ACS Publications. Most Trusted. Most Cited. Most Read
Substrate-Free Gas-Phase Synthesis of Graphene Sheets
My Activity
    Letter

    Substrate-Free Gas-Phase Synthesis of Graphene Sheets
    Click to copy article linkArticle link copied!

    View Author Information
    Applied Science and Technology Graduate Group, University of California, Berkeley, California 94720, National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, and Department of Mechanical Engineering, University of California, Berkeley, California 94720
    * Corresponding author, [email protected]
    †Applied Science and Technology Graduate Group, University of California.
    ‡National Center for Electron Microscopy.
    §Los Alamos National Laboratory.
    ∥Department of Mechanical Engineering, University of California.
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2008, 8, 7, 2012–2016
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl8011566
    Published June 5, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present a novel method for synthesizing graphene sheets in the gas phase using a substrate-free, atmospheric-pressure microwave plasma reactor. Graphene sheets were synthesized by passing liquid ethanol droplets into an argon plasma. The graphene sheets were characterized by transmission electron microscopy, electron energy loss spectroscopy, Raman spectroscopy, and electron diffraction. We prove that graphene can be created without three-dimensional materials or substrates and demonstrate a possible avenue to the large-scale synthesis of graphene.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 683 publications.

    1. Mohit D. Ganeriwala, Roberto Motos Espada, Enrique G. Marin, Juan Cuesta-Lopez, Mikel Garcia-Palomo, Noel Rodríguez, Francisco G. Ruiz, Andres Godoy. A Flexible Laser-Induced Graphene Memristor with Volatile Switching for Neuromorphic Applications. ACS Applied Materials & Interfaces 2024, 16 (37) , 49724-49732. https://doi.org/10.1021/acsami.4c07589
    2. Albert Dato, Jonathan T. Griffin, Arpita Bhutani, Evan Flitz. Enhancing the Strength of Acrylonitrile–Butadiene–Styrene with Gas-Phase-Synthesized Graphene for Injection-Molding Applications. ACS Applied Nano Materials 2024, 7 (5) , 4653-4657. https://doi.org/10.1021/acsanm.3c06128
    3. Faisal Mahmood, Shazma Ashraf, Muhammad Shahzad, Bin Li, Furqan Asghar, Waseem Amjad, Muhammad Mubashar Omar. Graphene Synthesis from Organic Substrates: A Review. Industrial & Engineering Chemistry Research 2023, 62 (42) , 17314-17327. https://doi.org/10.1021/acs.iecr.3c01715
    4. Negah Hashemi, Robabeh Bagheri, Subhajit Nandy, Keun Hwa Chae, Mohammad Mahdi Najafpour. Anodization of NiFe Foam for Water-Oxidation Reaction under Neutral Conditions. ACS Applied Energy Materials 2023, 6 (1) , 233-244. https://doi.org/10.1021/acsaem.2c02835
    5. M. Weston Miller, Makenna Parkinson, Albert Dato. Lotus-Like Water Repellency of Gas-Phase-Synthesized Graphene. ACS Materials Letters 2022, 4 (5) , 995-1002. https://doi.org/10.1021/acsmaterialslett.2c00125
    6. Muhammad Adeel Zafar, Oomman K. Varghese, Francisco C. Robles Hernandez, Yang Liu, Mohan V. Jacob. Single-Step Synthesis of Nitrogen-Doped Graphene Oxide from Aniline at Ambient Conditions. ACS Applied Materials & Interfaces 2022, 14 (4) , 5797-5806. https://doi.org/10.1021/acsami.1c21150
    7. Wei Gong, Raghav Garg, Ruiqiang Guo, Sangyeop Lee, Tzahi Cohen-Karni, Sheng Shen. Thermal Transport in Multidimensional Silicon-Graphene Hybrid Nanostructures. ACS Applied Materials & Interfaces 2021, 13 (42) , 50206-50212. https://doi.org/10.1021/acsami.1c08093
    8. Zhuxing Sun, Siyuan Fang, Yun Hang Hu. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews 2020, 120 (18) , 10336-10453. https://doi.org/10.1021/acs.chemrev.0c00083
    9. Md Tawabur Rahman, Md Faisal Kabir, Ashim Gurung, Khan Mamun Reza, Rajesh Pathak, Nabin Ghimire, Aravind Baride, Zhenqiang Wang, Mahesh Kumar, Qiquan Qiao. Graphene Oxide–Silver Nanowire Nanocomposites for Enhanced Sensing of Hg2+. ACS Applied Nano Materials 2019, 2 (8) , 4842-4851. https://doi.org/10.1021/acsanm.9b00789
    10. Raghav Garg, Devashish P. Gopalan, Sergio C. de la Barrera, Hasnain Hafiz, Noel T. Nuhfer, Venkatasubramanian Viswanathan, Benjamin M. Hunt, Tzahi Cohen-Karni. Electron Transport in Multidimensional Fuzzy Graphene Nanostructures. Nano Letters 2019, 19 (8) , 5335-5339. https://doi.org/10.1021/acs.nanolett.9b01790
    11. Pengcheng Shi, Yong Wang, Xin Liang, Yi Sun, Sheng Cheng, Chunhua Chen, Hongfa Xiang. Simultaneously Exfoliated Boron-Doped Graphene Sheets To Encapsulate Sulfur for Applications in Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 9661-9670. https://doi.org/10.1021/acssuschemeng.8b00378
    12. Javishk Shah, Janneth Lopez-Mercado, M. Guadalupe Carreon, Armando Lopez-Miranda, and Maria L. Carreon . Plasma Synthesis of Graphene from Mango Peel. ACS Omega 2018, 3 (1) , 455-463. https://doi.org/10.1021/acsomega.7b01825
    13. Mitra Yoonessi, James R. Gaier, Muhammad Sahimi, Tyrone L. Daulton, Richard B. Kaner, and Michael A. Meador . Fabrication of Graphene–Polyimide Nanocomposites with Superior Electrical Conductivity. ACS Applied Materials & Interfaces 2017, 9 (49) , 43230-43238. https://doi.org/10.1021/acsami.7b12104
    14. Paul Simon, Xian-Juan Feng, Matej Bobnar, Peter Höhn, Ulrich Schwarz, Wilder Carrillo-Cabrera, Michael Baitinger, and Yuri Grin . Redox Route from Inorganic Precursor Li2C2 to Nanopatterned Carbon. ACS Nano 2017, 11 (2) , 1455-1465. https://doi.org/10.1021/acsnano.6b06721
    15. Ding Zheng, Wei Huang, Pu Fan, Yifan Zheng, Jiang Huang, and Junsheng Yu . Preparation of Reduced Graphene Oxide:ZnO Hybrid Cathode Interlayer Using In Situ Thermal Reduction/Annealing for Interconnecting Nanostructure and Its Effect on Organic Solar Cell. ACS Applied Materials & Interfaces 2017, 9 (5) , 4898-4907. https://doi.org/10.1021/acsami.6b15411
    16. Chenyang Li, Zhenhuan Li, Lei Cao, and Bowen Cheng . Graphene Preparation by Phenylmagnesium Bromide and Its Excellent Electrical Conductivity Performance in Graphene/Poly(p-phenylene sulfide) Composites. Industrial & Engineering Chemistry Research 2016, 55 (41) , 10860-10867. https://doi.org/10.1021/acs.iecr.6b01706
    17. Uwe R. Kortshagen, R. Mohan Sankaran, Rui N. Pereira, Steven L. Girshick, Jeslin J. Wu, and Eray S. Aydil . Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chemical Reviews 2016, 116 (18) , 11061-11127. https://doi.org/10.1021/acs.chemrev.6b00039
    18. Samiran Garain, Santanu Jana, Tridib Kumar Sinha, and Dipankar Mandal . Design of In Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. ACS Applied Materials & Interfaces 2016, 8 (7) , 4532-4540. https://doi.org/10.1021/acsami.5b11356
    19. Kateryna Bazaka, Mohan V. Jacob, and Kostya (Ken) Ostrikov . Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews 2016, 116 (1) , 163-214. https://doi.org/10.1021/acs.chemrev.5b00566
    20. Ting-Hsun Chang, Ping-Yen Hsieh, Srinivasu Kunuku, Shiu-Cheng Lou, Divinah Manoharan, Keh-Chyang Leou, I-Nan Lin, and Nyan-Hwa Tai . High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N2-Plasma Grown Ultrananocrystalline Diamond Films. ACS Applied Materials & Interfaces 2015, 7 (49) , 27526-27538. https://doi.org/10.1021/acsami.5b09778
    21. Yi Shen and Baoliang Chen . Sulfonated Graphene Nanosheets as a Superb Adsorbent for Various Environmental Pollutants in Water. Environmental Science & Technology 2015, 49 (12) , 7364-7372. https://doi.org/10.1021/acs.est.5b01057
    22. Minmin Liu, Ruizhong Zhang, and Wei Chen . Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chemical Reviews 2014, 114 (10) , 5117-5160. https://doi.org/10.1021/cr400523y
    23. Kamatchi Jothiramalingam Sankaran, Huang-Chin Chen, Kalpataru Panda, Balakrishnan Sundaravel, Chi-Young Lee, Nyan-Hwa Tai, and I-Nan Lin . Enhanced Electron Field Emission Properties of Conducting Ultrananocrystalline Diamond Films after Cu and Au Ion Implantation. ACS Applied Materials & Interfaces 2014, 6 (7) , 4911-4919. https://doi.org/10.1021/am405954w
    24. Hongqing Shi, Lin Lai, Ian K. Snook, and Amanda S. Barnard . Relative Stability of Graphene Nanoflakes Under Environmentally Relevant Conditions. The Journal of Physical Chemistry C 2013, 117 (29) , 15375-15382. https://doi.org/10.1021/jp404200r
    25. Rebecca S. Edwards and Karl S. Coleman . Graphene Film Growth on Polycrystalline Metals. Accounts of Chemical Research 2013, 46 (1) , 23-30. https://doi.org/10.1021/ar3001266
    26. Matthew G. Panthani, Colin M. Hessel, Dariya Reid, Gilberto Casillas, Miguel José-Yacamán, and Brian A. Korgel . Graphene-Supported High-Resolution TEM and STEM Imaging of Silicon Nanocrystals and their Capping Ligands. The Journal of Physical Chemistry C 2012, 116 (42) , 22463-22468. https://doi.org/10.1021/jp308545q
    27. Libin Tang, Rongbin Ji, Xiangke Cao, Jingyu Lin, Hongxing Jiang, Xueming Li, Kar Seng Teng, Chi Man Luk, Songjun Zeng, Jianhua Hao, and Shu Ping Lau . Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano 2012, 6 (6) , 5102-5110. https://doi.org/10.1021/nn300760g
    28. Zhenghai Tang, Hailan Kang, Zuoli Shen, Baochun Guo, Liqun Zhang, and Demin Jia . Grafting of Polyester onto Graphene for Electrically and Thermally Conductive Composites. Macromolecules 2012, 45 (8) , 3444-3451. https://doi.org/10.1021/ma300450t
    29. Yong-Bing Tang, Li-Chang Yin, Yang Yang, Xiang-Hui Bo, Yu-Lin Cao, Hong-En Wang, Wen-Jun Zhang, Igor Bello, Shuit-Tong Lee, Hui-Ming Cheng, and Chun-Sing Lee . Tunable Band Gaps and p-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping Using Reactive Microwave Plasma. ACS Nano 2012, 6 (3) , 1970-1978. https://doi.org/10.1021/nn3005262
    30. Seung Whan Lee, Cecilia Mattevi, Manish Chhowalla, and R. Mohan Sankaran . Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications. The Journal of Physical Chemistry Letters 2012, 3 (6) , 772-777. https://doi.org/10.1021/jz300080p
    31. Veronica Strong, Sergey Dubin, Maher F. El-Kady, Andrew Lech, Yue Wang, Bruce H. Weiller, and Richard B. Kaner . Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices. ACS Nano 2012, 6 (2) , 1395-1403. https://doi.org/10.1021/nn204200w
    32. Franziska Schäffel, Mark Wilson, and Jamie H. Warner . Motion of Light Adatoms and Molecules on the Surface of Few-Layer Graphene. ACS Nano 2011, 5 (12) , 9428-9441. https://doi.org/10.1021/nn2036494
    33. Xiao-Fei Li, Ling-Ling Wang, Ke-Qiu Chen, and Yi Luo . Tuning the Electronic Transport Properties of Zigzag Graphene Nanoribbons via Hydrogenation Separators. The Journal of Physical Chemistry C 2011, 115 (49) , 24366-24372. https://doi.org/10.1021/jp208892h
    34. Zhengzong Sun, Dustin K. James, and James M. Tour . Graphene Chemistry: Synthesis and Manipulation. The Journal of Physical Chemistry Letters 2011, 2 (19) , 2425-2432. https://doi.org/10.1021/jz201000a
    35. Jibin Pu, Shanhong Wan, Wenjie Zhao, Yufei Mo, Xiaoqian Zhang, Liping Wang, and Qunji Xue . Preparation and Tribological Study of Functionalized Graphene–IL Nanocomposite Ultrathin Lubrication Films on Si Substrates. The Journal of Physical Chemistry C 2011, 115 (27) , 13275-13284. https://doi.org/10.1021/jp111804a
    36. O. Akhavan, E. Ghaderi, and A. Esfandiar . Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. The Journal of Physical Chemistry B 2011, 115 (19) , 6279-6288. https://doi.org/10.1021/jp200686k
    37. Ganhua Lu, Sungjin Park, Kehan Yu, Rodney S. Ruoff, Leonidas E. Ocola, Daniel Rosenmann, and Junhong Chen . Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano 2011, 5 (2) , 1154-1164. https://doi.org/10.1021/nn102803q
    38. Yasumichi Matsumoto, Michio Koinuma, Su Yeon Kim, Yusuke Watanabe, Takaaki Taniguchi, Kazuto Hatakeyama, Hikaru Tateishi, and Shintaro Ida . Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions. ACS Applied Materials & Interfaces 2010, 2 (12) , 3461-3466. https://doi.org/10.1021/am100900q
    39. Rui Wang, Yufeng Hao, Ziqian Wang, Hao Gong, and John T. L. Thong . Large-Diameter Graphene Nanotubes Synthesized Using Ni Nanowire Templates. Nano Letters 2010, 10 (12) , 4844-4850. https://doi.org/10.1021/nl102445x
    40. Ji Won Suk, Richard D. Piner, Jinho An, and Rodney S. Ruoff. Mechanical Properties of Monolayer Graphene Oxide. ACS Nano 2010, 4 (11) , 6557-6564. https://doi.org/10.1021/nn101781v
    41. Li Qun Xu, Wen Jing Yang, Koon-Gee Neoh, En-Tang Kang, and Guo Dong Fu . Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules 2010, 43 (20) , 8336-8339. https://doi.org/10.1021/ma101526k
    42. Omid Akhavan and Elham Ghaderi . Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4 (10) , 5731-5736. https://doi.org/10.1021/nn101390x
    43. O. Akhavan, M. Abdolahad, A. Esfandiar and M. Mohatashamifar . Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction. The Journal of Physical Chemistry C 2010, 114 (30) , 12955-12959. https://doi.org/10.1021/jp103472c
    44. Omid Akhavan. Graphene Nanomesh by ZnO Nanorod Photocatalysts. ACS Nano 2010, 4 (7) , 4174-4180. https://doi.org/10.1021/nn1007429
    45. Dingshan Yu, Enoch Nagelli, Feng Du and Liming Dai. Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. The Journal of Physical Chemistry Letters 2010, 1 (14) , 2165-2173. https://doi.org/10.1021/jz100533t
    46. Liangti Qu, Yong Liu, Jong-Beom Baek, Liming Dai. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4 (3) , 1321-1326. https://doi.org/10.1021/nn901850u
    47. Jamie H. Warner, Mark H. Rümmeli, Alicja Bachmatiuk, Mark Wilson and Bernd Büchner . Examining Co-Based Nanocrystals on Graphene Using Low-Voltage Aberration-Corrected Transmission Electron Microscopy. ACS Nano 2010, 4 (1) , 470-476. https://doi.org/10.1021/nn901371k
    48. Russell Whitesides and Michael Frenklach. Detailed Kinetic Monte Carlo Simulations of Graphene-Edge Growth. The Journal of Physical Chemistry A 2010, 114 (2) , 689-703. https://doi.org/10.1021/jp906541a
    49. James R. McBride, Andrew R. Lupini, Michael A. Schreuder, Nathanael J. Smith, Stephen J. Pennycook and Sandra J. Rosenthal . Few-Layer Graphene as a Support Film for Transmission Electron Microscopy Imaging of Nanoparticles. ACS Applied Materials & Interfaces 2009, 1 (12) , 2886-2892. https://doi.org/10.1021/am900608j
    50. Wei Lv, Dai-Ming Tang, Yan-Bing He, Cong-Hui You, Zhi-Qiang Shi, Xue-Cheng Chen, Cheng-Meng Chen, Peng-Xiang Hou, Chang Liu and Quan-Hong Yang . Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage. ACS Nano 2009, 3 (11) , 3730-3736. https://doi.org/10.1021/nn900933u
    51. Ángel J. Pérez-Jiménez and Juan C. Sancho-García. Conductance Enhancement in Nanographene−Gold Junctions by Molecular π-Stacking. Journal of the American Chemical Society 2009, 131 (41) , 14857-14867. https://doi.org/10.1021/ja904372d
    52. Zonghoon Lee, Ki-Joon Jeon, Albert Dato, Rolf Erni, Thomas J. Richardson, Michael Frenklach and Velimir Radmilovic. Direct Imaging of Soft−Hard Interfaces Enabled by Graphene. Nano Letters 2009, 9 (9) , 3365-3369. https://doi.org/10.1021/nl901664k
    53. Li-Hong Liu and Mingdi Yan. Simple Method for the Covalent Immobilization of Graphene. Nano Letters 2009, 9 (9) , 3375-3378. https://doi.org/10.1021/nl901669h
    54. Bradley F. Habenicht and Oleg V. Prezhdo. Time-Domain Ab Initio Study of Nonradiative Decay in a Narrow Graphene Ribbon. The Journal of Physical Chemistry C 2009, 113 (32) , 14067-14070. https://doi.org/10.1021/jp904937c
    55. Dacheng Wei, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang and Gui Yu. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters 2009, 9 (5) , 1752-1758. https://doi.org/10.1021/nl803279t
    56. Pablo A. Denis. Density Functional Investigation of Thioepoxidated and Thiolated Graphene. The Journal of Physical Chemistry C 2009, 113 (14) , 5612-5619. https://doi.org/10.1021/jp808599w
    57. Y. B. Tang, C. S. Lee, Z. H. Chen, G. D. Yuan, Z. H. Kang, L. B. Luo, H. S. Song, Y. Liu, Z. B. He, W. J. Zhang, I. Bello and S. T. Lee . High-Quality Graphenes via a Facile Quenching Method for Field-Effect Transistors. Nano Letters 2009, 9 (4) , 1374-1377. https://doi.org/10.1021/nl803025e
    58. K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj and C. N. R. Rao . Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. The Journal of Physical Chemistry C 2009, 113 (11) , 4257-4259. https://doi.org/10.1021/jp900791y
    59. Jesús M. Blázquez-Moreno, Francisco J. Morales-Calero, Antonio Cobos-Luque, Andrés M. Raya, Rocío Rincón, Almudena Benítez, Álvaro Caballero. Ethanol-derived graphene by microwave plasma torch as efficient cathode for Li-S batteries with ultralong cycle life. Journal of Power Sources 2025, 630 , 236173. https://doi.org/10.1016/j.jpowsour.2025.236173
    60. Suraj Kumar, Priyakshi Bora, Parimal Chandra Bhomick, Dinesh Rangappa, Dipak Sinha. Graphene–MXene van der Waals heterostructures for high-performance supercapacitors. Nano Research Energy 2025, 11 https://doi.org/10.26599/NRE.2024.9120148
    61. Mojtaba Hosseine, Seyed Morteza Naghib, Navid Rabiee. Metal-organic frameworks: Biosensor applications for diagnosis of cancers. Microchemical Journal 2025, 208 , 112341. https://doi.org/10.1016/j.microc.2024.112341
    62. Zhaolong Li, Kaiming Peng, Nannan Ji, Wenlong Zhang, Wenrou Tian, Zhenfei Gao. Advanced mechanisms and applications of microwave-assisted synthesis of carbon-based materials: a brief review. Nanoscale Advances 2025, 118 https://doi.org/10.1039/D4NA00701H
    63. Wei Peng, Peng Li, Muhammad Zia, Shamsul A. Bhuiyan, Yiyi Liu, Dechao Chen, Muyesaier Tudi, Yongsheng Gao, Xuecheng Yan, Yi Jia, Qin Li. A Comparative Review on Carbon Nanomaterials and Their Impact on Plant Growth With the Lens of Green Chemistry Principles. Global Challenges 2024, 8 (11) https://doi.org/10.1002/gch2.202400008
    64. Halil Ibrahim Yazici, Christof Schulz, Kyle J. Daun. Feasibility of online optical diagnostics during gas-phase synthesis of few-layer graphene based on elastic light scattering measurements. Journal of Aerosol Science 2024, 126 , 106497. https://doi.org/10.1016/j.jaerosci.2024.106497
    65. Xinyue Gu, Shu Lin, Kezhen Qi, Ya Yan, Ruchun Li, Vadim Popkov, Oksana Almjasheva. Application of tungsten oxide and its composites in photocatalysis. Separation and Purification Technology 2024, 345 , 127299. https://doi.org/10.1016/j.seppur.2024.127299
    66. F.J. Morales-Calero, A. Cobos-Luque, J.M. Blázquez-Moreno, A.M. Raya, R. Rincón, J. Muñoz, A. Benítez, N.Y. Mendoza-González, J.A. Alcusón, A. Caballero, M.D. Calzada. Increasing the production of high-quality graphene nanosheet powder: The impact of electromagnetic shielding of the reaction chamber on the TIAGO torch plasma approach. Chemical Engineering Journal 2024, 498 , 155088. https://doi.org/10.1016/j.cej.2024.155088
    67. Chuanhao Dong, Minglin Li, Yanyi Huang, Hai Yang, Bo Wu, Ruoyu Hong. Molecular Dynamics Simulation Study of Graphene Synthesis by Rotating Arc Plasma. Journal of Molecular Graphics and Modelling 2024, 6 , 108849. https://doi.org/10.1016/j.jmgm.2024.108849
    68. Muhammad Adeel Zafar, Yang Liu, Mohan V. Jacob. Green synthesis of graphene for targeted recovery of silver from photovoltaic waste. Chemosphere 2024, 362 , 142512. https://doi.org/10.1016/j.chemosphere.2024.142512
    69. Aafreen, Priyanka Verma, Haris Saeed. Recent Advances in the Synthesis of Graphene and Its Derivative Materials. 2024https://doi.org/10.5772/intechopen.114280
    70. Silvia Mazzotta, Alberto Martis, Mara Serrapede, Pietro Zaccagnini, Francesca Risplendi, Stefano Bianco, Giancarlo Cicero, Francesca Verga, Fabrizio Pirri, Andrea Lamberti, Sergio Bocchini. Green synthesis of functionalized graphene-based material with dimethyl but-2-ynedioate for electrochemical energy storage devices. Journal of Energy Storage 2024, 90 , 111857. https://doi.org/10.1016/j.est.2024.111857
    71. Raj Samraj, Rama Mohan Rao Pannem. A critical review on the effect of graphene oxide in fiber reinforced cementitious systems. Journal of Dispersion Science and Technology 2024, , 1-18. https://doi.org/10.1080/01932691.2024.2334861
    72. Mei Bao Lee, Chiew Tin Lee, Guo Ren Mong, William Woei Fong Chong, Suhaila Mohd Sanip. A bibliometric analysis on the development trend of graphene-based transparent conductive electrodes (2009–2022). Materials Today Sustainability 2024, 25 , 100650. https://doi.org/10.1016/j.mtsust.2023.100650
    73. Seungjin Nam, Sungyeom Kim, Daeyoung Kim, Sungho Song, Jinkyu Lee, Hyoung Seop Kim, Hyokyung Sung, Hyunjoo Choi. Enhancing thermal conductivity of 6061 Al plate via graphene dip coating. Journal of Materials Research and Technology 2024, 29 , 3126-3134. https://doi.org/10.1016/j.jmrt.2024.02.072
    74. Taki Aissou, Jérôme Menneveux, Fanny Casteignau, Nadi Braidy, Jocelyn Veilleux. Controlling carbon nanostructure synthesis in thermal plasma jet: Correlation of process parameters, plasma characteristics, and product morphology. Carbon 2024, 217 , 118605. https://doi.org/10.1016/j.carbon.2023.118605
    75. Claudia-F. López-Cámara, Paolo Fortugno, Markus Heidelmann, Hartmut Wiggers, Christof Schulz. Graphene self-folding: Evolution of free-standing few-layer graphene in plasma synthesis. Carbon 2024, 218 , 118732. https://doi.org/10.1016/j.carbon.2023.118732
    76. Sudeepa Devi, Vijayeta Pal, Neha Yadav, Rimpa Jaiswal, Debmalya Roy, Upendra K. Tripathi. Graphene and Its Derivatives: Various Routes of Synthesis. 2024, 61-112. https://doi.org/10.1007/978-981-97-2128-3_3
    77. Robert D. Crapnell, Craig E. Banks. Introduction to Graphene. 2024, 1-23. https://doi.org/10.1007/978-1-4471-7536-0_1
    78. Hafsa Javaid, Mahrukh Khan, Javaria Kanwal, Sadia Iqbal, Sara Musaddiq. Graphene-Based Photocatalysts for Air Purification. 2024, 731-754. https://doi.org/10.1007/978-3-031-66260-7_30
    79. Bryan E. Arango Hoyos, H. Franco Osorio, E. K. Valencia Gómez, J. Guerrero Sánchez, A. P. Del Canto Palominos, Felipe A. Larrain, J. J. Prías Barragán. Exploring the capture and desorption of CO2 on graphene oxide foams supported by computational calculations. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-41683-4
    80. Claudia-F. López-Cámara, Paolo Fortugno, Muhammad Asif, Stanislav Musikhin, Caleb Prindler, Hartmut Wiggers, Torsten Endres, Nickolas Eaves, Kyle J. Daun, Christof Schulz. Evolution of particle size and morphology in plasma synthesis of few-layer graphene and soot. Combustion and Flame 2023, 258 , 112713. https://doi.org/10.1016/j.combustflame.2023.112713
    81. Paolo Fortugno, Claudia-Francisca López-Cámara, Jan Patrick Kruse, Mohaned Hammad, Hartmut Wiggers. Novel Aerosol‐Based Approach toward Mesoporous Silica Nanoparticles. Advanced Engineering Materials 2023, 25 (20) https://doi.org/10.1002/adem.202300679
    82. M.B. Shavelkina, P.P. Ivanov. Synthesis of thermally stable carbon nanostructures via ethanol pyrolysis in DC plasma jets. Journal of Physics and Chemistry of Solids 2023, 181 , 111555. https://doi.org/10.1016/j.jpcs.2023.111555
    83. Alexandra Yu. Kurmysheva, Oleg Yanushevich, Natella Krikheli, Olga Kramar, Marina D. Vedenyapina, Pavel Podrabinnik, Nestor Washington Solís Pinargote, Anton Smirnov, Ekaterina Kuznetsova, Vladislav V. Malyavin, Pavel Peretyagin, Sergey N. Grigoriev. Adsorption Ability of Graphene Aerogel and Reduced Graphene Aerogel toward 2,4-D Herbicide and Salicylic Acid. Gels 2023, 9 (9) , 680. https://doi.org/10.3390/gels9090680
    84. Mehran Dadsetan, Kenneth G. Latham, Boran Kumral, Mohammad Fawaz Khan, Mia Scott, Tirthankar Mitra, Ali Naseri, Sama Manzoor, Erin R. Bobicki, Tobin Filleter, Maria‐Magdalena Titirici, Murray J. Thomson. Carbon film produced from microwave-driven methane pyrolysis. Carbon Trends 2023, 12 , 100283. https://doi.org/10.1016/j.cartre.2023.100283
    85. S R Kumar, Kumar Anurag. Synthesis and characterization of graphene via electrochemical exfoliation technique and study its electrochemical properties. IOP Conference Series: Materials Science and Engineering 2023, 1291 (1) , 012018. https://doi.org/10.1088/1757-899X/1291/1/012018
    86. Mehran Dadsetan, Kenneth G. Latham, Mohammad Fawaz Khan, Mohammed H. Zaher, Sama Manzoor, Erin R. Bobicki, Maria‐Magdalena Titirici, Murray J. Thomson. Characterization of carbon products from microwave-driven methane pyrolysis. Carbon Trends 2023, 12 , 100277. https://doi.org/10.1016/j.cartre.2023.100277
    87. Sharoni Gupta, Pinki Bala Punjabi, Rakshit Ameta. Preparation Methods for Graphene and its Derivatives. 2023, 76-117. https://doi.org/10.2174/9789815050899123010007
    88. Nujud M Badawi, Namrata Agrawal, Syed Farooq Adil, S Ramesh, K Ramesh, Shahid Bashir. A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials. New Carbon Materials 2023, 38 (2) , 211-225. https://doi.org/10.1016/S1872-5805(23)60721-8
    89. M. Adeel Zafar, Yang Liu, Francisco C. Robles Hernandez, Oomman K. Varghese, Mohan V Jacob. Plasma‐Based Synthesis of Freestanding Graphene from a Natural Resource for Sensing Application. Advanced Materials Interfaces 2023, 5 , 2202399. https://doi.org/10.1002/admi.202202399
    90. Ghassan Fadhil Smaisim, Azher M. Abed, Hayder Al-Madhhachi, Salema K. Hadrawi, Hasan Mahdi M. Al-Khateeb, Ehsan Kianfar. RETRACTED ARTICLE: Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review. BioNanoScience 2023, 13 (1) , 219-248. https://doi.org/10.1007/s12668-022-01048-z
    91. Suhail Mubarak, Nidhin Divakaran, Ashish Raghavan, Sathish Kumar Ramachandran, Jianlei Wang. Advanced 2D Nanomaterials for Additive Manufacturing. 2023, 335-368. https://doi.org/10.1002/9783527835478.ch12
    92. Kaamil Edward, Kabir Mamun, Sumesh Narayan, Mansour Assaf, David Rohindra, Upaka Rathnayake, . State-of-the-Art Graphene Synthesis Methods and Environmental Concerns. Applied and Environmental Soil Science 2023, 2023 , 1-23. https://doi.org/10.1155/2023/8475504
    93. Madhu Raj Kumar, Sangeeta Singh, Heba Mohamed Fahmy, Neeraj K. Jaiswal, Seckin Akin, Ahmed Esmail Shalan, Senentxu Lanceros-Mendez, Manuel Salado. Next generation 2D materials for anodes in battery applications. Journal of Power Sources 2023, 556 , 232256. https://doi.org/10.1016/j.jpowsour.2022.232256
    94. Abdullah Anwar, Xuemei Liu, Lihai Zhang. Nano-cementitious composites modified with Graphene Oxide – a review. Thin-Walled Structures 2023, 183 , 110326. https://doi.org/10.1016/j.tws.2022.110326
    95. Edson Nossol, Rodrigo Alejandro Abarza Muñoz, Eduardo Mathias Richter, Pedro Henrique de Souza Borges, Samuel Carlos Silva, Diego Pessoa Rocha. Sensing Materials: Graphene. 2023, 367-388. https://doi.org/10.1016/B978-0-12-822548-6.00016-9
    96. S. Musikhin, P. Fortugno, T. Endres, T. Dreier, K.J. Daun, C. Schulz. Elemental carbon and hydrogen concentrations as the main factors in gas-phase graphene synthesis: Quantitative fourier-transform infrared spectroscopy study. Carbon 2023, 202 , 47-60. https://doi.org/10.1016/j.carbon.2022.11.024
    97. Nitheesh M. Nair, Shashank Mishra, Ravinder Dahiya. Graphene-Based Touch Sensors. 2023, 54-70. https://doi.org/10.1016/B978-0-12-819728-8.00122-4
    98. J. Toman, M. Šnírer, R. Rincón, O. Jašek, D. Všianský, A.M. Raya, F.J. Morales-Calero, J. Muñoz, M.D. Calzada. On the gas-phase graphene nanosheet synthesis in atmospheric microwave plasma torch: Upscaling potential and graphene nanosheet‑copper nanocomposite oxidation resistance. Fuel Processing Technology 2023, 239 , 107534. https://doi.org/10.1016/j.fuproc.2022.107534
    99. Muhammad Adeel Zafar, Mohan V. Jacob. Plasma-based synthesis of graphene and applications: a focused review. Reviews of Modern Plasma Physics 2022, 6 (1) https://doi.org/10.1007/s41614-022-00102-3
    100. Xiaojiang Xu, Junling Zeng, Yue Wu, Qiaoying Wang, Shengchao Wu, Hongbo Gu. Preparation and Application of Graphene–Based Materials for Heavy Metal Removal in Tobacco Industry: A Review. Separations 2022, 9 (12) , 401. https://doi.org/10.3390/separations9120401
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2008, 8, 7, 2012–2016
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl8011566
    Published June 5, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.