ACS Publications. Most Trusted. Most Cited. Most Read
Magnetic Tunnel Junctions with Ferroelectric Barriers: Prediction of Four Resistance States from First Principles
My Activity
    Letter

    Magnetic Tunnel Junctions with Ferroelectric Barriers: Prediction of Four Resistance States from First Principles
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0111, Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931-3344, Key Laboratory of Polarized Materials and Devices, East China Normal University, Shanghai 200062, China, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste, Italy, and International School for Advanced Studies (SISSA) and CNR/DEMOCRITOS National Simulation Center, Via Beirut 2-4, 34014 Trieste, Italy
    * Corresponding authors: J.P.V., [email protected]; E.Y.T., [email protected]
    †Cofirst authors.
    ⊥University of Nebraska.
    ‡University of Puerto Rico.
    §East China Normal University.
    ∥International Centre for Theoretical Physics.
    ¶International School for Advanced Studies (SISSA) and CNR/DEMOCRITOS National Simulation Center.
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2009, 9, 1, 427–432
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl803318d
    Published December 29, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Magnetic tunnel junctions (MTJs), composed of two ferromagnetic electrodes separated by a thin insulating barrier layer, are currently used in spintronic devices, such as magnetic sensors and magnetic random access memories. Recently, driven by demonstrations of ferroelectricity at the nanoscale, thin-film ferroelectric barriers were proposed to extend the functionality of MTJs. Due to the sensitivity of conductance to the magnetization alignment of the electrodes (tunneling magnetoresistance) and the polarization orientation in the ferroelectric barrier (tunneling electroresistance), these multiferroic tunnel junctions (MFTJs) may serve as four-state resistance devices. On the basis of first-principles calculations, we demonstrate four resistance states in SrRuO3/BaTiO3/SrRuO3 MFTJs with asymmetric interfaces. We find that the resistance of such a MFTJ is significantly changed when the electric polarization of the barrier is reversed and/or when the magnetizations of the electrodes are switched from parallel to antiparallel. These results reveal the exciting prospects of MFTJs for application as multifunctional spintronic devices.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 311 publications.

    1. James P. Barnard, Robynne L. Paldi, Matias Kalaswad, Zihao He, Hongyi Dou, Yizhi Zhang, Jianan Shen, Dongqi Zheng, Neil R. Dilley, Raktim Sarma, Aleem M. Siddiqui, Peide D. Ye, Haiyan Wang. Epitaxial Growth of Aurivillius Bi3Fe2Mn2Ox Supercell Thin Films on Silicon. Crystal Growth & Design 2023, 23 (4) , 2248-2256. https://doi.org/10.1021/acs.cgd.2c01300
    2. Hua Bai, Xinyi Li, Hui Pan, Pimo He, Zhu-an Xu, Yunhao Lu. Van der Waals Antiferroelectric Magnetic Tunnel Junction: A First-Principles Study of a CrSe2/CuInP2S6/CrSe2 Junction. ACS Applied Materials & Interfaces 2021, 13 (50) , 60200-60208. https://doi.org/10.1021/acsami.1c18949
    3. Yurong Su, Xinlu Li, Meng Zhu, Jia Zhang, Long You, Evgeny Y. Tsymbal. Van der Waals Multiferroic Tunnel Junctions. Nano Letters 2021, 21 (1) , 175-181. https://doi.org/10.1021/acs.nanolett.0c03452
    4. Xin-Wei Shen, Yue-Wen Fang, Bo-Bo Tian, Chun-Gang Duan. Two-Dimensional Ferroelectric Tunnel Junction: The Case of Monolayer In:SnSe/SnSe/Sb:SnSe Homostructure. ACS Applied Electronic Materials 2019, 1 (7) , 1133-1140. https://doi.org/10.1021/acsaelm.9b00146
    5. Jian-Qing Dai, Xiao-Wei Wang, Tian-Fu Cao. Large Band Offset in Monolayer MoS2 on Oppositely Polarized BiFeO3(0001) Polar Surfaces. The Journal of Physical Chemistry C 2019, 123 (5) , 3039-3047. https://doi.org/10.1021/acs.jpcc.8b12207
    6. Jie Jiang, Qiong Yang, Yi Zhang, Xiao-Yu Li, Pao-Wen Shao, Ying-Hui Hsieh, Heng-Jui Liu, Qiang-Xiang Peng, Gao-Kuo Zhong, Xiao-Qing Pan, Ying-Hao Chu, Yi-Chun Zhou. Self-Assembled Ferroelectric Nanoarray. ACS Applied Materials & Interfaces 2019, 11 (2) , 2205-2210. https://doi.org/10.1021/acsami.8b14775
    7. Li Yin, Xiaocha Wang, Wenbo Mi. Ferromagnetic, Ferroelectric, and Optical Modulated Multiple Resistance States in Multiferroic Tunnel Junctions. ACS Applied Materials & Interfaces 2019, 11 (1) , 1057-1064. https://doi.org/10.1021/acsami.8b18727
    8. Shiheng Liang, Zhongwei Yu, Xavier Devaux, Anthony Ferri, Weichuan Huang, Huaiwen Yang, Rachel Desfeux, Xiaoguang Li, Sylvie Migot, Debapriya Chaudhuri, Hongxin Yang, Mairbek Chshiev, Changping Yang, Bin Zhou, Jinghuai Fang, Stéphane Mangin, Yuan Lu. Quenching of Spin Polarization Switching in Organic Multiferroic Tunnel Junctions by Ferroelectric “Ailing-Channel” in Organic Barrier. ACS Applied Materials & Interfaces 2018, 10 (36) , 30614-30622. https://doi.org/10.1021/acsami.8b11437
    9. Jian-Qing Dai, Tian-Fu Cao, Xiao-Wei Wang. Effect of Surface Termination on Charge Doping in Graphene/BiFeO3(0001) Hybrid Structure. The Journal of Physical Chemistry C 2018, 122 (30) , 17250-17260. https://doi.org/10.1021/acs.jpcc.8b04142
    10. Weichuan Huang, Yue-Wen Fang, Yuewei Yin, Bobo Tian, Wenbo Zhao, Chuangming Hou, Chao Ma, Qi Li, Evgeny Y. Tsymbal, Chun-Gang Duan, and Xiaoguang Li . Solid-State Synapse Based on Magnetoelectrically Coupled Memristor. ACS Applied Materials & Interfaces 2018, 10 (6) , 5649-5656. https://doi.org/10.1021/acsami.7b18206
    11. Lingfei Wang, Myung Rae Cho, Yeong Jae Shin, Jeong Rae Kim, Saikat Das, Jong-Gul Yoon, Jin-Seok Chung, and Tae Won Noh . Overcoming the Fundamental Barrier Thickness Limits of Ferroelectric Tunnel Junctions through BaTiO3/SrTiO3 Composite Barriers. Nano Letters 2016, 16 (6) , 3911-3918. https://doi.org/10.1021/acs.nanolett.6b01418
    12. Weichuan Huang, Yue Lin, Yuewei Yin, Lei Feng, Dalong Zhang, Wenbo Zhao, Qi Li, and Xiaoguang Li . Interfacial Ion Intermixing Effect on Four-Resistance States in La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 Multiferroic Tunnel Junctions. ACS Applied Materials & Interfaces 2016, 8 (16) , 10422-10429. https://doi.org/10.1021/acsami.6b02150
    13. Weiping Zhou, Yuanqiang Xiong, Zhengming Zhang, Dunhui Wang, Weishi Tan, Qingqi Cao, Zhenghong Qian, and Youwei Du . Multilevel Resistance Switching Memory in La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (011) Heterostructure by Combined Straintronics-Spintronics. ACS Applied Materials & Interfaces 2016, 8 (8) , 5424-5431. https://doi.org/10.1021/acsami.5b11392
    14. Eun-Mi Choi, Ahmed Kursumovic, Oon Jew Lee, Josée E. Kleibeuker, Aiping Chen, Wenrui Zhang, Haiyan Wang, and Judith L. MacManus-Driscoll . Ferroelectric Sm-Doped BiMnO3 Thin Films with Ferromagnetic Transition Temperature Enhanced to 140 K. ACS Applied Materials & Interfaces 2014, 6 (17) , 14836-14843. https://doi.org/10.1021/am501351c
    15. H. Lu, D. J. Kim, C.-W. Bark, S. Ryu, C. B. Eom, E. Y. Tsymbal, and A. Gruverman . Mechanically-Induced Resistive Switching in Ferroelectric Tunnel Junctions. Nano Letters 2012, 12 (12) , 6289-6292. https://doi.org/10.1021/nl303396n
    16. D. J. Kim, H. Lu, S. Ryu, C.-W. Bark, C.-B. Eom, E. Y. Tsymbal, and A. Gruverman . Ferroelectric Tunnel Memristor. Nano Letters 2012, 12 (11) , 5697-5702. https://doi.org/10.1021/nl302912t
    17. Uwe Bauer, Marek Przybylski, Jürgen Kirschner, and Geoffrey S. D. Beach . Magnetoelectric Charge Trap Memory. Nano Letters 2012, 12 (3) , 1437-1442. https://doi.org/10.1021/nl204114t
    18. Xin Luo, Biao Wang, and Yue Zheng . Tunable Tunneling Electroresistance in Ferroelectric Tunnel Junctions by Mechanical Loads. ACS Nano 2011, 5 (3) , 1649-1656. https://doi.org/10.1021/nn1031438
    19. Juan M. López-Encarnación, J. D. Burton, Evgeny Y. Tsymbal, and Julian P. Velev . Organic Multiferroic Tunnel Junctions with Ferroelectric Poly(vinylidene fluoride) Barriers. Nano Letters 2011, 11 (2) , 599-603. https://doi.org/10.1021/nl103650b
    20. A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Ye. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom and E. Y. Tsymbal . Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale. Nano Letters 2009, 9 (10) , 3539-3543. https://doi.org/10.1021/nl901754t
    21. Nicolae Filipoiu, Neculai Plugaru, Titus Sandu, Rodica Plugaru, George Alexandru Nemnes. First principles electron transport in magnetoelectric SrRuO 3 /BaTiO 3 /SrTiO 3 /SrRuO 3 interfaces. Nanotechnology 2025, 36 (7) , 075702. https://doi.org/10.1088/1361-6528/ad960f
    22. Kartik Samanta, Evgeny Y Tsymbal. Symmetry-controlled SrRuO 3 /SrTiO 3 /SrRuO 3 magnetic tunnel junctions: spin polarization and its relevance to tunneling magnetoresistance. Journal of Physics: Condensed Matter 2024, 36 (49) , 495802. https://doi.org/10.1088/1361-648X/ad765f
    23. Ming Lv, Jiulong Wang, Ming Tian, Neng Wan, Wenyi Tong, Chungang Duan, Jiamin Xue. Multiresistance states in ferro- and antiferroelectric trilayer boron nitride. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-023-44617-w
    24. Dongxing Yu, Yonglong Ga, Peng Li, Jiawei Jiang, Jinghua Liang, Liming Wang, Chenglong Jia, Kai Chang, Hongxin Yang. Voltage-Controlled Bimeron-Torques Switching of In-Plane Magnetization. Physical Review Letters 2024, 133 (20) https://doi.org/10.1103/PhysRevLett.133.206701
    25. Jianing Tan, Degao Xu, Meng Ge, Guowei Yang, Gang Ouyang. Sliding ferromagnetism in bilayer MnSiSe 3 and its application to spintronics. Physical Review B 2024, 110 (12) https://doi.org/10.1103/PhysRevB.110.125402
    26. Anouk S. Goossens, Kartik Samanta, Azminul Jaman, Wissem Boubaker, Job J. L. van Rijn, Evgeny Y. Tsymbal, Tamalika Banerjee. Symmetry-driven large tunneling magnetoresistance in SrRuO 3 magnetic tunnel junctions with perpendicular magnetic anisotropy. Physical Review Materials 2024, 8 (9) https://doi.org/10.1103/PhysRevMaterials.8.L091401
    27. Dong Wei, Gaofu Guo, Heng Yu, Yi Li, Yaqiang Ma, Yanan Tang, Zhen Feng, Xianqi Dai. Giant tunneling resistance and robust switching behavior in ferroelectric tunnel junctions of WS2/Ga2O3 heterostructures: The influence of metal–semiconductor contacts. Journal of Applied Physics 2024, 136 (7) https://doi.org/10.1063/5.0220243
    28. James P. Barnard, Jianan Shen, Benson Kunhung Tsai, Yizhi Zhang, Max R. Chhabra, Ke Xu, Xinghang Zhang, Raktim Sarma, Aleem Siddiqui, Haiyan Wang. Large Area Transfer of Bismuth‐Based Layered Oxide Thin Films Using a Flexible Polymer Transfer Method. Small Science 2024, 32 https://doi.org/10.1002/smsc.202400114
    29. Qianqian Sun, Kang An, Leimei Sheng, Xinluo Zhao. Tunneling magnetoresistance effect with controlled spin polarization based on Mn 3 ZnN. Japanese Journal of Applied Physics 2024, 63 (5) , 050902. https://doi.org/10.35848/1347-4065/ad42ea
    30. Zhi Yan, Ruixia Yang, Cheng Fang, Wentian Lu, Xiaohong Xu. Giant electrode effect on tunneling magnetoresistance and electroresistance in van der Waals intrinsic multiferroic tunnel junctions using VS 2 . Physical Review B 2024, 109 (20) https://doi.org/10.1103/PhysRevB.109.205409
    31. Jianan Shen, James P. Barnard, Haiyan Wang. A new class of single-phase multiferroics: Bismuth-based layered supercell oxide thin films—Current progress and future perspectives. APL Materials 2024, 12 (4) https://doi.org/10.1063/5.0201790
    32. Guogang Liu, Zhonghui Xu, Xianbo Xiao, San-Huang Ke. Significantly enhanced tunneling electroresistance in two-dimensional ferroelectric tunnel junctions realized by reversible Schottky-Ohmic contact switching. Physical Review B 2024, 109 (15) https://doi.org/10.1103/PhysRevB.109.155418
    33. Shiying He, Daifeng Zou. Enhanced tunneling electroresistance through interfacial charge-modulated barrier in α-In 2 Se 3 -based ferroelectric tunnel junction. Journal of Physics: Condensed Matter 2024, 36 (11) , 115301. https://doi.org/10.1088/1361-648X/ad1301
    34. Ben Walters, Corey Lammie, Shuangming Yang, Mohan V Jacob, Mostafa Rahimi Azghadi. Unsupervised character recognition with graphene memristive synapses. Neural Computing and Applications 2024, 36 (4) , 1569-1584. https://doi.org/10.1007/s00521-023-09135-2
    35. Yulin Feng, Jiangchao Han, Kun Zhang, Xiaoyang Lin, Guoying Gao, Qing Yang, Sheng Meng. van der Waals multiferroic tunnel junctions based on sliding multiferroic layered VSi 2 N 4 . Physical Review B 2024, 109 (8) https://doi.org/10.1103/PhysRevB.109.085433
    36. Xiao-Hui Guo, Lin Zhu, Zeng-Lin Cao, Kai-Lun Yao. Tunable multiple nonvolatile resistance states in a MnSe-based van der Waals multiferroic tunnel junction. Physical Chemistry Chemical Physics 2024, 26 (4) , 3531-3539. https://doi.org/10.1039/D3CP05029G
    37. Zhou Cui, Baisheng Sa, Kan-Hao Xue, Yinggan Zhang, Rui Xiong, Cuilian Wen, Xiangshui Miao, Zhimei Sun. Magnetic-ferroelectric synergic control of multilevel conducting states in van der Waals multiferroic tunnel junctions towards in-memory computing. Nanoscale 2024, 16 (3) , 1331-1344. https://doi.org/10.1039/D3NR04712A
    38. Xiubing Zhang, Haoming Wei, Yangqing Wu, Tengzhou Yang, Bingqiang Cao. Giant tunnel resistance effect in (SrTiO 3 ) 2 /(BaTiO 3 ) 4 /(CaTiO 3 ) 2 asymmetric superlattice with enhanced polarization. Physical Chemistry Chemical Physics 2024, 7 https://doi.org/10.1039/D3CP04608G
    39. Masoumeh Davoudiniya, Biplab Sanyal. Efficient spin filtering through Fe 4 GeTe 2 -based van der Waals heterostructures. Nanoscale Advances 2024, 200 https://doi.org/10.1039/D4NA00639A
    40. Wei Xiao, Xiaohong Zheng, Hua Hao, Lili Kang, Lei Zhang, Zhi Zeng. Greatly enhanced tunneling electroresistance in ferroelectric tunnel junctions with a double barrier design. npj Computational Materials 2023, 9 (1) https://doi.org/10.1038/s41524-023-01101-9
    41. Fumin Zhang, Lili Kang, Chang Liu, Bing Wang, Huabing Yin. The polarization-modulated electronic structure and giant tunneling-electroresistance effect of a one-dimensional ferroelectric Ta4OTe9I4 nanowire. Applied Physics Letters 2023, 123 (20) https://doi.org/10.1063/5.0176290
    42. Jie Yang, Baochun Wu, Jun Zhou, Jing Lu, Jinbo Yang, Lei Shen. Full electrical control of multiple resistance states in van der Waals sliding multiferroic tunnel junctions. Nanoscale 2023, 15 (39) , 16103-16111. https://doi.org/10.1039/D3NR03951J
    43. Hui Gan, Shengchun Shen, Yaoxin Li, Yuewei Yin, Xiaoguang Li. Performance manipulation of ferroelectric tunnel junctions via oxygen vacancies in barrier. Acta Materialia 2023, 255 , 119101. https://doi.org/10.1016/j.actamat.2023.119101
    44. Boyuan Chi, Leina Jiang, Yu Zhu, Lingling Tao, Xiufeng Han. Enhanced tunneling electroresistance in multiferroic tunnel junctions through the barrier insulating-metallic transition: A first-principles study. Applied Physics Letters 2023, 123 (5) https://doi.org/10.1063/5.0159999
    45. Leina Jiang, Y. Zhu, B. Y. Chi, X. F. Han. Enhanced tunneling electroresistance effect by interface engineering. 2023, 1-2. https://doi.org/10.1109/INTERMAGShortPapers58606.2023.10228357
    46. Jin Yuan, Jian-Qing Dai, Yu-Zhu Liu, Miao-Wei Zhao. Enhanced tunneling electroresistance effect in Pt/BiAlO3/Pt ferroelectric tunnel junctions by a graphene interlayer. Applied Surface Science 2023, 619 , 156726. https://doi.org/10.1016/j.apsusc.2023.156726
    47. Ziyuan Liu, Lei Tao, Yan-Fang Zhang, Jinbo Pan, Shixuan Du. Designing two-dimensional ferroelectric materials from phosphorus-analogue structures. Nano Research 2023, 16 (4) , 5834-5842. https://doi.org/10.1007/s12274-022-5213-6
    48. Zhou Cui, Ting Li, Rui Xiong, Cuilian Wen, Yinggan Zhang, Jingying Zheng, Bo Wu, Baisheng Sa. The giant tunneling electroresistance effect in monolayer In 2 SSeTe-based lateral ferroelectric tunnel junctions. Materials Advances 2023, 4 (6) , 1572-1582. https://doi.org/10.1039/D2MA01079H
    49. Zhen Zhao, Zhaohua Li, Hongwei Yan, Yupeng Zhang, Xiaobing Yan. Artificial Synapse Based on Vertically Aligned Nanocomposite Ferroelectric Thin Films. IEEE Electron Device Letters 2023, 44 (3) , 424-427. https://doi.org/10.1109/LED.2023.3237619
    50. Dongxing Yu, Yonglong Ga, Jinghua Liang, Chenglong Jia, Hongxin Yang. Voltage-Controlled Dzyaloshinskii-Moriya Interaction Torque Switching of Perpendicular Magnetization. Physical Review Letters 2023, 130 (5) https://doi.org/10.1103/PhysRevLett.130.056701
    51. P. M. Visakh, Raneesh Balakrishnan. Nanotechnology in Electronics, Materials Properties, and Devices: State of the Art and Future Challenges. 2023, 1-23. https://doi.org/10.1002/9783527824229.ch1
    52. Jini K. Jose, Raneesh Balakrishnan. Multiferroics for Spintronic Applications. 2023, 301-316. https://doi.org/10.1002/9783527824229.ch10
    53. Rajesh Saha, Deepak Kumar Panda, Rupam Goswami. Dependence of RF/analog and linearity parameters on ferroelectric layer thickness in ferroelectric tunnel junction dual material double gate (FTJ-DMDG) TFET. Ferroelectrics 2023, 602 (1) , 204-214. https://doi.org/10.1080/00150193.2022.2149315
    54. Gokaran Shukla, Hasan M. Abdullah, Avijeet Ray, Shubham Tyagi, Aurélien Manchon, Stefano Sanvito, Udo Schwingenschlögl. ZnSe and ZnTe as tunnel barriers for Fe-based spin valves. Physical Chemistry Chemical Physics 2023, 66 https://doi.org/10.1039/D3CP00833A
    55. Ambika Ray, Tanmoy Basu. Perovskite metal oxide-based composite materials: Potential candidates for electronics and optoelectronics. 2023, 203-229. https://doi.org/10.1016/B978-0-323-99529-0.00024-2
    56. Huamin Hu, Degao Xu, Gang Ouyang. Interface design for the transport properties in asymmetric two-dimensional van der Waals multiferroic tunnel junctions. Physica E: Low-dimensional Systems and Nanostructures 2023, 145 , 115501. https://doi.org/10.1016/j.physe.2022.115501
    57. Ligong Zhang, Yuchen Wang, Xiaoyan Liu, Fei Liu. Electrical switching of spin-polarized current in multiferroic tunneling junctions. npj Computational Materials 2022, 8 (1) https://doi.org/10.1038/s41524-022-00886-5
    58. Zhenning Sun, Xinru Li, Jianwei Li, Yadong Wei, Hong Guo, Jian Wang. Intrinsic bitunable magnetism/polarity behavior in 2D Janus Cr2I3Y3 (Y = F, Cl, or Br) systems. npj 2D Materials and Applications 2022, 6 (1) https://doi.org/10.1038/s41699-022-00343-3
    59. Puja Ghosh, Brinda Bhowmick. Performance enhancement of a FET device with ferroelectric tunnel junction and its application as a biosensor. Journal of Computational Electronics 2022, 21 (6) , 1416-1424. https://doi.org/10.1007/s10825-022-01935-4
    60. Junxiong Hu, Jiangbo Luo, Yuntian Zheng, Jiayu Chen, Ganesh Ji Omar, Andrew Thye Shen Wee, A. Ariando. Magnetic proximity effect at the interface of two-dimensional materials and magnetic oxide insulators. Journal of Alloys and Compounds 2022, 911 , 164830. https://doi.org/10.1016/j.jallcom.2022.164830
    61. Hongfang Li, Weijin Chen, Xin Luo, Yue Zheng. Enhanced tunneling magnetoresistance and spin filtering in perovskite magnetic tunnel junctions via oxygen octahedral tilting. Physical Review B 2022, 106 (3) https://doi.org/10.1103/PhysRevB.106.035126
    62. Yancong Chen, Zhiyuan Tang, Minzhi Dai, Xin Luo, Yue Zheng. Giant magnetoresistance and tunneling electroresistance in multiferroic tunnel junctions with 2D ferroelectrics. Nanoscale 2022, 14 (24) , 8849-8857. https://doi.org/10.1039/D2NR00785A
    63. Gokaran Shukla, Stefano Sanvito, Geunsik Lee. Fe- and Co-based magnetic tunnel junctions with AlN and ZnO spacers. Physical Review B 2022, 105 (18) https://doi.org/10.1103/PhysRevB.105.184427
    64. L. N. Jiang, Yun-Peng Wang, Y. Zhu, X. F. Han. Enhanced tunneling electroresistance effect by designing interfacial ferroelectric polarization in multiferroic tunnel junctions. Physical Review B 2022, 105 (13) https://doi.org/10.1103/PhysRevB.105.134410
    65. Philippe Ghosez, Javier Junquera. Modeling of Ferroelectric Oxide Perovskites: From First to Second Principles. Annual Review of Condensed Matter Physics 2022, 13 (1) , 325-364. https://doi.org/10.1146/annurev-conmatphys-040220-045528
    66. Rajesh Saha, Rupam Goswami, Brinda Bhowmick, Srimanta Baishya. Comprehensive investigation of radiofrequency/analog parameters in a ferroelectric tunnel field-effect transistor. Semiconductor Science and Technology 2022, 37 (3) , 035008. https://doi.org/10.1088/1361-6641/ac3dd4
    67. Zhi Yan, Zeyu Li, Yulei Han, Zhenhua Qiao, Xiaohong Xu. Giant tunneling magnetoresistance and electroresistance in α − In 2 Se 3 -based van der Waals multiferroic tunnel junctions. Physical Review B 2022, 105 (7) https://doi.org/10.1103/PhysRevB.105.075423
    68. Tabbi Wilberforce, Mohammad A. Abdelkareem, Mohamad Ramadan, Abdul-Ghani Olabi, Enas T. Sayed, Khaled Elsaid, Hussein M. Maghrabie. Spintronic Materials and Devices. 2022, 192-199. https://doi.org/10.1016/B978-0-12-815732-9.00150-9
    69. I. S. Zlobin, R. R. Aisin, V. V. Novikov. Iron(II) Clathrochelates in Molecular Spintronic Devices: A Vertical Spin Valve. Russian Journal of Coordination Chemistry 2022, 48 (1) , 33-40. https://doi.org/10.1134/S1070328422010080
    70. Carlos Leon, Jacobo Santamaria. Defects in oxide crystals: nanoscale and interfacial effects. 2022, 199-229. https://doi.org/10.1016/B978-0-08-102945-9.00002-2
    71. Jakub Pawlak, Witold Skowroński, Antoni Żywczak, Marek Przybylski. Room‐Temperature Multiferroicity and Magnetization Dynamics in Fe/BTO/LSMO Tunnel Junction. Advanced Electronic Materials 2022, 8 (1) https://doi.org/10.1002/aelm.202100574
    72. Zhaojin Chen, Qiong Yang, Lingling Tao, Evgeny Y. Tsymbal. Reversal of the magnetoelectric effect at a ferromagnetic metal/ferroelectric interface induced by metal oxidation. npj Computational Materials 2021, 7 (1) https://doi.org/10.1038/s41524-021-00679-2
    73. T. Aull, I. V. Maznichenko, S. Ostanin, E. Şaşıoğlu, I. Mertig. Externally controlled and switchable two-dimensional electron gas at the Rashba interface between ferroelectrics and heavy d metals. Physical Review Research 2021, 3 (4) https://doi.org/10.1103/PhysRevResearch.3.043110
    74. Wei Xiao, Lili Kang, Hua Hao, Yanhong Zhou, Lei Zhang, Xiaohong Zheng, Zhi Zeng. Giant tunneling electroresistance arising from reversible partial barrier metallization in the NaTiO 3 /BaTiO 3 /LaTiO 3 ferroelectric tunnel junction. Physical Chemistry Chemical Physics 2021, 23 (30) , 16349-16356. https://doi.org/10.1039/D1CP01767E
    75. Jing Su, Xingwen Zheng, Zheng Wen, Tao Li, Shijie Xie, Karin M. Rabe, Xiaohui Liu, Evgeny Y. Tsymbal. Resonant band engineering of ferroelectric tunnel junctions. Physical Review B 2021, 104 (6) https://doi.org/10.1103/PhysRevB.104.L060101
    76. Xianfeng Liang, Alexei Matyushov, Patrick Hayes, Viktor Schell, Cunzheng Dong, Huaihao Chen, Yifan He, Alexandria Will-Cole, Eckhard Quandt, Pedro Martins, Jeffrey McCord, Marisa Medarde, Senentxu Lanceros-Mendez, Sebastiaan van Dijken, Nian X. Sun, Jordi Sort. Roadmap on Magnetoelectric Materials and Devices. IEEE Transactions on Magnetics 2021, 57 (8) , 1-57. https://doi.org/10.1109/TMAG.2021.3086635
    77. Huimin Qiao, Chenxi Wang, Woo Seok Choi, Min Hyuk Park, Yunseok Kim. Ultra-thin ferroelectrics. Materials Science and Engineering: R: Reports 2021, 145 , 100622. https://doi.org/10.1016/j.mser.2021.100622
    78. Rachid Sbiaa. Multistate Magnetic Domain Wall Devices for Neuromorphic Computing. physica status solidi (RRL) – Rapid Research Letters 2021, 15 (7) https://doi.org/10.1002/pssr.202100125
    79. Rajesh Saha. Simulation study on ferroelectric layer thickness dependence RF/Analog and linearity parameters in ferroelectric tunnel junction TFET. Microelectronics Journal 2021, 113 , 105081. https://doi.org/10.1016/j.mejo.2021.105081
    80. L. N. Jiang, Yun-Peng Wang, W. Z. Chen, X. F. Han. Giant ferroelectric modulation of barrier height and width in multiferroic tunnel junctions. Physical Review B 2021, 103 (21) https://doi.org/10.1103/PhysRevB.103.214441
    81. Alberto Rivera‐Calzada, Fernando Gallego, Yoav Kalcheim, Pavel Salev, Javier del Valle, Isabel Tenreiro, Carlos León, Jacobo Santamaría, Ivan K. Schuller. Switchable Optically Active Schottky Barrier in La 0.7 Sr 0.3 MnO 3 /BaTiO 3 /ITO Ferroelectric Tunnel Junction. Advanced Electronic Materials 2021, 7 (6) https://doi.org/10.1002/aelm.202100069
    82. Tony Schenk, Stefan Mueller. A New Generation of Memory Devices Enabled by Ferroelectric Hafnia and Zirconia. 2021, 1-11. https://doi.org/10.1109/ISAF51943.2021.9477377
    83. V. Rouco, F. Gallego, D. Hernandez-Martin, D. Sanchez-Manzano, J. Tornos, J. I. Beltran, M. Cabero, F. Cuellar, D. Arias, G. Sanchez-Santolino, F. J. Mompean, M. Garcia-Hernandez, A. Rivera-Calzada, M. Varela, M. C. Muñoz, C. Leon, Z. Sefrioui, J. Santamaria. Ferroionic inversion of spin polarization in a spin-memristor. APL Materials 2021, 9 (3) https://doi.org/10.1063/5.0039030
    84. Zengjie Li, Xiang Liu, Jiawei Jiang, Wenbo Mi, Haili Bai. Electric field induced reversal of spin polarization, magnetic anisotropy and tailored Dzyaloshinskii–Moriya interaction in underoxidized SrRuO 3 /SrTiO 3 heterostructures. Physical Chemistry Chemical Physics 2021, 23 (4) , 3008-3018. https://doi.org/10.1039/D0CP06362B
    85. Xianzhe Zhu, Wang Chen, Xiaoying Zhou, Xianbo Xiao, Guanghui Zhou. Unusual transport property of two-dimensional semi-Dirac system modulated by magnetic barriers. Physica E: Low-dimensional Systems and Nanostructures 2021, 126 , 114462. https://doi.org/10.1016/j.physe.2020.114462
    86. Alexander I. Lebedev. Piezoelectric properties of ferroelectric perovskite superlattices with polar discontinuity. Computational Materials Science 2021, 188 , 110113. https://doi.org/10.1016/j.commatsci.2020.110113
    87. Ye Yuan, Yue-Wen Fang, Yi-Feng Zhao, Chun-Gang Duan. Intrinsic asymmetric ferroelectricity induced giant electroresistance in ZnO/BaTiO 3 superlattice. RSC Advances 2021, 11 (4) , 2353-2358. https://doi.org/10.1039/D0RA09228B
    88. P. Karuna Kumari, Manish K. Niranjan. Interface magnetoelectric effect and its sensitivity on interface structures in Fe/AgNbO3 and SrRuO3/AgNbO3 heterostructures: A first-principles investigation. Journal of Magnetism and Magnetic Materials 2021, 517 , 167372. https://doi.org/10.1016/j.jmmm.2020.167372
    89. Xiaoyue Zhang, Weijin Chen, Bangmin Zhang, Weiming Xiong, Yue Zheng. Revisiting the switching characteristics and electroresistance effect in ferroelectric thin film towards an optimized hybrid switching strategy. Journal of Applied Physics 2020, 128 (22) https://doi.org/10.1063/5.0024166
    90. D. Hernandez-Martin, F. Gallego, J. Tornos, V. Rouco, J. I. Beltran, C. Munuera, D. Sanchez-Manzano, M. Cabero, F. Cuellar, D. Arias, G. Sanchez-Santolino, F. J. Mompean, M. Garcia-Hernandez, A. Rivera-Calzada, S. J. Pennycook, M. Varela, M. C. Muñoz, Z. Sefrioui, C. Leon, J. Santamaria. Controlled Sign Reversal of Electroresistance in Oxide Tunnel Junctions by Electrochemical-Ferroelectric Coupling. Physical Review Letters 2020, 125 (26) https://doi.org/10.1103/PhysRevLett.125.266802
    91. Qilong Sun, Farzad Mahfouzi, Julian P. Velev, Evgeny Y. Tsymbal, Nicholas Kioussis. Ferroelectric-driven tunable magnetism in ultrathin platinum films. Physical Review Materials 2020, 4 (12) https://doi.org/10.1103/PhysRevMaterials.4.124401
    92. Alexander I. Lebedev. Piezoelectric properties of II–IV/I–V and II–IV/III–III ferroelectric perovskite superlattices. Ferroelectrics 2020, 567 (1) , 89-101. https://doi.org/10.1080/00150193.2020.1791592
    93. Hongfang Li, Weijin Chen, Yue Zheng. Tailoring nanoscale polarization patterns and transport properties in ferroelectric tunnel junctions by octahedral tilts in electrodes. RSC Advances 2020, 10 (58) , 35367-35373. https://doi.org/10.1039/D0RA04740F
    94. Bo-Bo Tian, Ni Zhong, Chun-Gang Duan. Recent advances, perspectives, and challenges in ferroelectric synapses*. Chinese Physics B 2020, 29 (9) , 097701. https://doi.org/10.1088/1674-1056/aba603
    95. Simeon J Gilbert, Peter A Dowben. Direct measurements of proximity induced spin polarization in 2D systems. Journal of Physics D: Applied Physics 2020, 53 (34) , 343001. https://doi.org/10.1088/1361-6463/ab8b05
    96. Qilong Sun, Yandong Ma, Nicholas Kioussis. Two-dimensional Dirac spin-gapless semiconductors with tunable perpendicular magnetic anisotropy and a robust quantum anomalous Hall effect. Materials Horizons 2020, 7 (8) , 2071-2077. https://doi.org/10.1039/D0MH00396D
    97. Youngjun Park, Min-Kyu Kim, Jang-Sik Lee. Emerging memory devices for artificial synapses. Journal of Materials Chemistry C 2020, 8 (27) , 9163-9183. https://doi.org/10.1039/D0TC01500H
    98. Elzbieta Gradauskaite, Marco Campanini, Banani Biswas, Christof W. Schneider, Manfred Fiebig, Marta D. Rossell, Morgan Trassin. Robust In‐Plane Ferroelectricity in Ultrathin Epitaxial Aurivillius Films. Advanced Materials Interfaces 2020, 7 (14) , 2000202. https://doi.org/10.1002/admi.202000202
    99. Katayoon Mohseni, Holger L. Meyerheim. The Atomic Structure of Ultrathin Oxide Films and Interfaces Studied by Surface X‐Ray Diffraction. physica status solidi (b) 2020, 257 (7) https://doi.org/10.1002/pssb.201900605
    100. Linfeng Sun, Wei Wang, Heejun Yang. Recent Progress in Synaptic Devices Based on 2D Materials. Advanced Intelligent Systems 2020, 2 (5) , 1900167. https://doi.org/10.1002/aisy.201900167
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2009, 9, 1, 427–432
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl803318d
    Published December 29, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    5732

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.