ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Sulfur Nanodots Electrodeposited on Ni Foam as High-Performance Cathode for Li–S Batteries

View Author Information
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
Cite this: Nano Lett. 2015, 15, 1, 721–726
Publication Date (Web):December 26, 2014
https://doi.org/10.1021/nl504263m
Copyright © 2014 American Chemical Society

    Article Views

    7002

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    In this Letter, we report the preparation of sulfur nanodots (2 nm average) electrodeposited on flexible nickel foam and their application as high-performance cathode of Li–S batteries. An electrodepostion method was applied to prepare the cathode at room temperature and the sulfur mass was controllable from 0.21 to 4.79 mg/cm2 in a large area of over 100 cm2. The optimized cathode with 0.45 mg/cm2 S on Ni foam displayed high initial discharge capacity (1458 mAh/g at 0.1 C), high rate capability (521 mAh/g at 10 C), and long cycling stability (895 mAh/g after 300 cycles at 0.5 C and 528 mAh/g after 1400 cycles at 5 C). Moreover, in situ Raman and transmission electron microscopy analysis demonstrated the fundamentals of reversible electrochemical reaction between S and Li2S nanodots. This fast, facile, and one-step cathode preparation method with excellent electrochemical performance will lead to technological advances of S cathode in Li–S batteries.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Detailed experimental procedures and additional materials, electrodes, and batteries characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 169 publications.

    1. Yujiang Sun, Xin Zhang, Shijie Xu, Shunjin Yang, Xinyu Wang, Xiaorou Cao, Xiao Sun, Yuzhe Zhang, Dehang Ren, Xiaohu Hu, Haoyu Yang, Qiaran Zhang, Zongjing Lu, Xuejing Zhang, Yongan Yang. A Green Method of Synthesizing Battery-Grade Lithium Sulfide: Hydrogen Reduction of Lithium Sulfate. ACS Sustainable Chemistry & Engineering 2024, 12 (7) , 2813-2824. https://doi.org/10.1021/acssuschemeng.3c07872
    2. Qun-Yi Zhou, Long Tan, Tong-Bao Lv, Meng-Chao Li, Jing-Jian Zhang, Zhi-Qing Zhao, Xin-Jian Jin, Zhi Liu, Pei-Pei Hou, Zheling Zeng, Shuguang Deng, Gui-Ping Dai. Nickel Foam Coated by Ni Nanoparticle-Decorated 3D Nanocarbons as a Freestanding Host for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2023, 15 (2) , 3037-3046. https://doi.org/10.1021/acsami.2c19987
    3. Chi-Jung Chang, Pei-Yao Chao, Jem-Kun Chen, Arul Pundi, Yuan-Hsiang Yu, Chao-Lung Chiang, Yan-Gu Lin. Metal Complex/ZnS-Modified Ni Foam as Magnetically Stirrable Photocatalysts: Roles of Redox Mediators and Carrier Dynamics Monitored by Operando Synchrotron X-ray Spectroscopy. ACS Applied Materials & Interfaces 2022, 14 (37) , 41870-41882. https://doi.org/10.1021/acsami.2c07857
    4. Masaki Abe, Fusae Kaneko, Nozomu Ishiguro, Tatsuya Kubo, Fumiya Chujo, Yusuke Tamenori, Hiroyuki Kishimoto, Yukio Takahashi. Visualization of Sulfur Chemical State of Cathode Active Materials for Lithium–Sulfur Batteries by Tender X-ray Spectroscopic Ptychography. The Journal of Physical Chemistry C 2022, 126 (33) , 14047-14057. https://doi.org/10.1021/acs.jpcc.2c02795
    5. Hongjing Gao, Nanping Deng, Gang Wang, Xiaoxiao Wang, Yarong Liu, Lugang Zhang, Yajing Liang, Jing Yan, Bowen Cheng, Weimin Kang. Overview of the Latest Developments and Perspectives about Noncarbon Sulfur Host Materials for High Performance Lithium–Sulfur Batteries. Energy & Fuels 2022, 36 (14) , 7284-7320. https://doi.org/10.1021/acs.energyfuels.2c01211
    6. Da Zhang, Rong Gu, Fu Yin Lan, Wen Yao Guo, Chen Wei Deng, Qun Jie Xu, He Xing Li, Yu Lin Min. “Anchor-Turbo” Strategy for Constructing Ni–VO2 Coating Layer to Achieve Wide Temperature and High-Performance Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (48) , 16251-16261. https://doi.org/10.1021/acssuschemeng.1c05439
    7. Zihan Shen, Zili Zhang, Matthew Li, Yifei Yuan, Yue Zhao, Shuo Zhang, Chenglin Zhong, Jia Zhu, Jun Lu, Huigang Zhang. Rational Design of a Ni3N0.85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Nano 2020, 14 (6) , 6673-6682. https://doi.org/10.1021/acsnano.9b09371
    8. Yiming Meng, Guorong Chen, Liyi Shi, Hongjiang Liu, Dengsong Zhang. Operando Fourier Transform Infrared Investigation of Cathode Electrolyte Interphase Dynamic Reversible Evolution on Li1.2Ni0.2Mn0.6O2. ACS Applied Materials & Interfaces 2019, 11 (48) , 45108-45117. https://doi.org/10.1021/acsami.9b17438
    9. Xiaomin Cai, Bowen Cui, Bei Ye, Wenqiang Wang, Jianlong Ding, Gengchao Wang. Poly(ionic liquid)-Based Quasi-Solid-State Copolymer Electrolytes for Dynamic-Reversible Adsorption of Lithium Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2019, 11 (41) , 38136-38146. https://doi.org/10.1021/acsami.9b12297
    10. Tingzhou Yang, Tao Qian, Jie Liu, Na Xu, Yutao Li, Nicholas Grundish, Chenglin Yan, John B. Goodenough. A New Type of Electrolyte System To Suppress Polysulfide Dissolution for Lithium–Sulfur Battery. ACS Nano 2019, 13 (8) , 9067-9073. https://doi.org/10.1021/acsnano.9b03304
    11. Keisuke Hori, Kei Hasegawa, Toshiyuki Momma, Suguru Noda. Volumetric Discharge Capacity 1 A h cm–3 Realized by Sulfur in Carbon Nanotube Sponge Cathodes. The Journal of Physical Chemistry C 2019, 123 (7) , 3951-3958. https://doi.org/10.1021/acs.jpcc.8b10009
    12. Bingshu Guo, Sateesh Bandaru, Chunlong Dai, Hao Chen, Youquan Zhang, Qiuju Xu, Shujuan Bao, Mingyang Chen, Maowen Xu. Self-Supported FeCo2S4 Nanotube Arrays as Binder-Free Cathodes for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2018, 10 (50) , 43707-43715. https://doi.org/10.1021/acsami.8b16948
    13. Qing Zhao, Jingxu Zheng, Lynden Archer. Interphases in Lithium–Sulfur Batteries: Toward Deployable Devices with Competitive Energy Density and Stability. ACS Energy Letters 2018, 3 (9) , 2104-2113. https://doi.org/10.1021/acsenergylett.8b01001
    14. Xuefeng Li, Shimou Chen, Juntian Fan, Zhongliang Hu, Suojiang Zhang. Double-Confined Sulfur Inside Compressed Nickel Foam and Pencil-Plating Graphite for Lithium–Sulfur Battery. Industrial & Engineering Chemistry Research 2018, 57 (14) , 4880-4886. https://doi.org/10.1021/acs.iecr.7b04338
    15. Xiaolong Yao, Jijian Xu, Zhanglian Hong, Gaoran Li, Xuewei Wang, Feng Lu, Weihua Wang, Hui Liu, Chengdu Liang, Zhan Lin, and Weichao Wang . Metal/Graphene Composites with Strong Metal–S Bondings for Sulfur Immobilization in Li–S Batteries. The Journal of Physical Chemistry C 2018, 122 (6) , 3263-3272. https://doi.org/10.1021/acs.jpcc.7b12063
    16. Linlin Zhang, Fang Wan, Xinyu Wang, Hongmei Cao, Xi Dai, Zhiqiang Niu, Yijing Wang, and Jun Chen . Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries. ACS Applied Materials & Interfaces 2018, 10 (6) , 5594-5602. https://doi.org/10.1021/acsami.7b18894
    17. Jing Hui Zeng, Ye Feng Wang, Si Qiong Gou, Lu Ping Zhang, Yu Chen, Jia Xing Jiang, and Feng Shi . Sulfur in Hyper-cross-linked Porous Polymer as Cathode in Lithium–Sulfur Batteries with Enhanced Electrochemical Properties. ACS Applied Materials & Interfaces 2017, 9 (40) , 34783-34792. https://doi.org/10.1021/acsami.7b07982
    18. Feng Wu, Yu-Sheng Ye, Jia-Qi Huang, Teng Zhao, Ji Qian, Yuan-Yuan Zhao, Li Li, Lei Wei, Rui Luo, Yong-Xin Huang, Yi Xing, and Ren-Jie Chen . Sulfur Nanodots Stitched in 2D “Bubble-Like” Interconnected Carbon Fabric as Reversibility-Enhanced Cathodes for Lithium–Sulfur Batteries. ACS Nano 2017, 11 (5) , 4694-4702. https://doi.org/10.1021/acsnano.7b00596
    19. Xiang Li, Xuanbing Cheng, Mingxia Gao, Dawei Ren, Yongfeng Liu, Zhengxiao Guo, Congxiao Shang, Lixian Sun, and Hongge Pan . Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces 2017, 9 (12) , 10717-10729. https://doi.org/10.1021/acsami.7b00672
    20. Tae-Gyung Jeong, Dong Shin Choi, Hannah Song, Jihwan Choi, Shin-Ae Park, Si Hyoung Oh, Heejin Kim, Yousung Jung, and Yong-Tae Kim . Heterogeneous Catalysis for Lithium–Sulfur Batteries: Enhanced Rate Performance by Promoting Polysulfide Fragmentations. ACS Energy Letters 2017, 2 (2) , 327-333. https://doi.org/10.1021/acsenergylett.6b00603
    21. Meng-Ting Li, Yu Sun, Kai-Sen Zhao, Zhao Wang, Xin-Long Wang, Zhong-Min Su, and Hai-Ming Xie . Metal–Organic Framework with Aromatic Rings Tentacles: High Sulfur Storage in Li–S Batteries and Efficient Benzene Homologues Distinction. ACS Applied Materials & Interfaces 2016, 8 (48) , 33183-33188. https://doi.org/10.1021/acsami.6b10946
    22. Bokai Cao, De Li, Bo Hou, Yan Mo, Lihong Yin, and Yong Chen . Synthesis of Double-Shell SnO2@C Hollow Nanospheres as Sulfur/Sulfide Cages for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2016, 8 (41) , 27795-27802. https://doi.org/10.1021/acsami.6b09918
    23. Bo Zhang, Chunhui Xiao, Sanmu Xie, Jin Liang, Xu Chen, and Yuhai Tang . Iron–Nickel Nitride Nanostructures in Situ Grown on Surface-Redox-Etching Nickel Foam: Efficient and Ultrasustainable Electrocatalysts for Overall Water Splitting. Chemistry of Materials 2016, 28 (19) , 6934-6941. https://doi.org/10.1021/acs.chemmater.6b02610
    24. David Zhitomirsky and Jeffrey C. Grossman . Conformal Electroplating of Azobenzene-Based Solar Thermal Fuels onto Large-Area and Fiber Geometries. ACS Applied Materials & Interfaces 2016, 8 (39) , 26319-26325. https://doi.org/10.1021/acsami.6b08034
    25. Bin He, Wen-Cui Li, Chao Yang, Si-Qiong Wang, and An-Hui Lu . Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium–Sulfur Batteries: An Electrolysis Approach. ACS Nano 2016, 10 (1) , 1633-1639. https://doi.org/10.1021/acsnano.5b07340
    26. Shuya Wei, Lin Ma, Kenville E. Hendrickson, Zhengyuan Tu, and Lynden A. Archer . Metal–Sulfur Battery Cathodes Based on PAN–Sulfur Composites. Journal of the American Chemical Society 2015, 137 (37) , 12143-12152. https://doi.org/10.1021/jacs.5b08113
    27. Qing Zhao, Yanying Lu, Zhiqiang Zhu, Zhanliang Tao, and Jun Chen . Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. Nano Letters 2015, 15 (9) , 5982-5987. https://doi.org/10.1021/acs.nanolett.5b02116
    28. Guoxing Qu, Jianli Cheng, Xiaodong Li, Ling Huang, Wei Ni, Zhiyu Wang, and Bin Wang . Graphene-Enveloped Poly(N-vinylcarbazole)/Sulfur Composites with Improved Performances for Lithium–Sulfur Batteries by A Simple Vibrating-Emulsification Method. ACS Applied Materials & Interfaces 2015, 7 (30) , 16668-16675. https://doi.org/10.1021/acsami.5b04079
    29. Ali Sadeghi, Ali Ghaffarinejad. Recent advances of electrode materials based on nickel foam current collector for lithium-based batteries – A review. Journal of Power Sources 2024, 600 , 234275. https://doi.org/10.1016/j.jpowsour.2024.234275
    30. Guoyong Huang, Zitong Wei, Xiaona Zhang, Wenyi Lu, Yizhang Du, Yali Yin, Umme Hani Prova, Chunxia Wang. Tailoring the energy gap to promote long wavelength emission of nitrogen-doped sulfur quantum dots via dual functional ethylenediamine. Journal of Materials Chemistry C 2024, 12 (13) , 4817-4824. https://doi.org/10.1039/D4TC00155A
    31. Yanqi Feng, Hui Liu, Qiongqiong Lu. From non-carbon host toward carbon-free lithium-sulfur batteries. Nano Research 2024, 17 (3) , 1337-1365. https://doi.org/10.1007/s12274-023-5945-y
    32. Shengheng Nong, Dongyuan Huang, Yaoying Li, Ruoxi Yang, Jiawei Xie, Jia Li, Haifu Huang, Xianqing Liang, Guangxu Li, Zhiqiang Lan, Haizhen Liu, Dan Huang, Shuaikai Xu, Jin Guo, Wenzheng Zhou. Multifunction-balanced porous carbon and its application in sulfur-loading host and separator modification for lithium–sulfur batteries. Journal of Energy Storage 2024, 81 , 110296. https://doi.org/10.1016/j.est.2023.110296
    33. Álvaro Bonilla, Almudena Benítez, Juan Luis Gómez-Cámer, Álvaro Caballero. Impact of composite preparation method on the electrochemical performance of lithium–sulfur batteries. Journal of Alloys and Compounds 2023, 968 , 171810. https://doi.org/10.1016/j.jallcom.2023.171810
    34. Dong Chen, Tianjiao Zhu, Shen Shen, Yongan Cao, Yangyang Mao, Wenju Wang, Encai Bao, Hongfu Jiang. In situ synthesis of VS4/Ti3C2T MXene composites as modified separators for lithium-sulfur battery. Journal of Colloid and Interface Science 2023, 650 , 480-489. https://doi.org/10.1016/j.jcis.2023.07.015
    35. Dan Chan, Yunfei Liu, You Fan, Huibo Wang, Shi Chen, Tianwei Hao, Heng Li, Zhengshuai Bai, Huaiyu Shao, Guichuan Xing, Yanyan Zhang, Yuxin Tang. Functional Janus Membranes: Promising Platform for Advanced Lithium Batteries and Beyond. ENERGY & ENVIRONMENTAL MATERIALS 2023, 6 (5) https://doi.org/10.1002/eem2.12451
    36. Wenyi Lu, Zitong Wei, Wenxuan Guo, Chengcheng Yan, Zhaolong Ding, Chunxia Wang, Guoyong Huang, Vincent M. Rotello. Shaping Sulfur Precursors to Low Dimensional (0D, 1D and 2D) Sulfur Nanomaterials: Synthesis, Characterization, Mechanism, Functionalization, and Applications. Small 2023, 19 (28) https://doi.org/10.1002/smll.202301095
    37. Yimin Liang, Boxuan Zhang, Yiran Shi, Ruyi Jiang, Honghua Zhang. Research on Wide-Temperature Rechargeable Sodium-Sulfur Batteries: Features, Challenges and Solutions. Materials 2023, 16 (12) , 4263. https://doi.org/10.3390/ma16124263
    38. Francisco Javier Soler-Piña, Julián Morales, Álvaro Caballero. Synergy between highly dispersed Ni nanocrystals and graphitized carbon derived from a single source as a strategy for high performance Lithium-Sulfur batteries. Journal of Colloid and Interface Science 2023, 640 , 990-1004. https://doi.org/10.1016/j.jcis.2023.03.035
    39. Mpho S. Ratsoma, Boipelo L. O. Poho, Katlego Makgopa, Kumar Raju, Kwena D. Modibane, Charl J. Jafta, Kabir O. Oyedotun. Application of Nickel Foam in Electrochemical Systems: A Review. Journal of Electronic Materials 2023, 52 (4) , 2264-2291. https://doi.org/10.1007/s11664-023-10244-w
    40. Yudan Chai, Xuedong Wei, Yufen Wang, Shuangyan Qiao. Cr(OH) 3 nanosheets@ZIF67 electrocatalysts prepared by electrodeposition method for efficient oxygen evolution reaction. Nanotechnology 2023, 34 (13) , 135601. https://doi.org/10.1088/1361-6528/acae2a
    41. Huiling Yang, Yaojie Lei, Qiuran Yang, Bin-Wei Zhang, Qinfen Gu, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, Shi-Xue Dou. Cobalt-induced highly-electroactive Li2S heterostructured cathode for Li-S batteries. Electrochimica Acta 2023, 439 , 141652. https://doi.org/10.1016/j.electacta.2022.141652
    42. Ting Zhou, Jianneng Liang, Shenghua Ye, Qianling Zhang, Jianhong Liu. Fundamental, application and opportunities of single atom catalysts for Li-S batteries. Energy Storage Materials 2023, 55 , 322-355. https://doi.org/10.1016/j.ensm.2022.12.002
    43. Lei Huang, Tuxiang Guan, Han Su, Yu Zhong, Feng Cao, Yongqi Zhang, Xinhui Xia, Xiuli Wang, Ningzhong Bao, Jiangping Tu. Synergistic Interfacial Bonding in Reduced Graphene Oxide Fiber Cathodes Containing Polypyrrole@sulfur Nanospheres for Flexible Energy Storage. Angewandte Chemie 2022, 134 (44) https://doi.org/10.1002/ange.202212151
    44. Lei Huang, Tuxiang Guan, Han Su, Yu Zhong, Feng Cao, Yongqi Zhang, Xinhui Xia, Xiuli Wang, Ningzhong Bao, Jiangping Tu. Synergistic Interfacial Bonding in Reduced Graphene Oxide Fiber Cathodes Containing Polypyrrole@sulfur Nanospheres for Flexible Energy Storage. Angewandte Chemie International Edition 2022, 61 (44) https://doi.org/10.1002/anie.202212151
    45. Hsiwen Wu, Xijun Hu, Minhua Shao, Shuwei Zhang, Guohua Chen. Encapsulating sulphur inside Magnéli phase Ti 4 O 7 nanotube array for high performance lithium sulphur battery cathode. The Canadian Journal of Chemical Engineering 2022, 100 (9) , 2417-2431. https://doi.org/10.1002/cjce.24413
    46. Mustafa Khan, Xuli Ding, Hongda Zhao, Yuxin Wang, Ning Zhang, Xiaojing Chen, Jiahao Xu. Recent Advancements in Selenium-Based Cathode Materials for Lithium Batteries: A Mini-Review. Electrochem 2022, 3 (2) , 285-308. https://doi.org/10.3390/electrochem3020020
    47. Wenhao Yang, Rongwei Huang, Zhicong Ni, Hongyu Cheng, Siyuan Zhou, Yanjie Wang, Xue Li, Yiyong Zhang, Yingjie Zhang. Application and research of current collector for lithium-sulfur battery. Ionics 2022, 28 (4) , 1713-1738. https://doi.org/10.1007/s11581-022-04461-2
    48. Cheng Zhou, Binbin Shuai, Xu Xu, Liqiang Mai. Advanced Characterization Techniques and Mechanistic Understanding. 2022, 331-354. https://doi.org/10.1007/978-3-030-90899-7_9
    49. Shahid Hussain, Naseem Akhtar, Awais Ahmad, Muhammad Khurram Tufail, Muhammad Kashif Aslam, Muhammad Sufyan Javed, Xiangzhao Zhang. The role of advanced host materials and binders for improving lithium-sulfur battery performance. 2022, 297-324. https://doi.org/10.1016/B978-0-12-819676-2.00013-X
    50. Yuichi Yoshie, Keisuke Hori, Tomotaro Mae, Suguru Noda. High-energy-density Li–S battery with positive electrode of lithium polysulfides held by carbon nanotube sponge. Carbon 2021, 182 , 32-41. https://doi.org/10.1016/j.carbon.2021.05.046
    51. Haoyu Li, Shaohua Guo, Haoshen Zhou. In-situ/operando characterization techniques in lithium-ion batteries and beyond. Journal of Energy Chemistry 2021, 59 , 191-211. https://doi.org/10.1016/j.jechem.2020.11.020
    52. Lujing Liu, Kai Meng, Zhijun Jia, Yi Wang, Tao Qi. Polar NiFe layered double hydroxide nanosheets for enhancing the performance of lithium–sulfur batteries. Materials Chemistry Frontiers 2021, 5 (15) , 5780-5789. https://doi.org/10.1039/D1QM00210D
    53. Hui Jin, Yujiao Sun, Zejun Sun, Meng Yang, Rijun Gui. Zero-dimensional sulfur nanomaterials: Synthesis, modifications and applications. Coordination Chemistry Reviews 2021, 438 , 213913. https://doi.org/10.1016/j.ccr.2021.213913
    54. Yong Li, Changping Yao, Caiyun Wang, Peng Yang, Ronghui Wu, Linfeng Fei, Yongyi Zhang, Yinzhu Jiang. An approach through steam to form sulfur nanoparticles for lithium sulfur batteries. Electrochemistry Communications 2021, 125 , 107010. https://doi.org/10.1016/j.elecom.2021.107010
    55. Dongyeeb Shin, Yongkwon Song, Donghyeon Nam, Jun Hyuk Moon, Seung Woo Lee, Jinhan Cho. High-capacity sulfur copolymer cathode with metallic fibril-based current collector and conductive capping layer. Journal of Materials Chemistry A 2021, 9 (4) , 2334-2344. https://doi.org/10.1039/D0TA09516H
    56. Jianbo Li, Wenfu Xie, Shimeng Zhang, Si-Min Xu, Mingfei Shao. Boosting the rate performance of Li–S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. Journal of Materials Chemistry A 2021, 358 https://doi.org/10.1039/D1TA00959A
    57. Shiqi Li, Zhaoyang Fan. Encapsulation methods of sulfur particles for lithium-sulfur batteries: A review. Energy Storage Materials 2021, 34 , 107-127. https://doi.org/10.1016/j.ensm.2020.09.005
    58. Yi Zhan, Andrea Buffa, Linghui Yu, Zhichuan J. Xu, Daniel Mandler. Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li–S Batteries. Nano-Micro Letters 2020, 12 (1) https://doi.org/10.1007/s40820-020-00479-1
    59. Fabio L. Bargardi, Juliette Billaud, Claire Villevieille, Florian Bouville, André R. Studart. Architectured ZnO–Cu particles for facile manufacturing of integrated Li-ion electrodes. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-69141-5
    60. Xiayue Fan, Bin Liu, Jia Ding, Yida Deng, Xiaopeng Han, Wenbin Hu, Cheng Zhong. Flexible and Wearable Power Sources for Next‐Generation Wearable Electronics. Batteries & Supercaps 2020, 3 (12) , 1262-1274. https://doi.org/10.1002/batt.202000115
    61. Bhuvanenthiran Mutharani, Ramachandran Rajakumaran, Shen-Ming Chen, Palraj Ranganathan, Tse-Wei Chen, Dunia A. Al Farraj, M. Ajmal Ali, Fahad M.A. Al-Hemaid. Facile synthesis of 3D stone-like copper tellurate (Cu3TeO6) as a new platform for anti-inflammatory drug ibuprofen sensor in human blood serum and urine samples. Microchemical Journal 2020, 159 , 105378. https://doi.org/10.1016/j.microc.2020.105378
    62. Lili Shi, Seong-Min Bak, Zulipiya Shadike, Chengqi Wang, Chaojiang Niu, Paul Northrup, Hongkyung Lee, Arthur Y. Baranovskiy, Cassidy S. Anderson, Jian Qin, Shuo Feng, Xiaodi Ren, Dianying Liu, Xiao-Qing Yang, Fei Gao, Dongping Lu, Jie Xiao, Jun Liu. Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells. Energy & Environmental Science 2020, 13 (10) , 3620-3632. https://doi.org/10.1039/D0EE02088E
    63. Zhenhua Yan, Huanhuan Liu, Zhimeng Hao, Meng Yu, Xiang Chen, Jun Chen. Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chemical Science 2020, 11 (39) , 10614-10625. https://doi.org/10.1039/D0SC01532F
    64. Arif Rashid, Xingyu Zhu, Gulian Wang, Chengzhi Ke, Sha Li, Pengfei Sun, Zhongli Hu, Qiaobao Zhang, Li Zhang. Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium–sulfur batteries. Journal of Energy Chemistry 2020, 49 , 71-79. https://doi.org/10.1016/j.jechem.2020.01.031
    65. Hongxun Wang, Bao Zhang, Xianqing Zeng, Lijing Yan, Junchao Zheng, Min Ling, Yang Hou, Yingying Lu, Chengdu Liang. 3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries. Journal of Power Sources 2020, 473 , 228588. https://doi.org/10.1016/j.jpowsour.2020.228588
    66. Yu Hai Wang, Zhe Dai, Chao Yue Zhang, Guo Wen Sun, Zhong Wei Lu, Xiu Ping Gao, Geng Zhi Sun, Wei Lan, Zhen Xing Zhang, Xiao Jun Pan, Jin Yuan Zhou. Investigation into performance enhancements of Li–S batteries via oxygen-containing functional groups on activated multi-walled carbon nanotubes using Fourier transform infrared spectroscopy. Current Applied Physics 2020, 20 (9) , 1049-1057. https://doi.org/10.1016/j.cap.2020.07.009
    67. James E. Knoop, Seongki Ahn. Recent advances in nanomaterials for high-performance Li–S batteries. Journal of Energy Chemistry 2020, 47 , 86-106. https://doi.org/10.1016/j.jechem.2019.11.018
    68. Lu Pan, Jinyang Dong, Ding Yi, Yijun Yang, Xi Wang. Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion. Chemical Research in Chinese Universities 2020, 36 (4) , 560-583. https://doi.org/10.1007/s40242-020-0187-y
    69. Jun Pu, Zihan Shen, Chenglin Zhong, Qingwen Zhou, Jinyun Liu, Jia Zhu, Huigang Zhang. Electrodeposition Technologies for Li‐Based Batteries: New Frontiers of Energy Storage. Advanced Materials 2020, 32 (27) https://doi.org/10.1002/adma.201903808
    70. Yundong Zhou, Christopher Doerrer, Jitti Kasemchainan, Peter G. Bruce, Mauro Pasta, Laurence J. Hardwick. Observation of Interfacial Degradation of Li 6 PS 5 Cl against Lithium Metal and LiCoO 2 via In Situ Electrochemical Raman Microscopy. Batteries & Supercaps 2020, 3 (7) , 647-652. https://doi.org/10.1002/batt.201900218
    71. Xiaowei Liu, Zhaohuai Li, Xiaobin Liao, Xufeng Hong, Yan Li, Cheng Zhou, Yan Zhao, Xu Xu, Liqiang Mai. A three-dimensional nitrogen-doped graphene framework decorated with an atomic layer deposited ultrathin V 2 O 5 layer for lithium sulfur batteries with high sulfur loading. Journal of Materials Chemistry A 2020, 8 (24) , 12106-12113. https://doi.org/10.1039/D0TA04301J
    72. Snigdha Sharma, Amrish K. Panwar, M.M. Tripathi. Storage technologies for electric vehicles. Journal of Traffic and Transportation Engineering (English Edition) 2020, 7 (3) , 340-361. https://doi.org/10.1016/j.jtte.2020.04.004
    73. Jing‐Hua Tian, Tao Jiang, Mengfan Wang, Zhongli Hu, Xingyu Zhu, Li Zhang, Tao Qian, Chenglin Yan. In Situ/Operando Spectroscopic Characterizations Guide the Compositional and Structural Design of Lithium–Sulfur Batteries. Small Methods 2020, 4 (6) https://doi.org/10.1002/smtd.201900467
    74. Lei Huang, Jiaojiao Li, Bo Liu, Yahao Li, Shenghui Shen, Shengjue Deng, Chengwei Lu, Wenkui Zhang, Yang Xia, Guoxiang Pan, Xiuli Wang, Qinqin Xiong, Xinhui Xia, Jiangping Tu. Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials 2020, 30 (22) https://doi.org/10.1002/adfm.201910375
    75. Linlin Zhang, Fang Wan, Hongmei Cao, Lili Liu, Yijing Wang, Zhiqiang Niu. Integration of Binary Active Sites: Co 3 V 2 O 8 as Polysulfide Traps and Catalysts for Lithium‐Sulfur Battery with Superior Cycling Stability. Small 2020, 16 (18) https://doi.org/10.1002/smll.201907153
    76. Zongrong Ying, Shuangsheng Zhao, Jinru Yue, Tao Ju, Yongzheng Zhang, Jie Xie, Qi Wang. 3D hierarchical CuS microflowers constructed on copper powders-filled nickel foam as advanced binder-free electrodes. Journal of Alloys and Compounds 2020, 821 , 153437. https://doi.org/10.1016/j.jallcom.2019.153437
    77. Aneela Sabir, Tahmina Zia, Muhammad Usman, Muhammad Shafiq, Rafi Ullah Khan, Karl I. Jacob. Organic Electrode Material for Sodium-Ion Batteries. 2020, 353-368. https://doi.org/10.1007/978-3-030-29522-6_12
    78. Ke Wang, Yuepeng Guan, Zhaoqing Jin, Weikun Wang, Anbang Wang. Te0.045S0.955PAN composite with high average discharge voltage for Li–S battery. Journal of Energy Chemistry 2019, 39 , 249-255. https://doi.org/10.1016/j.jechem.2019.03.010
    79. Xinyu Shan, Zuoxing Guo, Xu Zhang, Jie Yang, Lianfeng Duan. Mesoporous TiO2 Nanofiber as Highly Efficient Sulfur Host for Advanced Lithium–Sulfur Batteries. Chinese Journal of Mechanical Engineering 2019, 32 (1) https://doi.org/10.1186/s10033-019-0374-2
    80. Li Zhang, Tao Qian, Xingyu Zhu, Zhongli Hu, Mengfan Wang, Liya Zhang, Tao Jiang, Jing-Hua Tian, Chenglin Yan. In situ optical spectroscopy characterization for optimal design of lithium–sulfur batteries. Chemical Society Reviews 2019, 48 (22) , 5432-5453. https://doi.org/10.1039/C9CS00381A
    81. Xin Liang, Jufeng Yun, Yong Wang, Hongfa Xiang, Yi Sun, Yuezhan Feng, Yan Yu. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries. Nanoscale 2019, 11 (41) , 19140-19157. https://doi.org/10.1039/C9NR05670J
    82. Shamshad Ali, Muhammad Waqas, Ning Chen, Dongjiang Chen, Yupei Han, Bismark Boateng, Jie Xiong, Jiecai Han, Weidong He. Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries. Composites Part B: Engineering 2019, 174 , 107025. https://doi.org/10.1016/j.compositesb.2019.107025
    83. Linlin Zhang, Daobin Liu, Zahir Muhammad, Fang Wan, Wei Xie, Yijing Wang, Li Song, Zhiqiang Niu, Jun Chen. Single Nickel Atoms on Nitrogen‐Doped Graphene Enabling Enhanced Kinetics of Lithium–Sulfur Batteries. Advanced Materials 2019, 31 (40) https://doi.org/10.1002/adma.201903955
    84. Tao Li, Xue Bai, Umair Gulzar, Yu‐Jun Bai, Claudio Capiglia, Wei Deng, Xufeng Zhou, Zhaoping Liu, Zhifu Feng, Remo Proietti Zaccaria. A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials 2019, 29 (32) https://doi.org/10.1002/adfm.201901730
    85. Shanshan Yao, Sikang Xue, Sihuang Peng, Maoxiang Jing, Xiangqian Shen, Tianbao Li, Zhuozi YiLiu. Electrospun zeolitic imidazolate framework-derived nitrogen-doped carbon nanofibers with high performance for lithium-sulfur batteries. International Journal of Energy Research 2019, 43 (5) , 1892-1902. https://doi.org/10.1002/er.4389
    86. Byung Dae Son, Sung Ho Cho, Ki Yoon Bae, Byung Hyuk Kim, Woo Young Yoon. Dual functional effect of the ferroelectricity embedded interlayer in lithium sulfur battery. Journal of Power Sources 2019, 419 , 35-41. https://doi.org/10.1016/j.jpowsour.2019.02.014
    87. Xue Bai, Xue Bai, Tao Li, Tao Li, Umair Gulzar, Umair Gulzar, Remo Proietti Zaccaria, Remo Proietti Zaccaria, Claudio Capiglia, Yu‐Jun Bai. Comprehensive Understanding of Lithium‐Sulfur Batteries: Current Status and Outlook. 2019, 355-398. https://doi.org/10.1002/9781119407713.ch7
    88. Nahid Kaisar, Syed Ali Abbas, Jiang Ding, Hsin-An Chen, Chun-Wei Pao, Karunakara Moorthy Boopathi, Anisha Mohapatra, Yu-Ting Chen, Sheng Hui Wu, Jason Fang, Shyankay Jou, Chih Wei Chu. A lithium passivated MoO 3 nanobelt decorated polypropylene separator for fast-charging long-life Li–S batteries. Nanoscale 2019, 11 (6) , 2892-2900. https://doi.org/10.1039/C8NR08262F
    89. Zhichang Xiao, Xiaohui Xu, Debin Kong, Jiaxu Liang, Shanke Zhou, Xiaoxiong Huang, Qi Yang, Linjie Zhi. Chemical tailoring of one-dimensional polypyrene nanocapsules at a molecular level: towards ideal sulfur hosts for high-performance Li–S batteries. Journal of Materials Chemistry A 2019, 7 (5) , 2009-2014. https://doi.org/10.1039/C8TA11588E
    90. Bin‐Wei Zhang, Tian Sheng, Yun‐Xiao Wang, Shulei Chou, Kenneth Davey, Shi‐Xue Dou, Shi‐Zhang Qiao. Long‐Life Room‐Temperature Sodium–Sulfur Batteries by Virtue of Transition‐Metal‐Nanocluster–Sulfur Interactions. Angewandte Chemie International Edition 2019, 58 (5) , 1484-1488. https://doi.org/10.1002/anie.201811080
    91. Bin‐Wei Zhang, Tian Sheng, Yun‐Xiao Wang, Shulei Chou, Kenneth Davey, Shi‐Xue Dou, Shi‐Zhang Qiao. Long‐Life Room‐Temperature Sodium–Sulfur Batteries by Virtue of Transition‐Metal‐Nanocluster–Sulfur Interactions. Angewandte Chemie 2019, 131 (5) , 1498-1502. https://doi.org/10.1002/ange.201811080
    92. Linlin Zhang, Yijing Wang, Zhiqiang Niu, Jun Chen. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141 , 400-416. https://doi.org/10.1016/j.carbon.2018.09.067
    93. Jianbin Zhou, Xiaojing Liu, Linqin Zhu, Jie Zhou, Yong Guan, Liang Chen, Shuwen Niu, Jinyan Cai, Da Sun, Yongchun Zhu, Jin Du, Gongming Wang, Yitai Qian. Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry. Joule 2018, 2 (12) , 2681-2693. https://doi.org/10.1016/j.joule.2018.08.010
    94. Juan Balach, Julia Linnemann, Tony Jaumann, Lars Giebeler. Metal-based nanostructured materials for advanced lithium–sulfur batteries. Journal of Materials Chemistry A 2018, 6 (46) , 23127-23168. https://doi.org/10.1039/C8TA07220E
    95. Rui Wu, Siguo Chen, Jianghai Deng, Xun Huang, Yujie Song, Ruiyi Gan, Xiaoju Wan, Zidong Wei. Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries. Journal of Energy Chemistry 2018, 27 (6) , 1661-1667. https://doi.org/10.1016/j.jechem.2018.02.010
    96. Haneol Kang, Hoon Kim, Moon Jeong Park. Sulfur‐Rich Polymers with Functional Linkers for High‐Capacity and Fast‐Charging Lithium–Sulfur Batteries. Advanced Energy Materials 2018, 8 (32) https://doi.org/10.1002/aenm.201802423
    97. Song Jin, Yu Jiang, Hengxing Ji, Yan Yu. Advanced 3D Current Collectors for Lithium‐Based Batteries. Advanced Materials 2018, 30 (48) https://doi.org/10.1002/adma.201802014
    98. Zhaohuai Li, Qiu He, Xu Xu, Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, Liqiang Mai. A 3D Nitrogen‐Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium–Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity. Advanced Materials 2018, 30 (45) https://doi.org/10.1002/adma.201804089
    99. Ming Li, Zhila Amirzadeh, Roland De Marco, Xin Fu Tan, Andrew Whittaker, Xia Huang, Roger Wepf, Ruth Knibbe. In Situ Techniques for Developing Robust Li-S Batteries. Small Methods 2018, 2 (11) , 1800133. https://doi.org/10.1002/smtd.201800133
    100. Jianmei Han, Xia Chen, Baojuan Xi, Hongzhi Mao, Jinkui Feng, Shenglin Xiong. High‐Surface‐Area Nitrogen/Phosphorus Dual‐Doped Hierarchical Porous Carbon Derived from Biochar for Sulfur Holder. ChemistrySelect 2018, 3 (36) , 10175-10181. https://doi.org/10.1002/slct.201802296
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect