ACS Publications. Most Trusted. Most Cited. Most Read
Superconductivity and Quantum Oscillations in Crystalline Bi Nanowire
My Activity
    Letter

    Superconductivity and Quantum Oscillations in Crystalline Bi Nanowire
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Nanoscale Science (CNS), Department of Physics, Materials Research Institute (MRI), Department of Chemistry, the Pennsylvania State University, University Park, Pennsylvania 16802-6300
    * To whom correspondence should be addressed. E-mail: (M.T.) [email protected]; (J.W.) [email protected]; (M.H.W.C.) [email protected]
    †Center for Nanoscale Science (CNS).
    ‡Department of Physics.
    §Materials Research Institute (MRI).
    ∥Department of Chemistry.
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2009, 9, 9, 3196–3202
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl901431t
    Published August 11, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    While bulk bismuth (Bi) is a semimetal, we have found clear evidence of superconductivity in 72 nm diameter crystalline Bi nanowire below 1.3 K. In a parallel magnetic field (H), the residual resistance of the nanowire below Tc displays periodic oscillations with H, and the period corresponds to a superconducting flux quantum. This result indicates that the superconductivity originates from the cylindrical shell between Bi inner core and the surface oxide layer. Under a perpendicular H, the resistance in the superconducting state shows Shubnikov−de Haas (SdH)-like oscillations, a signature of a normal metal. These results suggest a novel coexistence of superconducting and metallic states in the temperatures well below Tc.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 73 publications.

    1. Mahmoud Sayed, Jiaguo Yu, Gang Liu, Mietek Jaroniec. Non-Noble Plasmonic Metal-Based Photocatalysts. Chemical Reviews 2022, 122 (11) , 10484-10537. https://doi.org/10.1021/acs.chemrev.1c00473
    2. Chi-Hung Lee, Ken-Ming Lin, Yu-Hui Tang, Bo-Yong Wu, Ma-Hsuan Ma, Wen-Hsien Li. Evidence of High-Temperature Superconductivity at 18 K in Nanosized Rhombohedral Bi Enhanced by Ni-Doping. ACS Omega 2019, 4 (3) , 4627-4635. https://doi.org/10.1021/acsomega.8b02984
    3. Libin Wang, Chuan Xu, Zhibo Liu, Long Chen, Xiuliang Ma, Hui-Ming Cheng, Wencai Ren, and Ning Kang . Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals. ACS Nano 2016, 10 (4) , 4504-4510. https://doi.org/10.1021/acsnano.6b00270
    4. Mingliang Tian, Jian Wang, Wei Ning, Thomas E. Mallouk, and Moses H. W. Chan . Surface Superconductivity in Thin Cylindrical Bi Nanowire. Nano Letters 2015, 15 (3) , 1487-1492. https://doi.org/10.1021/nl503398d
    5. Fan Dong, Qiuyan Li, Yanjuan Sun, and Wing-Kei Ho . Noble Metal-Like Behavior of Plasmonic Bi Particles as a Cocatalyst Deposited on (BiO)2CO3 Microspheres for Efficient Visible Light Photocatalysis. ACS Catalysis 2014, 4 (12) , 4341-4350. https://doi.org/10.1021/cs501038q
    6. Steven J. Limmer, W. Graham Yelton, Kristopher J. Erickson, Douglas L. Medlin, and Michael P. Siegal . Recrystallized Arrays of Bismuth Nanowires with Trigonal Orientation. Nano Letters 2014, 14 (4) , 1927-1931. https://doi.org/10.1021/nl404752p
    7. Zhi Wang, Chunli Jiang, Rong Huang, Hui Peng, and Xiaodong Tang . Investigation of Optical and Photocatalytic Properties of Bismuth Nanospheres Prepared by a Facile Thermolysis Method. The Journal of Physical Chemistry C 2014, 118 (2) , 1155-1160. https://doi.org/10.1021/jp4065505
    8. Jakub A. Koza, Eric W. Bohannan, and Jay A. Switzer . Superconducting Filaments Formed During Nonvolatile Resistance Switching in Electrodeposited δ-Bi2O3. ACS Nano 2013, 7 (11) , 9940-9946. https://doi.org/10.1021/nn4038207
    9. DimitriD. Vaughn, II, Du Sun, Scott M. Levin, Adam J. Biacchi, Theresa S. Mayer, and Raymond E. Schaak . Colloidal Synthesis and Electrical Properties of GeSe Nanobelts. Chemistry of Materials 2012, 24 (18) , 3643-3649. https://doi.org/10.1021/cm3023192
    10. Jong Wook Roh, Kedar Hippalgaonkar, Jin Hee Ham, Renkun Chen, Ming Zhi Li, Peter Ercius, Arun Majumdar, Woochul Kim, and Wooyoung Lee . Observation of Anisotropy in Thermal Conductivity of Individual Single-Crystalline Bismuth Nanowires. ACS Nano 2011, 5 (5) , 3954-3960. https://doi.org/10.1021/nn200474d
    11. Yogesh Kumar, Prince Sharma, N. K. Karn, V. P. S. Awana. Shubnikov-de Haas (SdH) Oscillation in Self-Flux Grown Rhombohedral Single-Crystalline Bismuth. Journal of Superconductivity and Novel Magnetism 2023, 36 (2) , 389-395. https://doi.org/10.1007/s10948-023-06494-8
    12. Ahmed Kreta, Samo B. Hočevar. An In Situ AFM Study of Electrochemical Bismuth Film Deposition on a Glassy Carbon Substrate Electrode Using a Low Concentration of Bismuth Ions. 2022, 27. https://doi.org/10.3390/ASEC2022-13818
    13. . Preparation of Liquid Metal. 2022, 71-98. https://doi.org/10.1002/9783527828784.ch3
    14. Ying-Chu Chen, Zhi-Jie Wu, Yu-Kuei Hsu. Beyond noble metals: Plasmonics in nanobismuth for solar water splitting and surface-enhanced Raman scattering. Journal of Alloys and Compounds 2022, 899 , 163261. https://doi.org/10.1016/j.jallcom.2021.163261
    15. Michal Krupinski, Arkadiusz Zarzycki, Yevhen Zabila, Marta Marszałek. Weak Antilocalization Tailor-Made by System Topography in Large Scale Bismuth Antidot Arrays. Materials 2020, 13 (15) , 3246. https://doi.org/10.3390/ma13153246
    16. Anna S. Goncharova, Kirill S. Napolskii, Olga V. Skryabina, Vasily S. Stolyarov, Eduard E. Levin, Sergey V. Egorov, Andrei A. Eliseev, Yusif A. Kasumov, Valery V. Ryazanov, Galina A. Tsirlina. Bismuth nanowires: electrochemical fabrication, structural features, and transport properties. Physical Chemistry Chemical Physics 2020, 22 (26) , 14953-14964. https://doi.org/10.1039/D0CP01111H
    17. Seyyed Mohsen Beladi‐Mousavi, Yulong Ying, Jan Plutnar, Martin Pumera. Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahigh‐Aspect‐Ratio 2D Microsheets. Small 2020, 16 (29) https://doi.org/10.1002/smll.202002037
    18. Tadele Orbula Otomalo, Fabrice Mayran de Chamisso, Bruno Palpant. Complex-conjugate Pole-residue Pair-Based FDTD Method for Assessing Ultrafast Transient Plasmonic Near Field. Plasmonics 2020, 15 (2) , 495-505. https://doi.org/10.1007/s11468-019-01057-x
    19. A.V. Palnichenko, A.A. Mazilkin, O.G. Rybchenko, D.V. Shakhrai, O.M. Vyaselev. Superconducting-like behavior of Bi/Bi2O3 interface. Physica C: Superconductivity and its Applications 2020, 571 , 1353608. https://doi.org/10.1016/j.physc.2020.1353608
    20. Matthew Vaughan, Nathan Satchell, Mannan Ali, Christian J. Kinane, Gavin B. G. Stenning, Sean Langridge, Gavin Burnell. Origin of superconductivity at nickel-bismuth interfaces. Physical Review Research 2020, 2 (1) https://doi.org/10.1103/PhysRevResearch.2.013270
    21. Huichao Wang, Yanzhao Liu, Haiwen Liu, Jian Wang. Log-periodic quantum oscillations in topological or Dirac materials. Frontiers of Physics 2019, 14 (2) https://doi.org/10.1007/s11467-018-0878-8
    22. Ashish Chhaganlal Gandhi, Shrikrushna Shivaji Gaikwad, Jen-Chih Peng, Chin-Wei Wang, Ting Shan Chan, Sheng Yun Wu. Strong electron-phonon coupling in superconducting bismuth nanoparticles. APL Materials 2019, 7 (3) https://doi.org/10.1063/1.5068687
    23. Cristina Buzea, Ivan Pacheco. Electrical Properties of Nanowires and Nanofibers. 2019, 557-618. https://doi.org/10.1007/978-3-319-53655-2_14
    24. G. Baskaran. Theory of a fallen high Tc superconductivity in Ultra Low Tc Bismuth. Physica C: Superconductivity and its Applications 2018, 552 , 48-52. https://doi.org/10.1016/j.physc.2018.05.018
    25. Jian Wang, JunXiong Tang, ZiQiao Wang, Yi Sun, QingFeng Sun, Moses H. W. Chan. Novel voltage signal at proximity-induced superconducting transition temperature in gold nanowires. Science China Physics, Mechanics & Astronomy 2018, 61 (8) https://doi.org/10.1007/s11433-018-9210-x
    26. Ye Tian, Johann Toudert. Nanobismuth: Fabrication, Optical, and Plasmonic Properties—Emerging Applications. Journal of Nanotechnology 2018, 2018 , 1-23. https://doi.org/10.1155/2018/3250932
    27. Cristina Buzea, Ivan Pacheco. Electrical Properties of Nanowires and Nanofibers. 2018, 1-62. https://doi.org/10.1007/978-3-319-42789-8_14-1
    28. Naveed Hussain, Tongxiang Liang, Qingyun Zhang, Tauseef Anwar, Ya Huang, Jiangliang Lang, Kai Huang, Hui Wu. Ultrathin Bi Nanosheets with Superior Photoluminescence. Small 2017, 13 (36) https://doi.org/10.1002/smll.201701349
    29. Soumyadip Choudhury, Manfred Stamm. Hybrid Nanostructured Materials for Advanced Lithium Batteries. 2017, 1-78. https://doi.org/10.1002/9781119160380.ch1
    30. Om Prakash, Anil Kumar, A. Thamizhavel, S. Ramakrishnan. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure. Science 2017, 355 (6320) , 52-55. https://doi.org/10.1126/science.aaf8227
    31. Weiqiang Fan, Chunfa Li, Hongye Bai, Yanyan Zhao, Bifu Luo, Yongjun Li, Yilin Ge, Weidong Shi, Hongping Li. An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting. Journal of Materials Chemistry A 2017, 5 (10) , 4894-4903. https://doi.org/10.1039/C6TA11059B
    32. J Barzola-Quiquia, C Lauinger, M Zoraghi, M Stiller, S Sharma, P Häussler. Superconductivity in the amorphous phase of topological insulator Bi x Sb 100– x alloys. Superconductor Science and Technology 2017, 30 (1) , 015013. https://doi.org/10.1088/0953-2048/30/1/015013
    33. A.V. Palnichenko, O.M. Vyaselev, A.A. Mazilkin, S.S. Khasanov. Superconductivity in Al/Al 2 O 3 interface. Physica C: Superconductivity and its Applications 2016, 525-526 , 65-71. https://doi.org/10.1016/j.physc.2016.04.008
    34. Yangwei Zhang, Honglie Ning, Yanan Li, Yanzhao Liu, Jian Wang. Negative to positive crossover of the magnetoresistance in layered WS2. Applied Physics Letters 2016, 108 (15) https://doi.org/10.1063/1.4946859
    35. K. Makise, Y. Matsubara, S. Tasaki, K. Mitsuishi, B. Shinozaki. Superconductivity of In/Mo narrow wires fabricated using focused Ga-ion beam. Physica E: Low-dimensional Systems and Nanostructures 2016, 75 , 235-240. https://doi.org/10.1016/j.physe.2015.09.038
    36. H. Matsushima, S.-W. Lin, S. Morin, O. M. Magnussen. In situ video-STM studies of the mechanisms and dynamics of electrochemical bismuth nanostructure formation on Au. Faraday Discussions 2016, 193 , 171-185. https://doi.org/10.1039/C6FD00086J
    37. Zhao-cheng He, Xue-wei Wang, Yao-ren Kang, Zhi-hao Yuan. Melting and recrystallizing behaviors of Bi nanowires in the pores of anodic aluminum oxide template by Joule heating. Materials Chemistry and Physics 2015, 166 , 31-36. https://doi.org/10.1016/j.matchemphys.2015.09.046
    38. Yangwei Zhang, Xianghan Xu, Ying Xing, Huichao Wang, Hailong Fu, Xi Lin, Jian Wang. Growth and Electronic Transport Property of Layered BiOCl Microplates. Advanced Materials Interfaces 2015, 2 (12) https://doi.org/10.1002/admi.201500194
    39. Dechong Ma, Yan Zhao, Jingzhe Zhao, Yawen Li, Yan Lu, Duijia Zhao. Aqueous synthesis of hierarchical bismuth nanobundles with high catalytic activity to organic dyes. Superlattices and Microstructures 2015, 83 , 411-421. https://doi.org/10.1016/j.spmi.2015.03.052
    40. Xin Mu, Wen-Yu Zhao, Dan-Qi He, Hong-Yu Zhou, Wan-Ting Zhu, Qing-Jie Zhang. Synthesis and Characterization of High-Purity Bismuth Nanowires via Seed-Assisted Growth Approach. Journal of Electronic Materials 2015, 44 (6) , 2048-2054. https://doi.org/10.1007/s11664-015-3654-3
    41. Fangfang Gao, Yan Zhao, Yawen Li, Gongjuan Wu, Yan Lu, Yuehong Song, Zhifang Huang, Na Li, Jingzhe Zhao. Hierarchical Bi based nanobundles: An excellent photocatalyst for visible-light degradation of Rhodamine B dye. Journal of Colloid and Interface Science 2015, 448 , 564-572. https://doi.org/10.1016/j.jcis.2015.02.056
    42. A.V. Palnichenko, D.V. Shakhrai, V.V. Avdonin, O.M. Vyaselev, S.S. Khasanov. Superconductivity of Al/Al2O3 interface formed by shock-wave pressure. Physica C: Superconductivity and its Applications 2015, 512 , 6-11. https://doi.org/10.1016/j.physc.2015.02.006
    43. Zhang Xi, Liu Chao-Fei, Wang Jian, , . Recent experimental progress in low-dimensional superconductors. Acta Physica Sinica 2015, 64 (21) , 217405. https://doi.org/10.7498/aps.64.217405
    44. Chuan Li, A. Kasumov, Anil Murani, Shamashis Sengupta, F. Fortuna, K. Napolskii, D. Koshkodaev, G. Tsirlina, Y. Kasumov, I. Khodos, R. Deblock, M. Ferrier, S. Guéron, H. Bouchiat. Magnetic field resistant quantum interferences in Josephson junctions based on bismuth nanowires. Physical Review B 2014, 90 (24) https://doi.org/10.1103/PhysRevB.90.245427
    45. Xue-wei Wang, Chao Ma, Bing-cheng Fang, Zhi-hao Yuan. Abnormal resistance–temperature characteristic of the melting Bi nanowires. Current Applied Physics 2014, 14 (11) , 1543-1546. https://doi.org/10.1016/j.cap.2014.09.003
    46. Ta-Kun Chen, Chung-Chieh Chang, Hsin-Yu Tang, Hsian-Hong Chang, Yu-Ruei Wu, Min-Hsueh Wen, Yung-Chi Lee, Ming-Jye Wang, Maw-Kuen Wu, Fu-Rong Chen, Dirk Van Dyck. Structural characteristics and phase separation of superconducting Fe 1+ y Se 1− x Te x nanowires. Materials Research Express 2014, 1 (1) , 015026. https://doi.org/10.1088/2053-1591/1/1/015026
    47. H H Chang, C C Chang, Y Y Chiang, J Y Luo, P M Wu, C M Tseng, Y C Lee, Y R Wu, Y T Hsieh, M H Wen, M J Wang, M K Wu. Growth and characterization of superconducting β -FeSe type iron chalcogenide nanowires. Superconductor Science and Technology 2014, 27 (2) , 025015. https://doi.org/10.1088/0953-2048/27/2/025015
    48. Lin Hu, Ruirui Zhang, Qianwang Chen. Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale 2014, 6 (23) , 14064-14105. https://doi.org/10.1039/C4NR05108D
    49. G. Q. Huang, B. Li. Lattice dynamics and electron-phonon interaction in Bi/Bi 2 Te 3 (111) heteroepitaxial film. EPL (Europhysics Letters) 2013, 104 (5) , 57003. https://doi.org/10.1209/0295-5075/104/57003
    50. Ying Xing, Yi Sun, Meenakshi Singh, Yan-Fei Zhao, Moses H. W. Chan, Jian Wang. Electronic transport properties of topological insulator films and low dimensional superconductors. Frontiers of Physics 2013, 8 (5) , 491-508. https://doi.org/10.1007/s11467-013-0380-2
    51. R. C. Johnson, M. D. Nieskoski, S. M. Disseler, T. E. Huber, M. J. Graf. Superconductivity of Bi Confined in an Opal Host. Journal of Low Temperature Physics 2013, 170 (3-4) , 205-215. https://doi.org/10.1007/s10909-012-0768-3
    52. Melinda Mohl, Krisztián Kordás. Nanostructures of Common Metals. 2013, 389-408. https://doi.org/10.1007/978-3-642-20595-8_10
    53. Dechong Ma, Jingzhe Zhao, Yan Zhao, XinLi Hao, Yan Lu. An easy synthesis of 1D bismuth nanostructures in acidic solution and their photocatalytic degradation of rhodamine B. Chemical Engineering Journal 2012, 209 , 273-279. https://doi.org/10.1016/j.cej.2012.08.021
    54. M Y Sun, Z L Hou, T Zhang, Z Wang, W Shi, R Lortz, Ping Sheng. Dimensional crossover transition in a system of weakly coupled superconducting nanowires. New Journal of Physics 2012, 14 (10) , 103018. https://doi.org/10.1088/1367-2630/14/10/103018
    55. Tirtha Som, Anne Simo, Robert Fenger, Gerald V. Troppenz, Roman Bansen, Norbert Pfänder, Franziska Emmerling, Jörg Rappich, Torsten Boeck, Klaus Rademann. Bismuth Hexagons: Facile Mass Synthesis, Stability and Applications. ChemPhysChem 2012, 13 (8) , 2162-2169. https://doi.org/10.1002/cphc.201101009
    56. Q. Luo, X. Q. Zeng, M. E. Miszczak, Z. L. Xiao, J. Pearson, T. Xu, W. K. Kwok. Phase slippage driven dissipation and high-field Little-Parks effect in superconducting MoGe nanowire networks formed on nanoporous substrates. Physical Review B 2012, 85 (17) https://doi.org/10.1103/PhysRevB.85.174513
    57. Ye Tian, Chuan Fei Guo, Shengming Guo, Yongsheng Wang, Junjie Miao, Qi Wang, Qian Liu. Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage. AIP Advances 2012, 2 (1) https://doi.org/10.1063/1.3679086
    58. F. M. Muntyanu, A. Gilewski, K. Nenkov, A. J. Zaleski, V. Chistol. Magnetic properties and superconductivity of nano‐width crystallite interfaces of bicrystals and tricrystals of Bi 1− x –Sb x ( x  ≤ 0.2) alloys. physica status solidi (b) 2011, 248 (12) , 2903-2907. https://doi.org/10.1002/pssb.201147162
    59. YongTian Wang, ZongDe Liu, WeiHua Wang. Magnetoresistance oscillations in La-based metallic glass. Chinese Science Bulletin 2011, 56 (36) , 3984-3987. https://doi.org/10.1007/s11434-011-4764-9
    60. G. Koren, T. Kirzhner, E. Lahoud, K. B. Chashka, A. Kanigel. Proximity-induced superconductivity in topological Bi 2 Te 2 Se and Bi 2 Se 3 films: Robust zero-energy bound state possibly due to Majorana fermions. Physical Review B 2011, 84 (22) https://doi.org/10.1103/PhysRevB.84.224521
    61. Maria M. Koleśnik, Stefan Hansel, Tarek Lutz, Niall Kinahan, Markus Boese, Vojislav Krstić. Resolving In Situ Specific‐Contact, Current‐Crowding, and Channel Resistivity in Nanowire Devices: A Case Study with Silver Nanowires. Small 2011, 7 (20) , 2873-2877. https://doi.org/10.1002/smll.201100600
    62. N. S. Sidorov, A. V. Palnichenko, I. I. Zver’kova. Superconductivity at 125 K in the Metallic–Oxidized Iron Interface. Journal of Superconductivity and Novel Magnetism 2011, 24 (5) , 1433-1435. https://doi.org/10.1007/s10948-010-0847-0
    63. Hongyan Gu, Shiping Zhu. A one-step approach for the fabrication of polymer and metal nanowires. Nanotechnology 2011, 22 (26) , 265305. https://doi.org/10.1088/0957-4484/22/26/265305
    64. Meenakshi Singh, Jian Wang, Mingliang Tian, T. E. Mallouk, Moses H. W. Chan. Antiproximity effect in aluminum nanowires with no applied magnetic field. Physical Review B 2011, 83 (22) https://doi.org/10.1103/PhysRevB.83.220506
    65. N.S. Sidorov, A.V. Palnichenko, S.S. Khasanov. Superconductivity in the metallic–oxidized copper interface. Physica C: Superconductivity 2011, 471 (7-8) , 247-249. https://doi.org/10.1016/j.physc.2011.02.006
    66. Minli Yang. Fern-shaped bismuth dendrites electrodeposited at hydrogen evolution potentials. Journal of Materials Chemistry 2011, 21 (9) , 3119. https://doi.org/10.1039/c0jm03213a
    67. Kiyoung Lee, Seunghyun Lee, S. N. Holmes, Jinhee Ham, Wooyoung Lee, C. H. W. Barnes. Electron and hole mobilities in semimetallic bismuth nanowires. Physical Review B 2010, 82 (24) https://doi.org/10.1103/PhysRevB.82.245310
    68. Pang Fei, Yin Shu-Li, Liang Xue-Jin, Chen Dong-Min. Anomalous Magneto-Transport Properties of Epitaxial Single-Crystal Bi Films on Si(lll). Chinese Physics Letters 2010, 27 (10) , 107102. https://doi.org/10.1088/0256-307X/27/10/107102
    69. N.S. Sidorov, A.V. Palnichenko, S.S. Khasanov. Superconductivity in the metallic–oxidized sodium interface. Solid State Communications 2010, 150 (31-32) , 1483-1485. https://doi.org/10.1016/j.ssc.2010.05.039
    70. Nevin Taşaltın, Sadullah Öztürk, Necmettin Kılınç, Hayrettin Yüzer, Zafer Ziya Öztürk. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte. Nanoscale Research Letters 2010, 5 (7) , 1137-1143. https://doi.org/10.1007/s11671-010-9616-z
    71. Joong-Mok Park, Kanwar Singh Nalwa, Wai Leung, Kristen Constant, Sumit Chaudhary, Kai-Ming Ho. Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography. Nanotechnology 2010, 21 (21) , 215301. https://doi.org/10.1088/0957-4484/21/21/215301
    72. Xue Wei Wang, Zhi Hao Yuan. Electronic transport behavior of diameter-graded Ag nanowires. Physics Letters A 2010, 374 (22) , 2267-2269. https://doi.org/10.1016/j.physleta.2010.03.044
    73. Jian Wang, Meenakshi Singh, Mingliang Tian, Nitesh Kumar, Bangzhi Liu, Chuntai Shi, J. K. Jain, Nitin Samarth, T. E. Mallouk, M. H. W. Chan. Interplay between superconductivity and ferromagnetism in crystalline nanowires. Nature Physics 2010, 6 (5) , 389-394. https://doi.org/10.1038/nphys1621

    Nano Letters

    Cite this: Nano Lett. 2009, 9, 9, 3196–3202
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl901431t
    Published August 11, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    2476

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.