Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets
My Activity
    Letter

    Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets
    Click to copy article linkArticle link copied!

    View Author Information
    Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson Air Force Base, Ohio 45433, Richard E. Smalley Institute for Nanoscale Science and Technology, Department of Physics and Astronomy, and Department of Chemistry, Rice University, Houston Texas 77005, Universal Technology Corporation, Dayton, Ohio 45432, School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, and UDRI, University of Dayton, Dayton, Ohio 45469
    * To whom correspondence should be addressed. E-mail: [email protected]
    †Air Force Research Laboratory.
    ‡Universal Technology Corporation.
    §Department of Physics and Astronomy, Rice University.
    ∥Department of Chemistry, Rice University.
    ⊥School of Materials Engineering and Birck Nanotechnology Center, Purdue University.
    ¶UDRI, University of Dayton.
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2009, 9, 1, 44–49
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl801876h
    Published December 1, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The Ostwald ripening behavior of Fe catalyst films deposited on thin alumina supporting layers is demonstrated as a function of thermal annealing in H2 and H2/H2O. The addition of H2O in super growth of single-walled carbon nanotube carpets is observed to inhibit Ostwald ripening due to the ability of oxygen and hydroxyl species to reduce diffusion rates of catalyst atoms. This work shows the impact of typical carpet growth environments on catalyst film evolution and the role Ostwald ripening may play in the termination of carpet growth.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 351 publications.

    1. Naoki Hashimoto, Kohsuke Mori, Hideto Yoshida, Naoto Kamiuchi, Ryota Kitaura, Ryota Hirasawa, Hiromi Yamashita. Thermal Stability of High-Entropy Alloy Nanoparticles Evaluated by In Situ TEM Observations. Nano Letters 2024, 24 (23) , 7063-7068. https://doi.org/10.1021/acs.nanolett.4c01625
    2. Dewu Lin, Shun Muroga, Hiroe Kimura, Hirokuni Jintoku, Takashi Tsuji, Kenji Hata, Guohai Chen, Don N. Futaba. Addressing the Trade-Off between Crystallinity and Yield in Single-Walled Carbon Nanotube Forest Synthesis Using Machine Learning. ACS Nano 2023, 17 (22) , 22821-22829. https://doi.org/10.1021/acsnano.3c07587
    3. Kento Tabata, Yuga Kono, Ryosuke Goto, Yuya Abe, Takayuki Nakano, Hisashi Sugime, Yoku Inoue. Catalyst Dynamics in the Growth of High-Density CNT Forests; Fine Control of the Mass Density of Forest by Colloidal Catalyst Nanoparticles. The Journal of Physical Chemistry C 2022, 126 (48) , 20448-20455. https://doi.org/10.1021/acs.jpcc.2c05454
    4. Brian M. Everhart, Rahul Rao, Pavel Nikolaev, Tsung-Wei Liu, Diego A. Gómez-Gualdrón, Benji Maruyama, Placidus B. Amama. High-Throughput Experimentation for Selective Growth of Small-Diameter Single-Wall Carbon Nanotubes Using Ru-Promoted Co Catalysts. Chemistry of Materials 2022, 34 (10) , 4548-4559. https://doi.org/10.1021/acs.chemmater.2c00347
    5. Jaegeun Lee, Golnaz Najaf Tomaraei, Moataz Abdulhafez, Mostafa Bedewy. Boosting Catalytic Lifetime in Chemical Vapor Deposition of Carbon Nanotubes by Rapid Thermal Pretreatment of Alumina-Supported Metal Nanocatalysts. Chemistry of Materials 2021, 33 (16) , 6277-6289. https://doi.org/10.1021/acs.chemmater.0c04692
    6. Ahmed Aziz Ezzat, Mostafa Bedewy. Machine Learning for Revealing Spatial Dependence among Nanoparticles: Understanding Catalyst Film Dewetting via Gibbs Point Process Models. The Journal of Physical Chemistry C 2020, 124 (50) , 27479-27494. https://doi.org/10.1021/acs.jpcc.0c07765
    7. Maoshuai He, Shuchen Zhang, Jin Zhang. Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chemical Reviews 2020, 120 (22) , 12592-12684. https://doi.org/10.1021/acs.chemrev.0c00395
    8. Brian M. Everhart, Haider Almkhelfe, Xu Li, Michael Wales, Pavel Nikolaev, Rahul Rao, Benji Maruyama, Placidus B. Amama. Efficient Growth of Carbon Nanotube Carpets Enabled by In Situ Generation of Water. Industrial & Engineering Chemistry Research 2020, 59 (19) , 9095-9104. https://doi.org/10.1021/acs.iecr.0c00711
    9. Heng Yi Teah, Toshihiro Sato, Katsuya Namiki, Mayu Asaka, Kaisheng Feng, Suguru Noda. Life Cycle Greenhouse Gas Emissions of Long and Pure Carbon Nanotubes Synthesized via On-Substrate and Fluidized-Bed Chemical Vapor Deposition. ACS Sustainable Chemistry & Engineering 2020, 8 (4) , 1730-1740. https://doi.org/10.1021/acssuschemeng.9b04542
    10. Hisashi Sugime, Toshihiro Sato, Rei Nakagawa, Cinzia Cepek, Suguru Noda. Gd-Enhanced Growth of Multi-Millimeter-Tall Forests of Single-Wall Carbon Nanotubes. ACS Nano 2019, 13 (11) , 13208-13216. https://doi.org/10.1021/acsnano.9b06181
    11. Jaegeun Lee, Moataz Abdulhafez, Mostafa Bedewy. Data Analytics Enables Significant Improvement of Robustness in Chemical Vapor Deposition of Carbon Nanotubes Based on Vacuum Baking. Industrial & Engineering Chemistry Research 2019, 58 (27) , 11999-12009. https://doi.org/10.1021/acs.iecr.9b01725
    12. Clothilde A. Eveleens, Alister J. Page. Catalyst- and Etchant-Dependent Mechanisms of Single-Walled Carbon Nanotube Nucleation during Chemical Vapor Deposition. The Journal of Physical Chemistry C 2019, 123 (16) , 10622-10629. https://doi.org/10.1021/acs.jpcc.8b12276
    13. Haider Almkhelfe, Placidus B. Amama. Supercritical Fluids as Reaction Media for Scalable Production of Carbon Nanomaterials. ACS Applied Nano Materials 2019, 2 (2) , 1009-1017. https://doi.org/10.1021/acsanm.8b02272
    14. Rahul Rao, Cary L. Pint, Ahmad E. Islam, Robert S. Weatherup, Stephan Hofmann, Eric R. Meshot, Fanqi Wu, Chongwu Zhou, Nicholas Dee, Placidus B. Amama, Jennifer Carpena-Nuñez, Wenbo Shi, Desiree L. Plata, Evgeni S. Penev, Boris I. Yakobson, Perla B. Balbuena, Christophe Bichara, Don N. Futaba, Suguru Noda, Homin Shin, Keun Su Kim, Benoit Simard, Francesca Mirri, Matteo Pasquali, Francesco Fornasiero, Esko I. Kauppinen, Michael Arnold, Baratunde A. Cola, Pavel Nikolaev, Sivaram Arepalli, Hui-Ming Cheng, Dmitri N. Zakharov, Eric A. Stach, Jin Zhang, Fei Wei, Mauricio Terrones, David B. Geohegan, Benji Maruyama, Shigeo Maruyama, Yan Li, W. Wade Adams, A. John Hart. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12 (12) , 11756-11784. https://doi.org/10.1021/acsnano.8b06511
    15. Chenguang Zhang, Ke Ma, Naiqin Zhao, Zhihao Yuan. A Core–Shell Strategy for Improving Alloy Catalyst Activity for Continual Growth of Hollow Carbon Onions. Crystal Growth & Design 2018, 18 (12) , 7470-7480. https://doi.org/10.1021/acs.cgd.8b01249
    16. Zequn Wang, Qiuchen Zhao, Jin Zhang. Increasing the Density of Single-Walled Carbon Nanotube Arrays by Multiple Catalysts Reactivation. The Journal of Physical Chemistry C 2018, 122 (43) , 24823-24829. https://doi.org/10.1021/acs.jpcc.8b08235
    17. Bin Liang, Eongyu Yi, Toshihiro Sato, Suguru Noda, Kai Sun, Dechang Jia, Yu Zhou, Richard M. Laine. Resettable Heterogeneous Catalyst: (Re)Generation and (Re)Adsorption of Ni Nanoparticles for Repeated Synthesis of Carbon Nanotubes on Ni–Al–O Thin Films. ACS Applied Nano Materials 2018, 1 (10) , 5483-5492. https://doi.org/10.1021/acsanm.8b00847
    18. Anna Douglas, Rachel Carter, Mengya Li, Cary L. Pint. Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening. ACS Applied Materials & Interfaces 2018, 10 (22) , 19010-19018. https://doi.org/10.1021/acsami.8b02834
    19. Yu Dian Lim, Alexander Vasiliyvich Avramchuck, Dmitry Grapov, Chong Wei Tan, Beng Kang Tay, Sheel Aditya, and Vladimir Labunov . Enhanced Carbon Nanotubes Growth Using Nickel/Ferrocene-Hybridized Catalyst. ACS Omega 2017, 2 (9) , 6063-6071. https://doi.org/10.1021/acsomega.7b00858
    20. Lili Zhang, Maoshuai He, Thomas W. Hansen, Jens Kling, Hua Jiang, Esko I. Kauppinen, Annick Loiseau, and Jakob B. Wagner . Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by in Situ Transmission Electron Microscopy. ACS Nano 2017, 11 (5) , 4483-4493. https://doi.org/10.1021/acsnano.6b05941
    21. Takashi Tsuji, Kenji Hata, Don N. Futaba, and Shunsuke Sakurai . Unexpected Efficient Synthesis of Millimeter-Scale Single-Wall Carbon Nanotube Forests Using a Sputtered MgO Catalyst Underlayer Enabled by a Simple Treatment Process. Journal of the American Chemical Society 2016, 138 (51) , 16608-16611. https://doi.org/10.1021/jacs.6b11189
    22. Lixing Kang, Shibin Deng, Shuchen Zhang, Qingwen Li, and Jin Zhang . Selective Growth of Subnanometer Diameter Single-Walled Carbon Nanotube Arrays in Hydrogen-Free CVD. Journal of the American Chemical Society 2016, 138 (39) , 12723-12726. https://doi.org/10.1021/jacs.6b06477
    23. Mostafa Bedewy, B. Viswanath, Eric R. Meshot, Dmitri N. Zakharov, Eric A. Stach, and A. John Hart . Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy. Chemistry of Materials 2016, 28 (11) , 3804-3813. https://doi.org/10.1021/acs.chemmater.6b00798
    24. Pan Li and Jin Zhang . CVD Growth of Carbon Nanotube Forest with Selective Wall-Number from Fe–Cu Catalyst. The Journal of Physical Chemistry C 2016, 120 (20) , 11163-11169. https://doi.org/10.1021/acs.jpcc.5b12602
    25. Jinjing Li, Mostafa Bedewy, Alvin Orbaek White, Erik S. Polsen, Sameh Tawfick, and A. John Hart . Highly Consistent Atmospheric Pressure Synthesis of Carbon Nanotube Forests by Mitigation of Moisture Transients. The Journal of Physical Chemistry C 2016, 120 (20) , 11277-11287. https://doi.org/10.1021/acs.jpcc.6b02878
    26. Jinlong Jiang, Yilun Li, Caitian Gao, Nam Dong Kim, Xiujun Fan, Gunuk Wang, Zhiwei Peng, Robert H. Hauge, and James M. Tour . Growing Carbon Nanotubes from Both Sides of Graphene. ACS Applied Materials & Interfaces 2016, 8 (11) , 7356-7362. https://doi.org/10.1021/acsami.5b12254
    27. Lyubov V. Titova, Cary L. Pint, Qi Zhang, Robert H. Hauge, Junichiro Kono, and Frank A. Hegmann . Generation of Terahertz Radiation by Optical Excitation of Aligned Carbon Nanotubes. Nano Letters 2015, 15 (5) , 3267-3272. https://doi.org/10.1021/acs.nanolett.5b00494
    28. Pavel Nikolaev, Daylond Hooper, Nestor Perea-López, Mauricio Terrones, and Benji Maruyama . Discovery of Wall-Selective Carbon Nanotube Growth Conditions via Automated Experimentation. ACS Nano 2014, 8 (10) , 10214-10222. https://doi.org/10.1021/nn503347a
    29. Takahiko Moteki, Daiki Nukaga, Yoichi Murakami, Shigeo Maruyama, and Tatsuya Okubo . Influence of Zeolite Catalyst Supports on the Synthesis of Single-Walled Carbon Nanotubes: Framework Structures and Si/Al Ratios. The Journal of Physical Chemistry C 2014, 118 (41) , 23664-23669. https://doi.org/10.1021/jp501322s
    30. In Hyuk Son, Hyun Jae Song, Soonchul Kwon, Alicja Bachmatiuk, Seung Jae Lee, Anass Benayad, Jong Hwan Park, Jae-Young Choi, Hyuk Chang, and Mark H. Rümmeli . CO2 Enhanced Chemical Vapor Deposition Growth of Few-Layer Graphene over NiOx. ACS Nano 2014, 8 (9) , 9224-9232. https://doi.org/10.1021/nn504342e
    31. Hisashi Sugime, Santiago Esconjauregui, Lorenzo D’Arsié, Junwei Yang, Taron Makaryan, and John Robertson . Growth Kinetics and Growth Mechanism of Ultrahigh Mass Density Carbon Nanotube Forests on Conductive Ti/Cu Supports. ACS Applied Materials & Interfaces 2014, 6 (17) , 15440-15447. https://doi.org/10.1021/am504048h
    32. A. E. Islam, P. Nikolaev, P. B. Amama, S. Saber, D. Zakharov, D. Huffman, M. Erford, G. Sargent, S. L. Semiatin, E. A. Stach, and B. Maruyama . Engineering the Activity and Lifetime of Heterogeneous Catalysts for Carbon Nanotube Growth via Substrate Ion Beam Bombardment. Nano Letters 2014, 14 (9) , 4997-5003. https://doi.org/10.1021/nl501417h
    33. Junwei Yang, Santiago Esconjauregui, Rongsie Xie, Hisashi Sugime, Taron Makaryan, Lorenzo D’Arsié, David Leonardo Gonzalez Arellano, Sunil Bhardwaj, Cinzia Cepek, and John Robertson . Effect of Oxygen Plasma Alumina Treatment on Growth of Carbon Nanotube Forests. The Journal of Physical Chemistry C 2014, 118 (32) , 18683-18692. https://doi.org/10.1021/jp5022196
    34. Jinghua Li, Kaihui Liu, Shibo Liang, Weiwei Zhou, Matthieu Pierce, Feng Wang, Lianmao Peng, and Jie Liu . Growth of High-Density-Aligned and Semiconducting-Enriched Single-Walled Carbon Nanotubes: Decoupling the Conflict between Density and Selectivity. ACS Nano 2014, 8 (1) , 554-562. https://doi.org/10.1021/nn405105y
    35. Kunpeng Xie, Martin Muhler, and Wei Xia . Influence of Water on the Initial Growth Rate of Carbon Nanotubes from Ethylene over a Cobalt-Based Catalyst. Industrial & Engineering Chemistry Research 2013, 52 (39) , 14081-14088. https://doi.org/10.1021/ie401829e
    36. Zhongming Chen, Dong Young Kim, Kei Hasegawa, and Suguru Noda . Methane-Assisted Chemical Vapor Deposition Yielding Millimeter-Tall Single-Wall Carbon Nanotubes of Smaller Diameter. ACS Nano 2013, 7 (8) , 6719-6728. https://doi.org/10.1021/nn401556t
    37. Xiaoshuang Yang, Lixiang Yuan, Vanessa K. Peterson, Andrew I. Minett, Ming Zhao, Nigel Kirby, Stephen Mudie, and Andrew T. Harris . Pretreatment Control of Carbon Nanotube Array Growth for Gas Separation: Alignment and Growth Studied Using Microscopy and Small-Angle X-ray Scattering. ACS Applied Materials & Interfaces 2013, 5 (8) , 3063-3070. https://doi.org/10.1021/am3032579
    38. C. Ryan Oliver, Erik S. Polsen, Eric R. Meshot, Sameh Tawfick, Sei Jin Park, Mostafa Bedewy, and A. John Hart . Statistical Analysis of Variation in Laboratory Growth of Carbon Nanotube Forests and Recommendations for Improved Consistency. ACS Nano 2013, 7 (4) , 3565-3580. https://doi.org/10.1021/nn400507y
    39. Rahul Rao, Neal Pierce, David Liptak, Daylond Hooper, Gordon Sargent, S. Lee Semiatin, Stefano Curtarolo, Avetik R. Harutyunyan, and Benji Maruyama . Revealing the Impact of Catalyst Phase Transition on Carbon Nanotube Growth by in Situ Raman Spectroscopy. ACS Nano 2013, 7 (2) , 1100-1107. https://doi.org/10.1021/nn304064u
    40. Phillip Vinten, Paul Marshall, Jacques Lefebvre, and Paul Finnie . Thermodynamic and Energetic Effects on the Diameter and Defect Density in Single-Walled Carbon Nanotube Synthesis. The Journal of Physical Chemistry C 2013, 117 (7) , 3527-3536. https://doi.org/10.1021/jp308672a
    41. Jian Lin, Chenguang Zhang, Zheng Yan, Yu Zhu, Zhiwei Peng, Robert H. Hauge, Douglas Natelson, and James M. Tour . 3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance. Nano Letters 2013, 13 (1) , 72-78. https://doi.org/10.1021/nl3034976
    42. Eric R. Meshot, Eric Verploegen, Mostafa Bedewy, Sameh Tawfick, Arthur R. Woll, Katherine S. Green, Marianne Hromalik, Lucas J. Koerner, Hugh T. Philipp, Mark W. Tate, Sol M. Gruner, and A. John Hart . High-Speed in Situ X-ray Scattering of Carbon Nanotube Film Nucleation and Self-Organization. ACS Nano 2012, 6 (6) , 5091-5101. https://doi.org/10.1021/nn300758f
    43. Seung Soo Lee, Chenguang Zhang, Zuzanna A. Lewicka, Minjung Cho, John T. Mayo, William W. Yu, Robert H. Hauge, and Vicki L. Colvin . Control over the Diameter, Length, and Structure of Carbon Nanotube Carpets Using Aluminum Ferrite and Iron Oxide Nanocrystals as Catalyst Precursors. The Journal of Physical Chemistry C 2012, 116 (18) , 10287-10295. https://doi.org/10.1021/jp212404j
    44. Guofang Zhong, Jamie H. Warner, Martin Fouquet, Alex W. Robertson, Bingan Chen, and John Robertson . Growth of Ultrahigh Density Single-Walled Carbon Nanotube Forests by Improved Catalyst Design. ACS Nano 2012, 6 (4) , 2893-2903. https://doi.org/10.1021/nn203035x
    45. Zhao Jun Han and Kostya (Ken) Ostrikov . Uniform, Dense Arrays of Vertically Aligned, Large-Diameter Single-Walled Carbon Nanotubes. Journal of the American Chemical Society 2012, 134 (13) , 6018-6024. https://doi.org/10.1021/ja300805s
    46. Xiaoshuang Yang, Lixiang Yuan, Vanessa K. Peterson, Andew I. Minett, Yongbai Yin, and Andrew T. Harris . Facile Preparation of Free-Standing Carbon Nanotube Arrays Produced Using Two-Step Floating-Ferrocene Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2012, 4 (3) , 1417-1422. https://doi.org/10.1021/am201673v
    47. Shunsuke Sakurai, Hidekazu Nishino, Don N. Futaba, Satoshi Yasuda, Takeo Yamada, Alan Maigne, Yutaka Matsuo, Eiichi Nakamura, Motoo Yumura, and Kenji Hata . Role of Subsurface Diffusion and Ostwald Ripening in Catalyst Formation for Single-Walled Carbon Nanotube Forest Growth. Journal of the American Chemical Society 2012, 134 (4) , 2148-2153. https://doi.org/10.1021/ja208706c
    48. Jung Bin In, Costas P. Grigoropoulos, Alexander A. Chernov, and Aleksandr Noy . Growth Kinetics of Vertically Aligned Carbon Nanotube Arrays in Clean Oxygen-free Conditions. ACS Nano 2011, 5 (12) , 9602-9610. https://doi.org/10.1021/nn2028715
    49. Anders Borjesson and Kim Bolton . Modeling of Ostwald Ripening of Metal Clusters Attached to Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (50) , 24454-24462. https://doi.org/10.1021/jp202328w
    50. Takahiko Moteki, Yoichi Murakami, Suguru Noda, Shigeo Maruyama, and Tatsuya Okubo . Zeolite Surface As a Catalyst Support Material for Synthesis of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (49) , 24231-24237. https://doi.org/10.1021/jp207930m
    51. Mostafa Bedewy, Eric R. Meshot, Michael J. Reinker, and A. John Hart . Population Growth Dynamics of Carbon Nanotubes. ACS Nano 2011, 5 (11) , 8974-8989. https://doi.org/10.1021/nn203144f
    52. David B. Geohegan, Alex A. Puretzky, Jeremy J. Jackson, Christopher M. Rouleau, Gyula Eres, and Karren L. More . Flux-Dependent Growth Kinetics and Diameter Selectivity in Single-Wall Carbon Nanotube Arrays. ACS Nano 2011, 5 (10) , 8311-8321. https://doi.org/10.1021/nn2030397
    53. Cary L. Pint, Zhengzong Sun, Sharief Moghazy, Ya-Qiong Xu, James M. Tour, and Robert H. Hauge . Supergrowth of Nitrogen-Doped Single-Walled Carbon Nanotube Arrays: Active Species, Dopant Characterization, and Doped/Undoped Heterojunctions. ACS Nano 2011, 5 (9) , 6925-6934. https://doi.org/10.1021/nn201252z
    54. Satoshi Yasuda, Don N. Futaba, Takeo Yamada, Motoo Yumura, and Kenji Hata . Gas Dwell Time Control for Rapid and Long Lifetime Growth of Single-Walled Carbon Nanotube Forests. Nano Letters 2011, 11 (9) , 3617-3623. https://doi.org/10.1021/nl201416c
    55. Noe T. Alvarez, Feng Li, Cary L. Pint, John T. Mayo, Ezekial Z. Fisher, James M. Tour, Vicki L. Colvin, and Robert H. Hauge . Uniform Large Diameter Carbon Nanotubes in Vertical Arrays from Premade Near-Monodisperse Nanoparticles. Chemistry of Materials 2011, 23 (15) , 3466-3475. https://doi.org/10.1021/cm200664g
    56. Xiaoshuang Yang, Lixiang Yuan, Vanessa K. Peterson, Yongbai Yin, Andrew I. Minett, and Andrew T. Harris . Open-Ended Aligned Carbon Nanotube Arrays Produced Using CO2-Assisted Floating-Ferrocene Chemical Vapor Deposition. The Journal of Physical Chemistry C 2011, 115 (29) , 14093-14097. https://doi.org/10.1021/jp203469y
    57. Hiroki Ago, Takafumi Ayagaki, Yui Ogawa, and Masaharu Tsuji . Ultrahigh-Vacuum-Assisted Control of Metal Nanoparticles for Horizontally Aligned Single-Walled Carbon Nanotubes with Extraordinary Uniform Diameters. The Journal of Physical Chemistry C 2011, 115 (27) , 13247-13253. https://doi.org/10.1021/jp2038448
    58. Arnaud Magrez, Rita Smajda, Jin Won Seo, Endre Horváth, Primož Rebernik Ribic̆, Juan Carlos Andresen, Donatello Acquaviva, Areta Olariu, Gábor Laurenczy, and László Forró . Striking Influence of the Catalyst Support and Its Acid–Base Properties: New Insight into the Growth Mechanism of Carbon Nanotubes. ACS Nano 2011, 5 (5) , 3428-3437. https://doi.org/10.1021/nn200012z
    59. Anders Börjesson and Kim Bolton . First Principles Studies of the Effect of Ostwald Ripening on Carbon Nanotube Chirality Distributions. ACS Nano 2011, 5 (2) , 771-779. https://doi.org/10.1021/nn101214v
    60. Kei Hasegawa and Suguru Noda . Millimeter-Tall Single-Walled Carbon Nanotubes Rapidly Grown with and without Water. ACS Nano 2011, 5 (2) , 975-984. https://doi.org/10.1021/nn102380j
    61. Jeremy J. Jackson, Alex A. Puretzky, Karren L. More, Christopher M. Rouleau, Gyula Eres, and David B. Geohegan . Pulsed Growth of Vertically Aligned Nanotube Arrays with Variable Density. ACS Nano 2010, 4 (12) , 7573-7581. https://doi.org/10.1021/nn102029y
    62. Santiago Esconjauregui, Martin Fouquet, Bernhard C. Bayer, Caterina Ducati, Rita Smajda, Stephan Hofmann, and John Robertson . Growth of Ultrahigh Density Vertically Aligned Carbon Nanotube Forests for Interconnects. ACS Nano 2010, 4 (12) , 7431-7436. https://doi.org/10.1021/nn1025675
    63. Noe T. Alvarez, Christopher E. Hamilton, Cary L. Pint, Alvin Orbaek, Jun Yao, Aldo L. Frosinini, Andrew R. Barron, James M. Tour and Robert H. Hauge . Wet Catalyst-Support Films for Production of Vertically Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces 2010, 2 (7) , 1851-1856. https://doi.org/10.1021/am100128m
    64. Arnaud Magrez, Jin Won Seo, Rita Smajda, Barbara Korbely, Juan Carlos Andresen, Marijana Mionić, Stéphane Casimirius and László Forró . Low-Temperature, Highly Efficient Growth of Carbon Nanotubes on Functional Materials by an Oxidative Dehydrogenation Reaction. ACS Nano 2010, 4 (7) , 3702-3708. https://doi.org/10.1021/nn100279j
    65. Yongyi Zhang, John M. Gregoire, R. B. van Dover and A. John Hart. Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2010, 114 (14) , 6389-6395. https://doi.org/10.1021/jp100358j
    66. N. Latorre, E. Romeo, F. Cazaña, T. Ubieto, C. Royo, J. I. Villacampa and A. Monzón. Carbon Nanotube Growth by Catalytic Chemical Vapor Deposition: A Phenomenological Kinetic Model. The Journal of Physical Chemistry C 2010, 114 (11) , 4773-4782. https://doi.org/10.1021/jp906893m
    67. Seung Min Kim, Cary L. Pint, Placidus B. Amama, Dmitri N. Zakharov, Robert H. Hauge, Benji Maruyama and Eric A. Stach . Evolution in Catalyst Morphology Leads to Carbon Nanotube Growth Termination. The Journal of Physical Chemistry Letters 2010, 1 (6) , 918-922. https://doi.org/10.1021/jz9004762
    68. Baoshan Hu, Hiroki Ago, Naoki Yoshihara and Masaharu Tsuji. Effects of Water Vapor on Diameter Distribution of SWNTs Grown over Fe/MgO-Based Catalysts. The Journal of Physical Chemistry C 2010, 114 (9) , 3850-3856. https://doi.org/10.1021/jp9112365
    69. Qian Wen, Rufan Zhang, Weizhong Qian, Yuran Wang, Pingheng Tan, Jingqi Nie and Fei Wei . Growing 20 cm Long DWNTs/TWNTs at a Rapid Growth Rate of 80−90 μm/s. Chemistry of Materials 2010, 22 (4) , 1294-1296. https://doi.org/10.1021/cm903866z
    70. Cary L. Pint, Ya-Qiong Xu, Sharief Moghazy, Tonya Cherukuri, Noe T. Alvarez, Erik H. Haroz, Salma Mahzooni, Stephen K. Doorn, Junichiro Kono, Matteo Pasquali and Robert H. Hauge . Dry Contact Transfer Printing of Aligned Carbon Nanotube Patterns and Characterization of Their Optical Properties for Diameter Distribution and Alignment. ACS Nano 2010, 4 (2) , 1131-1145. https://doi.org/10.1021/nn9013356
    71. Placidus B. Amama, Cary L. Pint, Seung Min Kim, Laura McJilton, Kurt G. Eyink, Eric A. Stach, Robert H. Hauge and Benji Maruyama . Influence of Alumina Type on the Evolution and Activity of Alumina-Supported Fe Catalysts in Single-Walled Carbon Nanotube Carpet Growth. ACS Nano 2010, 4 (2) , 895-904. https://doi.org/10.1021/nn901700u
    72. Noe T. Alvarez, Alvin Orbaek, Andrew R. Barron, James M. Tour and Robert H. Hauge . Dendrimer-Assisted Self-Assembled Monolayer of Iron Nanoparticles for Vertical Array Carbon Nanotube Growth. ACS Applied Materials & Interfaces 2010, 2 (1) , 15-18. https://doi.org/10.1021/am900666w
    73. Mostafa Bedewy, Eric R. Meshot, Haicheng Guo, Eric A. Verploegen, Wei Lu and A. John Hart . Collective Mechanism for the Evolution and Self-Termination of Vertically Aligned Carbon Nanotube Growth. The Journal of Physical Chemistry C 2009, 113 (48) , 20576-20582. https://doi.org/10.1021/jp904152v
    74. Christoph Tobias Wirth, Can Zhang, Guofang Zhong, Stephan Hofmann and John Robertson. Diffusion- and Reaction-Limited Growth of Carbon Nanotube Forests. ACS Nano 2009, 3 (11) , 3560-3566. https://doi.org/10.1021/nn900613e
    75. Don N. Futaba, Jundai Goto, Satoshi Yasuda, Takeo Yamada, Motoo Yumura and Kenji Hata . A Background Level of Oxygen-Containing Aromatics for Synthetic Control of Carbon Nanotube Structure. Journal of the American Chemical Society 2009, 131 (44) , 15992-15993. https://doi.org/10.1021/ja906983r
    76. Hideto Yoshida, Takuma Shimizu, Tetsuya Uchiyama, Hideo Kohno, Yoshikazu Homma and Seiji Takeda. Atomic-Scale Analysis on the Role of Molybdenum in Iron-Catalyzed Carbon Nanotube Growth. Nano Letters 2009, 9 (11) , 3810-3815. https://doi.org/10.1021/nl9019903
    77. Cary L. Pint, Seung Min Kim, Eric A. Stach and Robert H. Hauge . Rapid and Scalable Reduction of Dense Surface-Supported Metal-Oxide Catalyst with Hydrazine Vapor. ACS Nano 2009, 3 (7) , 1897-1905. https://doi.org/10.1021/nn900225h
    78. Cary L. Pint, Nolan Nicholas, Juan G. Duque, A. Nicholas G. Parra-Vasquez, Matteo Pasquali and Robert Hauge . Recycling Ultrathin Catalyst Layers for Multiple Single-Walled Carbon Nanotube Array Regrowth Cycles and Selectivity in Catalyst Activation. Chemistry of Materials 2009, 21 (8) , 1550-1556. https://doi.org/10.1021/cm8031626
    79. Cary L. Pint, Sean T. Pheasant, A. Nicholas G. Parra-Vasquez, Charles Horton, Yaqiong Xu and Robert H. Hauge. Investigation of Optimal Parameters for Oxide-Assisted Growth of Vertically Aligned Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2009, 113 (10) , 4125-4133. https://doi.org/10.1021/jp8070585
    80. Lili Zhang, Dai‐Ming Tang, Chang Liu. Growth Mechanism of Carbon Nanotubes Revealed by in situ Transmission Electron Microscopy. Small 2024, https://doi.org/10.1002/smll.202405736
    81. Robert Waelder, Chiwoo Park, Arthur Sloan, Jennifer Carpena-Núñez, Joshua Yoho, Stephane Gorsse, Rahul Rao, Benji Maruyama. Improved understanding of carbon nanotube growth via autonomous jump regression targeting of catalyst activity. Carbon 2024, 228 , 119356. https://doi.org/10.1016/j.carbon.2024.119356
    82. Wonjung Park, Michael J. Bronikowski. Investigation of hafnium, tantalum, and ruthenium as catalyst stabilizers in the iron-catalyzed growth of carbon nanotubes from ethylene. MRS Advances 2024, 354 https://doi.org/10.1557/s43580-024-00926-w
    83. Yue Shi, Wenxin Yu, Qingwei Bu, Hailong Li, Xiaolong Yao. Efficient adsorption and rapid electrochemical degradation of methyl methacrylate (MMA) by three-dimensional nanostructured carbon anode. Surfaces and Interfaces 2024, 51 , 104616. https://doi.org/10.1016/j.surfin.2024.104616
    84. Peng Wang, Qianpeng Dong, Chenyu Gao, Wenjuan Bai, Dianming Chu, Yan He. A comprehensive review of carbon nanotubes: growth mechanisms, preparation and applications. Fullerenes, Nanotubes and Carbon Nanostructures 2024, 32 (5) , 415-429. https://doi.org/10.1080/1536383X.2023.2292694
    85. Golnaz Tomaraei, Moataz Abdulhafez, Mostafa Bedewy. Order-of-Magnitude Increase in Carbon Nanotube Yield Based on Modeling Transient Diffusion and Outgassing of Water From Reactor Walls. Journal of Manufacturing Science and Engineering 2024, 146 (4) https://doi.org/10.1115/1.4063965
    86. Guo Yu, Peilin Han, Hongmei Yi, Jiaxiang Zhao, Songjia Hou, Zuoyi Yan, Jie Liu, Haohong Li, Huidong Zheng, Caijin Zhou. Study of field distribution characteristics in CVD reactors and enhanced growth of SWNCT. Diamond and Related Materials 2024, 4 , 111093. https://doi.org/10.1016/j.diamond.2024.111093
    87. Dianming Chu, Zongchao Ji, Xijun Zhang, Xinyue Zhao, Yan He, Wenjuan Bai. Machine learning for the regulation strategy and mechanism of the integrated growth of carbon nanotube arrays. New Journal of Chemistry 2023, 47 (47) , 21883-21896. https://doi.org/10.1039/D3NJ04124G
    88. Ying Xie, Yue Li, Ziqiang Zhao, Jin Zhang. Pave the way to the batch production of SWNT arrays for carbon-based electronic devices. Nano Research 2023, 16 (11) , 12516-12530. https://doi.org/10.1007/s12274-023-6173-1
    89. Robin S. M. Chrystie. A Review on 1‐D Nanomaterials: Scaling‐Up with Gas‐Phase Synthesis. The Chemical Record 2023, 23 (10) https://doi.org/10.1002/tcr.202300087
    90. Ahmad M. Al-Diabat, Natheer A. Algadri, Naser M. Ahmad, Adnan H. Alrajhi, Abdulsalam Abuelsamen, Amal Mohamed Ahmed Ali, Salma Abdulrhman Al-Wasli. Optimize the Properties of Carbon Nanotubes Synthesized using a Microwave Oven. WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT 2023, 19 , 705-719. https://doi.org/10.37394/232015.2023.19.68
    91. A. Andalouci, I. Hinkov, O. Brinza, A. Kane, C. Porosnicu, A. H. Barry, S. M. Chérif, S. Farhat. Role of Oxygen in PECVD Carbon Nanotubes Growth: Experiments and Modeling. Plasma Chemistry and Plasma Processing 2023, 43 (3) , 757-786. https://doi.org/10.1007/s11090-023-10317-y
    92. Jong-Hwan Lee, Hyun-Ho Han, Jong-Min Seo, Goo-Hwan Jeong. One-Pot Fabrication of Nanocomposites Composed of Carbon Nanotubes and Alumina Powder Using a Rotatable Chemical Vapor Deposition System. Materials 2023, 16 (7) , 2735. https://doi.org/10.3390/ma16072735
    93. Xiu-Xian Lim, Siew-Chun Low, Wen-Da Oh. A critical review of heterogeneous catalyst design for carbon nanotubes synthesis: Functionalities, performances, and prospects. Fuel Processing Technology 2023, 241 , 107624. https://doi.org/10.1016/j.fuproc.2022.107624
    94. Kathleen Moyer-Vanderburgh, Sei Jin Park, Francesco Fornasiero. Growth of carbon nanotube forests on flexible metal substrates: Advances, challenges, and applications. Carbon 2023, 206 , 402-421. https://doi.org/10.1016/j.carbon.2023.02.054
    95. Hyeongyun Song, Dong Hwan Kim, Cheol Woo Park, Jungho Jae, Seungki Hong, Jaegeun Lee. Statistical analysis of the synthesis of carbon nanotubes using wet-impregnated catalysts for improved robustness. Carbon Letters 2023, 48 https://doi.org/10.1007/s42823-023-00473-8
    96. Dianming Chu, Qianpeng Dong, Wenjuan Bai, Tianle Zhang, Qi Qu, Lingxiao Lu, Chao Yan, Yan He. Study of the growth parameters of multiwalled carbon nanotubes. New Journal of Chemistry 2023, 47 (6) , 3125-3133. https://doi.org/10.1039/D2NJ04980E
    97. Chao Yan, Yinrui Yu, Tianle Zhang, Yan Lin, Fei Wang, Yan He. How reduction temperature affects the properties of carbon nanotubes growing over the Fe–MgO/Al 2 O 3 catalyst. New Journal of Chemistry 2023, 10 https://doi.org/10.1039/D2NJ04482J
    98. Ke Fang, Wentao Yuan, Jakob B. Wagner, Ze Zhang, Yong Wang. In-Situ Gas Transmission Electron Microscopy. 2023, 251-325. https://doi.org/10.1007/978-981-19-6845-7_9
    99. Michael W.J. Glerum, Adam M. Boies. Reactor processes for value added carbon synthesis and turquoise hydrogen. 2023, 133-192. https://doi.org/10.1016/bs.ache.2023.04.001
    100. John S. Bulmer, Arthur W.N. Sloan, Michael Glerum, Jennifer Carpena-Núñez, Robert Waelder, Jefford Humes, Adam M. Boies, Matteo Pasquali, Rahul Rao, Benji Maruyama. Forecasting carbon nanotube diameter in floating catalyst chemical vapor deposition. Carbon 2023, 201 , 719-733. https://doi.org/10.1016/j.carbon.2022.08.001
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2009, 9, 1, 44–49
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl801876h
    Published December 1, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    7634

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.