Quantum Dot Made in Metal Oxide Silicon-Nanowire Field Effect Transistor Working at Room Temperature.Click to copy article linkArticle link copied!
- Romain Lavieville
- François Triozon
- Sylvain Barraud
- Andrea Corna
- Xavier Jehl
- Marc Sanquer
- Jing Li
- Antoine Abisset
- Ivan Duchemin
- Yann-Michel Niquet
Abstract

We report the observation of an atomic like behavior from T = 4.2 K up to room temperature in n- and p-type Ω-gate silicon nanowire (NW) transistors. For that purpose, we modified the design of a NW transistor and introduced long spacers between the source/drain and the channel in order to separate the channel from the electrodes. The channel was made extremely small (3.4 nm in diameter with 10 nm gate length) with a thick gate oxide (7 nm) in order to enhance the Coulomb repulsion between carriers, which can be as large as 200 meV when surface roughness promotes charge confinement. Parasitic stochastic Coulomb blockade effect can be eliminated in our devices by choosing proper control voltages. Moreover, the quantum dot can be tuned so that the resonant current at T = 4.2 K exceeds that at room temperature.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 24 publications.
- Emily M. Turner, Quinn Campbell, Joaquín Pizarro, Hongbin Yang, Keshab R. Sapkota, Ping Lu, Andrew D. Baczewski, George T. Wang, Kevin S. Jones. Controlled Formation of Stacked Si Quantum Dots in Vertical SiGe Nanowires. Nano Letters 2021, 21
(19)
, 7905-7912. https://doi.org/10.1021/acs.nanolett.1c01670
- Amar S. Katkar, Shobhnath P. Gupta, Carmine Granata, Ciro Nappi, Wilfrid Prellier, Lih-Juann Chen, Pravin S. Walke. Advanced Room Temperature Single-Electron Transistor of a Germanium Nanochain with Two and Multitunnel Junctions. ACS Applied Electronic Materials 2020, 2
(7)
, 1843-1848. https://doi.org/10.1021/acsaelm.0c00242
- Mykhailo V. Klymenko, Jesse A. Vaitkus, Jared H. Cole. Probing Charge Carrier Movement in Organic Semiconductor Thin Films via Nanowire Conductance Spectroscopy. ACS Applied Electronic Materials 2019, 1
(8)
, 1667-1677. https://doi.org/10.1021/acsaelm.9b00354
- Kenji Shibata, Masaki Yoshida, Kazuhiko Hirakawa, Tomohiro Otsuka, Satria Zulkarnaen Bisri, Yoshihiro Iwasa. Single PbS colloidal quantum dot transistors. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-43343-7
- Ibrahim Ethem Bagci, Thomas McGrath, Christine Barthelmes, Scott Dean, Ramon Bernardo Gavito, Robert James Young, Utz Roedig. Resonant-Tunnelling Diodes as PUF Building Blocks. IEEE Transactions on Emerging Topics in Computing 2021, 9
(2)
, 878-885. https://doi.org/10.1109/TETC.2019.2893040
- Mingyue Cui, Sangmo Liu, Bin Song, Daoxia Guo, Jinhua Wang, Guyue Hu, Yuanyuan Su, Yao He. Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy. Nano-Micro Letters 2019, 11
(1)
https://doi.org/10.1007/s40820-019-0306-9
- Kouta Ibukuro, Muhammad Khaled Husain, Zuo Li, Joseph Hillier, Fayong Liu, Isao Tomita, Yoshishige Tsuchiya, Harvey Rutt, Shinichi Saito. Single Electron Memory Effect Using Random Telegraph Signals at Room Temperature. Frontiers in Physics 2019, 7 https://doi.org/10.3389/fphy.2019.00152
- Xin-Yu Wu, Wei-Hua Han, Fu-Hua Yang, , . Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica 2019, 68
(8)
, 087301. https://doi.org/10.7498/aps.68.20190095
- M. Seo, P. Roulleau, P. Roche, D. C. Glattli, M. Sanquer, X. Jehl, L. Hutin, S. Barraud, F. D. Parmentier. Strongly Correlated Charge Transport in Silicon Metal-Oxide-Semiconductor Field-Effect Transistor Quantum Dots. Physical Review Letters 2018, 121
(2)
https://doi.org/10.1103/PhysRevLett.121.027701
- Ying Li, Gregory W. Holloway, Simon C. Benjamin, G. Andrew D. Briggs, Jonathan Baugh, Jan A. Mol. Double quantum dot memristor. Physical Review B 2017, 96
(7)
https://doi.org/10.1103/PhysRevB.96.075446
- Svenja Willing, Hauke Lehmann, Mirjam Volkmann, Christian Klinke. Metal nanoparticle film–based room temperature Coulomb transistor. Science Advances 2017, 3
(7)
https://doi.org/10.1126/sciadv.1603191
- Zuo Li, Muhammad Khaled Husain, Hiroyuki Yoshimoto, Kazuki Tani, Yoshitaka Sasago, Digh Hisamoto, Jonathan David Fletcher, Masaya Kataoka, Yoshishige Tsuchiya, Shinichi Saito. Single carrier trapping and de-trapping in scaled silicon complementary metal-oxide-semiconductor field-effect transistors at low temperatures. Semiconductor Science and Technology 2017, 32
(7)
, 075001. https://doi.org/10.1088/1361-6641/aa6910
- R. Laviéville, C. Le Royer, S. Barraud, G. Ghibaudo. Low Temperature Characterization of Hole Mobility in Sub-14nm Gate Length Si
0.7
Ge
0.3
Tri-Gate pMOSFETs. Journal of Physics: Conference Series 2017, 834 , 012001. https://doi.org/10.1088/1742-6596/834/1/012001
- Felix J. Schupp. Single-electron devices in silicon. Materials Science and Technology 2017, 33
(8)
, 944-962. https://doi.org/10.1080/02670836.2016.1242826
- Zahid A K Durrani, Mervyn E Jones, Chen Wang, Dixi Liu, Jonathan Griffiths. Excited states and quantum confinement in room temperature few nanometre scale silicon single electron transistors. Nanotechnology 2017, 28
(12)
, 125208. https://doi.org/10.1088/1361-6528/aa5ddd
- Philippe Dollfus, François Triozon. Introduction: Nanoelectronics, Quantum Mechanics, and Solid State Physics. 2016, 1-30. https://doi.org/10.1002/9781118761793.ch1
- Hao Wang, Wei-Hua Han, Xiao-Song Zhao, Wang Zhang, Qi-Feng Lyu, Liu-Hong Ma, Fu-Hua Yang. Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor. Chinese Physics B 2016, 25
(10)
, 108102. https://doi.org/10.1088/1674-1056/25/10/108102
- L. Hutin, R. Maurand, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, X. Jehl, S. Barraud, S. De Franceschi, M. Sanquer, M. Vinet. Si CMOS platform for quantum information processing. 2016, 1-2. https://doi.org/10.1109/VLSIT.2016.7573380
- Romain Lavieville, Sylvain Barraud, Christian Arvet, Christian Vizioz, Andrea Corna, Xavier Jehl, Marc Sanquer, Maud Vinet. Demonstration of Single Hole Transistor and Hybrid Circuits for Multivalued Logic and Memory Applications up to 350 K Using CMOS Silicon Nanowires. Advanced Electronic Materials 2016, 2
(4)
https://doi.org/10.1002/aelm.201500244
- Anri Nakajima. Application of Single-Electron Transistor to Biomolecule and Ion Sensors. Applied Sciences 2016, 6
(4)
, 94. https://doi.org/10.3390/app6040094
- Xavier Jehl, Yann-Michel Niquet, Marc Sanquer. Single donor electronics and quantum functionalities with advanced CMOS technology. Journal of Physics: Condensed Matter 2016, 28
(10)
, 103001. https://doi.org/10.1088/0953-8984/28/10/103001
- Léo Bourdet, Jing Li, Johan Pelloux-Prayer, François Triozon, Mikaël Cassé, Sylvain Barraud, Sébastien Martinie, Denis Rideau, Yann-Michel Niquet. Contact resistances in trigate and FinFET devices in a non-equilibrium Green's functions approach. Journal of Applied Physics 2016, 119
(8)
https://doi.org/10.1063/1.4942217
- Marco Turchetti, Harald Homulle, Fabio Sebastiano, Giorgio Ferrari, Edoardo Charbon, Enrico Prati. Tunable single hole regime of a silicon field effect transistor in standard CMOS technology. Applied Physics Express 2016, 9
(1)
, 014001. https://doi.org/10.7567/APEX.9.014001
- Jing Li, Gabriel Mugny, Yann-Michel Niquet, Christophe Delerue. Drift velocity versus electric field in ⟨110⟩ Si nanowires: Strong confinement effects. Applied Physics Letters 2015, 107
(6)
https://doi.org/10.1063/1.4928525
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.