mascareno, Giannis Mpourmpakis. Size-, Shape-, and Composition-Dependent Model for Metal Nanoparticle Stability Prediction. Nano Letters 2018, 18
(4)
, 2696-2704. https://doi.org/10.1021/acs.nanolett.8b00670
- Naga Arjun Sakthivel, Mauro Stener, Luca Sementa, Alessandro Fortunelli, Guda Ramakrishna, Amala Dass. Au279(SR)84: The Smallest Gold Thiolate Nanocrystal That Is Metallic and the Birth of Plasmon. The Journal of Physical Chemistry Letters 2018, 9
(6)
, 1295-1300. https://doi.org/10.1021/acs.jpclett.8b00308
- I. G. Shuttleworth . Development of the ReaxFF Reactive Force-Field Description of Gold Oxides. The Journal of Physical Chemistry C 2017, 121
(45)
, 25255-25270. https://doi.org/10.1021/acs.jpcc.7b08832
- Naga Arjun Sakthivel, Shevanuja Theivendran, Vigneshraja Ganeshraj, Allen G. Oliver, and Amala Dass . Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules. Journal of the American Chemical Society 2017, 139
(43)
, 15450-15459. https://doi.org/10.1021/jacs.7b08651
- J. Magnus Rahm and Paul Erhart . Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size. Nano Letters 2017, 17
(9)
, 5775-5781. https://doi.org/10.1021/acs.nanolett.7b02761
- Joakim Halldin Stenlid and Tore Brinck . Extending the σ-Hole Concept to Metals: An Electrostatic Interpretation of the Effects of Nanostructure in Gold and Platinum Catalysis. Journal of the American Chemical Society 2017, 139
(32)
, 11012-11015. https://doi.org/10.1021/jacs.7b05987
- Li Ma, Kari Laasonen, and Jaakko Akola . Catalytic Activity of AuCu Clusters on MgO(100): Effect of Alloy Composition for CO Oxidation. The Journal of Physical Chemistry C 2017, 121
(20)
, 10876-10886. https://doi.org/10.1021/acs.jpcc.6b12054
- Z. W. Chen, Z. Wen, and Q. Jiang . Rational Design of Ag38 Cluster Supported by Graphdiyne for Catalytic CO Oxidation. The Journal of Physical Chemistry C 2017, 121
(6)
, 3463-3468. https://doi.org/10.1021/acs.jpcc.6b12434
- Long Luo, Liang Zhang, Zhiyao Duan, Aliya S. Lapp, Graeme Henkelman, and Richard M. Crooks . Efficient CO Oxidation Using Dendrimer-Encapsulated Pt Nanoparticles Activated with <2% Cu Surface Atoms. ACS Nano 2016, 10
(9)
, 8760-8769. https://doi.org/10.1021/acsnano.6b04448
- Hyesung An, Soonho Kwon, Hyunwoo Ha, Hyun You Kim, and Hyuck Mo Lee . Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation. The Journal of Physical Chemistry C 2016, 120
(17)
, 9292-9298. https://doi.org/10.1021/acs.jpcc.6b01774
- Kuo-Juei Hu, Simon R. Plant, Peter R. Ellis, Christopher M. Brown, Peter T. Bishop, and Richard E. Palmer . Atomic Resolution Observation of a Size-Dependent Change in the Ripening Modes of Mass-Selected Au Nanoclusters Involved in CO Oxidation. Journal of the American Chemical Society 2015, 137
(48)
, 15161-15168. https://doi.org/10.1021/jacs.5b08720
- Yuxiang Chen, Chenjie Zeng, Chong Liu, Kristin Kirschbaum, Chakicherla Gayathri, Roberto R. Gil, Nathaniel L. Rosi, and Rongchao Jin . Crystal Structure of Barrel-Shaped Chiral Au130(p-MBT)50 Nanocluster. Journal of the American Chemical Society 2015, 137
(32)
, 10076-10079. https://doi.org/10.1021/jacs.5b05378
- Li Shi, Hanbo Wu, Wendi Xu, Wei Fu, Xiaobing Wang, Zhengyu Gu, Xiuyun Zhang, Jianyu Chen, Yanwen Ma, Jin Zhao. Electrocatalytic conversion of CO2 to CH4 over Cu-based cluster via atomically precise local environment modulation. Science China Materials 2024, 67
(11)
, 3602-3608. https://doi.org/10.1007/s40843-024-3088-5
- Yuqi Wang, Haoxiang Xu, Jiqin Zhu, Daojian Cheng. Size-dependent catalytic activity for CO oxidation over sub-nano-Au clusters. Nanoscale 2024, 16
(40)
, 18871-18881. https://doi.org/10.1039/D4NR02705A
- Huichao Duan, Xuelu Wang, Tao Zheng, Yujie Song, Kui Du. Unique Structures and Properties of Low‐Dimensional Metallic Materials Fabricated by Electron Beam Etching. Advanced Functional Materials 2024, 1 https://doi.org/10.1002/adfm.202412694
- Dariush Aligholizadeh, Zaid Shahzad Qureshi, Desmond Smith, Benjamin Raufman, Nathaniel Stevens, Nicole Hondrogiannis, Keith Reber, Mary Sajini Devadas. Enhanced Photoluminescence of the Bi-icosahedral Au25 Nanocluster Using an Anthracene-based Fluorophore. Journal of Cluster Science 2024, 35
(7)
, 2437-2444. https://doi.org/10.1007/s10876-024-02672-3
- Manoj Settem, Melisa M. Gianetti, Roberto Guerra, Nicola Manini, Riccardo Ferrando, Alberto Giacomello. Gold Clusters on Graphene/Graphite—Structure and Energy Landscape. Small Science 2024, 291 https://doi.org/10.1002/smsc.202400078
- Shengzhou Li, Tsuyoshi Miyazaki, Ayako Nakata. Theoretical search for characteristic atoms in supported gold nanoparticles: a large-scale DFT study. Physical Chemistry Chemical Physics 2024, 26
(30)
, 20251-20260. https://doi.org/10.1039/D4CP01094A
- Lei Ying, Yu Han, Beien Zhu, Yi Gao. Exploration of structure sensitivity of gold nanoparticles in low-temperature CO oxidation. Industrial Chemistry & Materials 2024, 2
(2)
, 321-327. https://doi.org/10.1039/D3IM00117B
- Xiangxiang Wang, Yuanhao Bai, Xiangjian Du, Jingli Han, Yongpeng Yang. Theoretical study of construction of medium-sized gold nanoclusters. Chemical Physics Letters 2023, 830 , 140792. https://doi.org/10.1016/j.cplett.2023.140792
- Manoj Settem, Cesare Roncaglia, Riccardo Ferrando, Alberto Giacomello. Structural transformations in Cu, Ag, and Au metal nanoclusters. The Journal of Chemical Physics 2023, 159
(9)
https://doi.org/10.1063/5.0159257
- Bijal R. Mehta, Esha V. Shah, Sutapa Mondal Roy, Debesh R. Roy. (ZnO)42 nanocluster: a novel visibly active magic quantum dot under first principle investigation. Theoretical Chemistry Accounts 2023, 142
(2)
https://doi.org/10.1007/s00214-023-02958-1
- Yang Zhang, Dasen Ren. Mechanisms for Catalytic CO Oxidation on SiAun (n = 1–5) Cluster. Molecules 2023, 28
(4)
, 1917. https://doi.org/10.3390/molecules28041917
- D. Chattaraj, C. Majumder. CO
2
hydrogenation to formic acid on Pd–Cu nanoclusters: a DFT study. Physical Chemistry Chemical Physics 2023, 115 https://doi.org/10.1039/D2CP03805F
- S. Nqayi, M. Gulumian, S. Cronjé, R. A. Harris. Computational study of the effect of size and surface functionalization on Au nanoparticles on their stability to study biological descriptors. Journal of Molecular Modeling 2022, 28
(11)
https://doi.org/10.1007/s00894-022-05367-6
- Amir Hajibabaei, Muhammad Umer, Rohit Anand, Miran Ha, Kwang S Kim. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials
*. Journal of Physics: Condensed Matter 2022, 34
(34)
, 344007. https://doi.org/10.1088/1361-648X/ac76ff
- Qing Liu, Xiaoxu Wang, Lu Li, Keke Song, Ping Qian, Yuan Ping Feng. Design of platinum single-atom doped metal nanoclusters as efficient oxygen reduction electrocatalysts by coupling electronic descriptor. Nano Research 2022, 15
(8)
, 7016-7025. https://doi.org/10.1007/s12274-022-4343-1
- Uday Narayan Pan, Dasu Ram Paudel, Amit Kumar Das, Thangjam Ibomcha Singh, Nam Hoon Kim, Joong Hee Lee. Ni-nanoclusters hybridized 1T–Mn–VTe2 mesoporous nanosheets for ultra-low potential water splitting. Applied Catalysis B: Environmental 2022, 301 , 120780. https://doi.org/10.1016/j.apcatb.2021.120780
- Manoj Settem, Riccardo Ferrando, Alberto Giacomello. Tempering of Au nanoclusters: capturing the temperature-dependent competition among structural motifs. Nanoscale 2022, 14
(3)
, 939-952. https://doi.org/10.1039/D1NR05078H
- Forrest H. Kaatz, Adhemar Bultheel. Magical Mathematical Formulas for Nanoboxes. Nanoscale Research Letters 2021, 16
(1)
https://doi.org/10.1186/s11671-021-03472-8
- Kihoon Bang, Byung Chul Yeo, Donghun Kim, Sang Soo Han, Hyuck Mo Lee. Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning. Scientific Reports 2021, 11
(1)
https://doi.org/10.1038/s41598-021-91068-8
- Mathias Rapacioli, J. Christian Schön, Nathalie Tarrat. Exploring energy landscapes at the DFTB quantum level using the threshold algorithm: the case of the anionic metal cluster Au$$_{20}^{-}$$. Theoretical Chemistry Accounts 2021, 140
(7)
https://doi.org/10.1007/s00214-021-02748-7
- Akhil S. Nair, Biswarup Pathak. Computational strategies to address the catalytic activity of nanoclusters. WIREs Computational Molecular Science 2021, 11
(4)
https://doi.org/10.1002/wcms.1508
- Juliette W. Strasser, Thomas J. P. Hersbach, Jing Liu, Aliya S. Lapp, Anatoly I. Frenkel, Richard M. Crooks. Electrochemical Cleaning Stability and Oxygen Reduction Reaction Activity of 1‐2 nm Dendrimer‐Encapsulated Au Nanoparticles. ChemElectroChem 2021, 8
(13)
, 2545-2555. https://doi.org/10.1002/celc.202100549
- Sean A. Tacey, Benjamin W.J. Chen, Tibor Szilvási, Manos Mavrikakis. An automated cluster surface scanning method for exploring reaction paths on metal-cluster surfaces. Computational Materials Science 2021, 186 , 110010. https://doi.org/10.1016/j.commatsci.2020.110010
- Sebastian Franco-Ulloa, Giuseppina Tatulli, Sigbjørn Løland Bore, Mauro Moglianetti, Pier Paolo Pompa, Michele Cascella, Marco De Vivo. Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nature Communications 2020, 11
(1)
https://doi.org/10.1038/s41467-020-19164-3
- Theodoros Pavloudis, Joseph Kioseoglou, Richard E. Palmer. Bonding of Gold Nanoclusters on Graphene with and without Point Defects. Nanomaterials 2020, 10
(11)
, 2109. https://doi.org/10.3390/nano10112109
- Philipp N. Plessow. The transformation of cuboctahedral to icosahedral nanoparticles: atomic structure and dynamics. Physical Chemistry Chemical Physics 2020, 22
(23)
, 12939-12945. https://doi.org/10.1039/D0CP01651A
- D. I. Zhukhovitskii, V. V. Zhakhovsky. Thermodynamics and the structure of clusters in the dense Au vapor from molecular dynamics simulation. The Journal of Chemical Physics 2020, 152
(22)
https://doi.org/10.1063/5.0010156
- Barbara Farkaš, Nora H de Leeuw. Towards a morphology of cobalt nanoparticles: size and strain effects. Nanotechnology 2020, 31
(19)
, 195711. https://doi.org/10.1088/1361-6528/ab6fe0
- Cornelia M. Schneider, Helmut Cölfen. Formation of Nanoclusters in Gold Nucleation. Crystals 2020, 10
(5)
, 382. https://doi.org/10.3390/cryst10050382
- Shweta Jindal, Satya S. Bulusu. Structural evolution in gold nanoparticles using artificial neural network based interatomic potentials. The Journal of Chemical Physics 2020, 152
(15)
https://doi.org/10.1063/1.5142903
- Constanza G. Quintana, Fernanda Ocayo, Raul Guajardo Maturana, John J. Hurtado, Alvaro Muñoz‐Castro. Nature of mercury inclusion in intermediate 6‐valence electron [M@Au
8
Hg
x
(PPh
3
)
8
]
n+
(M = Au, Pd, Pt;
x
= 0‐2) protected gold superatoms: Insights from relativistic density functional theory calculations. International Journal of Quantum Chemistry 2020, 120
(2)
https://doi.org/10.1002/qua.26068
- Seong Soo Choi, Myoung Jin Park, Yong Min Lee, Byung Seong Bae, Hyun Tae Kim, Soo Bong Choi. Fabrication of the Au Nano-Aperture Array Platform for Single Molecule Analysis. ECS Journal of Solid State Science and Technology 2020, 9
(11)
, 115015. https://doi.org/10.1149/2162-8777/aba723
- Dan Li, Beena Kumari, Jessa Marie Makabenta, Akash Gupta, Vincent Rotello. Effective detection of bacteria using metal nanoclusters. Nanoscale 2019, 11
(46)
, 22172-22181. https://doi.org/10.1039/C9NR08510F
- Gergely Nagy, Andrea Beck, György Sáfrán, Zoltán Schay, Shaofeng Liu, Tianbo Li, Botao Qiao, Junhu Wang, Károly Lázár. Nanodisperse gold catalysts in oxidation of benzyl alcohol: comparison of various supports under different conditions. Reaction Kinetics, Mechanisms and Catalysis 2019, 128
(1)
, 71-95. https://doi.org/10.1007/s11144-019-01615-8
- Stephanie G. Lambie, Geoffrey R. Weal, Caroline E. Blackmore, Richard E. Palmer, Anna L. Garden. Contrasting motif preferences of platinum and gold nanoclusters between 55 and 309 atoms. Nanoscale Advances 2019, 1
(6)
, 2416-2425. https://doi.org/10.1039/C9NA00122K
- T.T. Li, C. He, W.X. Zhang, M. Cheng. Enhanced catalytic CO oxidation by Cu13-mNim (m = 0, 1, 13) clusters at ambient temperatures with more active sites and distinct mechanistic pathways. Applied Surface Science 2019, 479 , 39-46. https://doi.org/10.1016/j.apsusc.2019.01.247
- Oscar A. Douglas-Gallardo, Matías Berdakin, Thomas Frauenheim, Cristián G. Sánchez. Plasmon-induced hot-carrier generation differences in gold and silver nanoclusters. Nanoscale 2019, 11
(17)
, 8604-8615. https://doi.org/10.1039/C9NR01352K
- Francesca Baletto. Structural properties of sub-nanometer metallic clusters. Journal of Physics: Condensed Matter 2019, 31
(11)
, 113001. https://doi.org/10.1088/1361-648X/aaf989
- Sangeeta Saini, Jyoti Yadav, Jai Parkash. Mechanistic investigation into CO oxidation catalyzed by Au5 gold cluster. 2019, 190002. https://doi.org/10.1063/1.5122634
- D. M. Foster, R. Ferrando, R. E. Palmer. Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters. Nature Communications 2018, 9
(1)
https://doi.org/10.1038/s41467-018-03794-9
- Ricca Rahman Nasaruddin, Tiankai Chen, Ning Yan, Jianping Xie. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coordination Chemistry Reviews 2018, 368 , 60-79. https://doi.org/10.1016/j.ccr.2018.04.016
- Lianyang Zhang, Zheming Ni, Jilong Xue, Hongfei Qian, Yue Liu, Chengan Jin. Selective hydrogenation of p-chloronitrobenzene on nanosized gold clusters: A theoretical study. Chemical Physics Letters 2018, 703 , 23-28. https://doi.org/10.1016/j.cplett.2018.04.046
- Dan Liu, Jing Wang, Yingbo Zhang, Jun Liu, Hongmei Li, Li Zhou, Shan Wu, Xiang Gao. Preparation of core–shell structured Au@SiO2 nanocomposite catalyst with Au core size below 2 nm without high-temperature calcination procedure. Journal of Materials Science 2018, 53
(11)
, 8086-8097. https://doi.org/10.1007/s10853-018-2085-y
- Nathalie Tarrat, Mathias Rapacioli, Fernand Spiegelman. Au147 nanoparticles: Ordered or amorphous?. The Journal of Chemical Physics 2018, 148
(20)
https://doi.org/10.1063/1.5021785
- K. Vishwanathan, M. Springborg. Retracted Article: A highest stable cluster Au
58
(
C
1
) re-optimized
via
a density-functional tight-binding (DFTB) approach. RSC Advances 2018, 8
(21)
, 11357-11366. https://doi.org/10.1039/C7RA13171B
- Emanuele Verrelli, Irini Michelakaki, Nikos Boukos, Georgios Kyriakou, Dimitris Tsoukalas. Coalescence of Cluster Beam Generated Sub‐2 nm Bare Au Nanoparticles and Analysis of Au Film Growth Parameters. Annalen der Physik 2018, 530
(2)
https://doi.org/10.1002/andp.201700256
- Kyoung Chul Ko, Jin Yong Lee, Francesc Illas. Modeling realistic titania nanoparticles. 2018, 205-238. https://doi.org/10.1016/B978-0-08-102232-0.00007-5
- Anna L. Garden, Andreas Pedersen, Hannes Jónsson. Reassignment of ‘magic numbers’ for Au clusters of decahedral and FCC structural motifs. Nanoscale 2018, 10
(11)
, 5124-5132. https://doi.org/10.1039/C7NR09440J
- Seong Soo Choi, Sae-Joong Oh, Chul Hee Han, Doo Jae Park, Soo Bong Choi, Yong-Sang Kim, Nam Kyou Park. Au cluster formation on a pore containing membrane under the various surface treatments. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2017, 35
(4)
https://doi.org/10.1116/1.4994828
- Shweta Jindal, Siva Chiriki, Satya S. Bulusu. Spherical harmonics based descriptor for neural network potentials: Structure and dynamics of Au147 nanocluster. The Journal of Chemical Physics 2017, 146
(20)
https://doi.org/10.1063/1.4983392
- R. Carles, P. Benzo, B. Pécassou, C. Bonafos. Vibrational density of states and thermodynamics at the nanoscale: the 3D-2D transition in gold nanostructures. Scientific Reports 2016, 6
(1)
https://doi.org/10.1038/srep39164
- Laurent Piccolo, Z. Y. Li, Ilker Demiroglu, Florian Moyon, Zere Konuspayeva, Gilles Berhault, Pavel Afanasiev, Williams Lefebvre, Jun Yuan, Roy L. Johnston. Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. Scientific Reports 2016, 6
(1)
https://doi.org/10.1038/srep35226
- Yaping Zhong, Chun Deng, Yu He, Yili Ge, Gongwu Song. Exploring a monothiolated β-cyclodextrin as the template to synthesize copper nanoclusters with exceptionally increased peroxidase-like activity. Microchimica Acta 2016, 183
(10)
, 2823-2830. https://doi.org/10.1007/s00604-016-1915-3
- Xuesong Zhang, Liang-Liang Niu, Ke Xu, Jiannan Hao, Ying Zhang, Xiaolin Shu, Guang-Hong Lu. Atomistic simulations of nanoscale tungsten clusters: From structure and energetics to melting properties. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016, https://doi.org/10.1016/j.nimb.2016.09.009
- Tetsuya Ohkawa, Kei Kuramoto. Theoretical study of CO and O2 adsorption and CO oxidation on linear-shape gold molecules (LGMn) (n=2, 4, 8, 16, and 24). AIP Advances 2016, 6
(9)
https://doi.org/10.1063/1.4962824
- María Cruz Alonso, Laura Trapiella-Alfonso, José M. Costa Fernández, Rosario Pereiro, Alfredo Sanz-Medel. Functionalized gold nanoclusters as fluorescent labels for immunoassays: Application to human serum immunoglobulin E determination. Biosensors and Bioelectronics 2016, 77 , 1055-1061. https://doi.org/10.1016/j.bios.2015.08.011
- S. Ali, V. S. Myasnichenko, E. C. Neyts. Size-dependent strain and surface energies of gold nanoclusters. Physical Chemistry Chemical Physics 2016, 18
(2)
, 792-800. https://doi.org/10.1039/C5CP06153A
- Wen Wu Xu, Yadong Li, Yi Gao, Xiao Cheng Zeng. Medium-sized Au
40
(SR)
24
and Au
52
(SR)
32
nanoclusters with distinct gold-kernel structures and spectroscopic features. Nanoscale 2016, 8
(3)
, 1299-1304. https://doi.org/10.1039/C5NR07810E
- Dan Li, Zhenhua Chen, Tiezhu Yang, Hao Wang, Nan Lu, Xifan Mei. Green synthesis of highly fluorescent AuNCs with red emission and their special sensing behavior for Al
3+. RSC Advances 2016, 6
(23)
, 19182-19189. https://doi.org/10.1039/C6RA00912C
- Honggen Peng, Juan Xu, Jinshu Tian, Yang Liu, Yunping He, Jin Tan, Xianglan Xu, Wenming Liu, Ning Zhang, Xiang Wang. Mesoporous Y
2
Sn
2
O
7
pyrochlore with exposed (111) facets: an active and stable catalyst for CO oxidation. RSC Advances 2016, 6
(75)
, 71791-71799. https://doi.org/10.1039/C6RA11826G
- Manohar Pillegowda, Ganga Periyasamy. DFT studies on the influence of ligation on optical and redox properties of bimetallic [Au
4
M
2
] clusters. RSC Advances 2016, 6
(89)
, 86051-86060. https://doi.org/10.1039/C6RA14886G
- Chenjie Zeng, Yuxiang Chen, Chong Liu, Katsuyuki Nobusada, Nathaniel L. Rosi, Rongchao Jin. Gold tetrahedra coil up: Kekulé-like and double helical superstructures. Science Advances 2015, 1
(9)
https://doi.org/10.1126/sciadv.1500425
- Wang Yu, Maolin Bo, Yongli Huang, Yan Wang, Can Li, Chang Q. Sun. Coordination‐Resolved Spectrometrics of Local Bonding and Electronic Dynamics of Au Atomic Clusters, Solid Skins, and Oxidized Foils. ChemPhysChem 2015, 16
(10)
, 2159-2164. https://doi.org/10.1002/cphc.201500171
- Nan Jian, Richard E. Palmer. Variation of the Core Atomic Structure of Thiolated (Au
x
Ag
1–
x
)
312±55
Nanoclusters with Composition from Aberration-Corrected HAADF STEM. The Journal of Physical Chemistry C 2015, 119
(20)
, 11114-11119. https://doi.org/10.1021/jp5119103
- Wen Wu Xu, Yi Gao, Xiao Cheng Zeng. Unraveling structures of protection ligands on gold nanoparticle Au
68
(SH)
32. Science Advances 2015, 1
(3)
https://doi.org/10.1126/sciadv.1400211
- Runhai Ouyang, Yu Xie, De-en Jiang. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method. Nanoscale 2015, 7
(36)
, 14817-14821. https://doi.org/10.1039/C5NR03903G
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.