ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Signature of Helimagnetic Ordering in Single-Crystal MnSi Nanowires

View Author Information
Department of Chemistry, University of Wisconsin − Madison, 1101 University Avenue, Madison, Wisconsin 53706
* To whom correspondence should be addressed. E-mail: [email protected]
Cite this: Nano Lett. 2010, 10, 5, 1605–1610
Publication Date (Web):April 13, 2010
Copyright © 2010 American Chemical Society

    Article Views





    Other access options
    Supporting Info (1)»


    Abstract Image

    We report the synthesis, structural characterization, and magnetotransport of single-crystalline nanowires of manganese monosilicide, MnSi. Bulk MnSi has unusual magnetic orderings, helimagnetism, and skyrmions at ambient pressure, and high pressure studies have revealed partial magnetic ordering and non-Fermi liquid behavior. MnSi nanowires were synthesized using chemical vapor deposition of MnCl2 onto silicon substrates. The morphology, structure, and composition of these nanowires were analyzed using electron microscopy and X-ray spectroscopy. The low-temperature magnetoresistance characteristics of MnSi nanowires reveal the first signature of helimagnetism in one-dimensional nanomaterials.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.


    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    Jump To

    Cross-sectional SEM of “pits” on growth substrates, SEM of nanowire bases, SEM, HRTEM, and SAED of MnSi1.8 nanoribbons observed at elevated growth temperatures, reprinted magnetoresistance behaviors of MnSi reported in a bulk single-crystal, and magnetotransport of a second MnSi NW device. This material is available free of charge via the Internet at

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 73 publications.

    1. Najwa Hamzan, Mehran Sookhakian, Mohd Arif Mohd Sarjidan, Manoj Tripathi, Alan B. Dalton, Boon Tong Goh, Yatimah Alias. Synthesis of Manganese Silicide Nanowires by Thermal Chemical Vapor Deposition for the Hydrogen Evolution Reaction. ACS Applied Nano Materials 2023, 6 (13) , 12140-12149.
    2. Nitish Mathur, Matthew J. Stolt, Kodai Niitsu, Xiuzhen Yu, Daisuke Shindo, Yoshinori Tokura, Song Jin. Electron Holography and Magnetotransport Measurements Reveal Stabilized Magnetic Skyrmions in Fe1–xCoxSi Nanowires. ACS Nano 2019, 13 (7) , 7833-7841.
    3. Matthew J. Stolt, Zi-An Li, Brandon Phillips, Dongsheng Song, Nitish Mathur, Rafal E. Dunin-Borkowski, and Song Jin . Selective Chemical Vapor Deposition Growth of Cubic FeGe Nanowires That Support Stabilized Magnetic Skyrmions. Nano Letters 2017, 17 (1) , 508-514.
    4. Yen-Ting Wu, Chun-Wei Huang, Chung-Hua Chiu, Chia-Fu Chang, Jui-Yuan Chen, Ting-Yi Lin, Yu-Ting Huang, Kuo-Chang Lu, Ping-Hung Yeh, and Wen-Wei Wu . Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications. Nano Letters 2016, 16 (2) , 1086-1091.
    5. A. Mehlin, F. Xue, D. Liang, H. F. Du, M. J. Stolt, S. Jin, M. L. Tian, and M. Poggio . Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry. Nano Letters 2015, 15 (7) , 4839-4844.
    6. Haifeng Du, John P. DeGrave, Fei Xue, Dong Liang, Wei Ning, Jiyong Yang, Mingliang Tian, Yuheng Zhang, and Song Jin . Highly Stable Skyrmion State in Helimagnetic MnSi Nanowires. Nano Letters 2014, 14 (4) , 2026-2032.
    7. Mohammad Norouzi Banis, Xiangbo Meng, Yong Zhang, Mei Cai, Ruying Li, and Xueliang Sun . Spatially Sequential Growth of Various WSi2 Networked Nanostructures and Mechanisms. The Journal of Physical Chemistry C 2013, 117 (37) , 19189-19194.
    8. Xiuzhen Yu, John P. DeGrave, Yuka Hara, Toru Hara, Song Jin, and Yoshinori Tokura . Observation of the Magnetic Skyrmion Lattice in a MnSi Nanowire by Lorentz TEM. Nano Letters 2013, 13 (8) , 3755-3759.
    9. John P. DeGrave, Dong Liang, and Song Jin . A General Method To Measure the Hall Effect in Nanowires: Examples of FeS2 and MnSi. Nano Letters 2013, 13 (6) , 2704-2709.
    10. Ankit Pokhrel, Zachary P. Degregorio, Jeremy M. Higgins, Steven N. Girard, and Song Jin . Vapor Phase Conversion Synthesis of Higher Manganese Silicide (MnSi1.75) Nanowire Arrays for Thermoelectric Applications. Chemistry of Materials 2013, 25 (4) , 632-638.
    11. Hailong Liu, Guangwei She, Xing Huang, Xiaopeng Qi, Lixuan Mu, Xiangmin Meng, and Wensheng Shi . Synthesis and Magnetic Properties of Mn4Si7 and Si–Mn4Si7 Axial Heterostructure Nanowire Arrays. The Journal of Physical Chemistry C 2013, 117 (5) , 2377-2381.
    12. Yung-Chen Lin, Yu Chen, Renjie Chen, Kaushik Ghosh, Qihua Xiong, and Yu Huang . Crystallinity Control of Ferromagnetic Contacts in Stressed Nanowire Templates and the Magnetic Domain Anisotropy. Nano Letters 2012, 12 (8) , 4341-4348.
    13. Min-Hsiu Hung, Chiu-Yen Wang, Jianshi Tang, Ching-Chun Lin, Te-Chien Hou, Xiaowei Jiang, Kang L. Wang, and Lih-Juann Chen . Free-Standing and Single-Crystalline Fe1–xMnxSi Nanowires with Room-Temperature Ferromagnetism and Excellent Magnetic Response. ACS Nano 2012, 6 (6) , 4884-4891.
    14. Gang Liu, Yung-Chen Lin, Lei Liao, Lixin Liu, Yu Chen, Yuan Liu, Nathan O. Weiss, Hailong Zhou, Yu Huang, and Xiangfeng Duan . Domain Wall Motion in Synthetic Co2Si Nanowires. Nano Letters 2012, 12 (4) , 1972-1976.
    15. Akira Tonomura, Xiuzhen Yu, Keiichi Yanagisawa, Tsuyoshi Matsuda, Yoshinori Onose, Naoya Kanazawa, Hyun Soon Park, and Yoshinori Tokura . Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters 2012, 12 (3) , 1673-1677.
    16. Chun-I Tsai, Chiu-Yen Wang, Jianshi Tang, Min-Hsiu Hung, Kang L. Wang, and Lih-Juann Chen . Electrical Properties and Magnetic Response of Cobalt Germanosilicide Nanowires. ACS Nano 2011, 5 (12) , 9552-9558.
    17. John P. DeGrave, Andrew L. Schmitt, Rachel S. Selinsky, Jeremy M. Higgins, David J. Keavney, and Song Jin . Spin Polarization Measurement of Homogeneously Doped Fe1–xCoxSi Nanowires by Andreev Reflection Spectroscopy. Nano Letters 2011, 11 (10) , 4431-4437.
    18. Jeremy M. Higgins, Ruihua Ding, and Song Jin . Synthesis and Characterization of Manganese-Rich Silicide (α-Mn5Si3, β-Mn5Si3, and β-Mn3Si) Nanowires. Chemistry of Materials 2011, 23 (17) , 3848-3853.
    19. Yong Zhang, Dongsheng Geng, Hao Liu, Mohammad Norouzi Banis, Mihnea Ioan Ionescu, Ruying Li, Mei Cai, and Xueliang Sun . Designed Growth and Characterization of Radially Aligned Ti5Si3 Nanowire Architectures. The Journal of Physical Chemistry C 2011, 115 (32) , 15885-15889.
    20. Chaoyi Yan, Jeremy M. Higgins, Matthew S. Faber, Pooi See Lee, and Song Jin . Spontaneous Growth and Phase Transformation of Highly Conductive Nickel Germanide Nanowires. ACS Nano 2011, 5 (6) , 5006-5014.
    21. Jeremy M. Higgins, Penelope Carmichael, Andrew L. Schmitt, Stephen Lee, John P. Degrave, and Song Jin . Mechanistic Investigation of the Growth of Fe1−xCoxSi (0 ≤ x ≤ 1) and Fe5(Si1−yGey)3 (0 ≤ y ≤ 0.33) Ternary Alloy Nanowires. ACS Nano 2011, 5 (4) , 3268-3277.
    22. Yung-Chen Lin, Yu Chen, Alexandros Shailos and Yu Huang . Detection of Spin Polarized Carrier in Silicon Nanowire with Single Crystal MnSi as Magnetic Contacts. Nano Letters 2010, 10 (6) , 2281-2287.
    23. Najwa binti Hamzan, Min Kai Lee, Lieh-Jeng Chang, Keat Hoe Yeoh, Khian-Hooi Chew, Manoj Tripathi, Alan Dalton, Boon Tong Goh. Structural, electronic, and magnetic properties of MnSi and Mn4Si7 nanowires. Journal of Alloys and Compounds 2023, 962 , 171097.
    24. Zhe-Rui Gu, Shinjiro Hara. Magnetic domain control and its dependence on aspect ratio and thickness in Ni nanolayer patterns for nanowire spintronic devices. Japanese Journal of Applied Physics 2023, 62 (SG) , SG1012.
    25. Fumio Komeda, Shogo Itoh, Yosuke Shimura, Naohisa Takahashi, Hirokazu Tatsuoka. Synthesis of MnSi 1.7 nanosheet bundles from CaSi 2 crystal powders using MnCl 2 in molten salt. Japanese Journal of Applied Physics 2023, 62 (SD) , SD1021.
    26. Hang Li, Dongtao Niu, Zhongtao Zhang, Fan Yang, Hongxia Wang, Weili Cheng. One-Dimensional Mn5Si3 Nanorods: Fabrication, Microstructure, and Magnetic Properties via a Novel Casting-Extraction Route. Materials 2023, 16 (9) , 3540.
    27. V. M. Kuchkin, N. S. Kiselev. Homotopy transitions and 3D magnetic solitons. APL Materials 2022, 10 (7)
    28. Junais Habeeb Mokkath. Magnetic skyrmions in monoatomic-thin Gadolinium square-shaped nanoislands. Physica E: Low-dimensional Systems and Nanostructures 2022, 136 , 115015.
    29. Xiangfei Sun, Kunfeng Chen, Feng Liang, Chunyi Zhi, Dongfeng Xue. Perspective on Micro-Supercapacitors. Frontiers in Chemistry 2022, 9
    30. Najwa binti Hamzan, Calvin Yi Bin Ng, Rad Sadri, Min Kai Lee, Lieh-Jeng Chang, Manoj Tripathi, Alan Dalton, Boon Tong Goh. Controlled physical properties and growth mechanism of manganese silicide nanorods. Journal of Alloys and Compounds 2021, 851 , 156693.
    31. Andrey O. Leonov, Ivan M. Tambovtcev, Igor S. Lobanov, Valery M. Uzdin. Stability of in-plane and out-of-plane chiral skyrmions in epitaxial MnSi(111)/Si(111) thin films: Surface twists versus easy-plane anisotropy. Physical Review B 2020, 102 (17)
    32. Jinmei Wang, Dongyue Xie, Zhen Li, Xiaohang Zhang, Xing Sun, Amanda L. Coughlin, Thomas Ruch, Qiang Chen, Yaroslav Losovyj, Seunghun Lee, Heshan Yu, Haidong Zhou, Haiyan Wang, Jian Wang, Shixiong Zhang. Self-organization of various “phase-separated” nanostructures in a single chemical vapor deposition. Nano Research 2020, 13 (6) , 1723-1732.
    33. Nitish Mathur, Matthew J. Stolt, Song Jin. Magnetic skyrmions in nanostructures of non-centrosymmetric materials. APL Materials 2019, 7 (12)
    34. Shasha Wang, Jin Tang, Weiwei Wang, Lingyao Kong, Mingliang Tian, Haifeng Du. Electrical Detection of Magnetic Skyrmions. Journal of Low Temperature Physics 2019, 197 (3-4) , 321-336.
    35. Xiao Chen, Changhai Liang. Transition metal silicides: fundamentals, preparation and catalytic applications. Catalysis Science & Technology 2019, 9 (18) , 4785-4820.
    36. Matthew J. Stolt, Sebastian Schneider, Nitish Mathur, Melinda J. Shearer, Bernd Rellinghaus, Kornelius Nielsch, Song Jin. Electrical Detection and Magnetic Imaging of Stabilized Magnetic Skyrmions in Fe 1− x Co x Ge ( x < 0.1) Microplates. Advanced Functional Materials 2019, 29 (12)
    37. F Porrati, S Barth, R Sachser, F Jungwirth, M Eltsov, A S Frangakis, M Huth. Binary Mn–Si nanostructures prepared by focused electron beam induced deposition from the precursor SiH 3 Mn(CO) 5. Journal of Physics D: Applied Physics 2018, 51 (45) , 455301.
    38. Juanjuan Lu, Liangbiao Wang, Junhao Zhang, Qianwen Li, Weiqiao Liu, Zhengsong Lou, Ao Zheng, Quanfa Zhou. Preparation and magnetic properties of manganese silicide nanorods by a solid‐state reaction route. Micro & Nano Letters 2018, 13 (3) , 341-343.
    39. Siwei Tang. Morphology Evolution of Mn-Si Composition Gradient Micro/Nanomaterials Prepared by Oxygen Assisted Chemical Vapor Deposition. Journal of Nanomaterials 2018, 2018 , 1-7.
    40. Mayanglambam Manolata Devi, Menaka Jha, Ashok Kumar Ganguli, Suvankar Chakraverty. Efficient synthesis and characterization of Cu 2 OSeO 3 nanoparticles via hydrothermal route. Materials Research Express 2017, 4 (11) , 115007.
    41. Haifeng Du, Chiming Jin, Mingliang Tian. Chapter 7 Formation and Stability of Individual Skyrmions in Confined Geometries. 2016, 173-210.
    42. L Schmidt, J Hagemeister, P-J Hsu, A Kubetzka, K von Bergmann, R Wiesendanger. Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields. New Journal of Physics 2016, 18 (7) , 075007.
    43. John F. DiTusa. Si Based Magnetic Semiconductors. 2016, 523-561.
    44. Haifeng Du, Renchao Che, Lingyao Kong, Xuebing Zhao, Chiming Jin, Chao Wang, Jiyong Yang, Wei Ning, Runwei Li, Changqing Jin, Xianhui Chen, Jiadong Zang, Yuheng Zhang, Mingliang Tian. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nature Communications 2015, 6 (1)
    45. Chi-Ming Jin, Hai-Feng Du. Real-space observation of individual skyrmions in helimagnetic nanostripes. Chinese Physics B 2015, 24 (12) , 128501.
    46. Dong Liang, John P. DeGrave, Matthew J. Stolt, Yoshinori Tokura, Song Jin. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect. Nature Communications 2015, 6 (1)
    47. Haifeng Du, Dong Liang, Chiming Jin, Lingyao Kong, Matthew J. Stolt, Wei Ning, Jiyong Yang, Ying Xing, Jian Wang, Renchao Che, Jiadong Zang, Song Jin, Yuheng Zhang, Mingliang Tian. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nature Communications 2015, 6 (1)
    48. Marko Milivojević, Nataša Lazić, Tatjana Vuković, Milan Damnjanović. Regular phases of quasi-one-dimensional spin systems: Classification and imprints on diffraction. Physical Review B 2015, 92 (16)
    49. Lih-Juann Chen, Wen-Wei Wu. Metal silicide nanowires. Japanese Journal of Applied Physics 2015, 54 (7S2) , 07JA04.
    50. Hirokazu Tatsuoka, Hiroaki Suzuki, Takanori Suzuki, Wen Li, Junhua Hu, Xiang Meng, Erchao Meng. Synthesis and structural control of silicon and silicide nanowires/microrods using metal chloride sources. Japanese Journal of Applied Physics 2015, 54 (7S2) , 07JD02.
    51. Inchan Hwang, Yong-Jun Cho, Myoung-Jae Lee, Moon-Ho Jo. The role of contact resistance in GeTe and Ge2Sb2Te5 nanowire phase change memory reset switching current. Applied Physics Letters 2015, 106 (19)
    52. John F. DiTusa. Si-Based Magnetic Semiconductors. 2015, 1-33.
    53. Yu-Hsun Hsieh, Chung-Hua Chiu, Chun-Wei Huang, Jui-Yuan Chen, Wan-Jhen Lin, Wen-Wei Wu. Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures. Nanoscale 2015, 7 (5) , 1776-1781.
    54. Ankit Pokhrel, Leith Samad, Fei Meng, Song Jin. Synthesis and characterization of barium silicide (BaSi 2 ) nanowire arrays for potential solar applications. Nanoscale 2015, 7 (41) , 17450-17456.
    55. John F. DiTusa. Si- and Ge-based Magnetic Semiconductors. 2015, 1-33.
    56. Ankit Pokhrel, John P. DeGrave, Dong Liang, Jeremy M. Higgins, Song Jin. Growth of Metal Silicide Nanowires and Their Spintronic and Renewable Energy Applications. 2014, 312-362.
    57. Siwei Tang, Ivan Kravchenko, Jieyu Yi, Guixin Cao, Jane Howe, David Mandrus, Zheng Gai. Growth of skyrmionic MnSi nanowires on Si: Critical importance of the SiO2 layer. Nano Research 2014, 7 (12) , 1788-1796.
    58. V. V. Andrievskii, Yu. F. Komnik, I. B. Berkutov, I. G. Mirzoiev, N. G. Galkin, D. L. Goroshko. Kinetic properties of the two‐dimensional conducting system formed by CrSi 2 nanocrystallites in plane (111) of silicon. physica status solidi (b) 2014, 251 (3) , 601-608.
    59. A. O. Leonov, U. K. Rößler, M. Mostovoy, , , . Target-skyrmions and skyrmion clusters in nanowires of chiral magnets. EPJ Web of Conferences 2014, 75 , 05002.
    61. Jingchao Guan, Jianhui Jin, Xiao Chen, Bingsen Zhang, Dangsheng Su, Changhai Liang. Preparation and Formation Mechanism of Highly Dispersed Manganese Silicide on Silica by MOCVD of Mn(CO) 5 SiCl 3. Chemical Vapor Deposition 2013, 19 (1-3) , 68-73.
    62. Wen Li, Erchao Meng, Tomoji Matsushita, Shingo Oda, Daisuke Ishikawa, Kaito Nakane, Junhua Hu, Shaokang Guan, Akihiro Ishida, Hirokazu Tatsuoka. Syntheses and structural characterizations of CrSi2 nanostructures using Si substrates under CrCl2 vapor. Journal of Crystal Growth 2013, 365 , 11-18.
    63. Haifeng Du, Wie Ning, Mingliang Tian, Yuheng Zhang. Magnetic vortex with skyrmionic core in a thin nanodisk of chiral magnets. EPL (Europhysics Letters) 2013, 101 (3) , 37001.
    64. Sunghun Lee, Juneho In, Si-in Kim, Yun Chang Park, Hyunju Kim, Hana Yoon, Jinhee Kim, Sungyul Lee, Bongsoo Kim. Atomistically observing real-space structure of composition modulated (Nb0.94V0.06)10(SixGe1−x)7 nanowires with ultralow resistivity. Journal of Materials Chemistry C 2013, 1 (8) , 1674.
    65. Guangwei She, Hailong Liu, Lixuan Mu, Wensheng Shi. Synthesis, Properties, and Applications of One-Dimensional Transition Metal Silicide Nanostructures. 2013, 265-325.
    66. Hana Yoon, Kwanyong Seo, Juneho In, Bongsoo Kim. Metal Silicide and Germanide 1D Nanostructures. 2012, 237-278.
    67. Ha-Na Yoon, Young-Dong Yoo, Kwan-Yong Seo, June-Ho In, Bong-Soo Kim. Synthesis and Applications of Noble Metal and Metal Silicide and Germanide 1-Dimensional Nanostructures. Bulletin of the Korean Chemical Society 2012, 33 (9) , 2830-2844.
    68. Namjo Jeong, Jeong-gu Yeo. Selective synthesis and superconductivity of In–Sn intermetallic nanowires sheathed in carbon nanotubes. Nanotechnology 2012, 23 (28) , 285604.
    69. Leshu Yu, Yingying Lv, Xiaolan Zhang, Huizhen Wang. Application of in situ chloride-generated route to Ti5Si3 nanowires from and on Si substrate. Materials Letters 2012, 74 , 46-49.
    70. Yongliang Zhang, Qiang Wu, Weijin Qian, Ning Liu, Xingtai Qin, Leshu Yu, Xizhang Wang, Zheng Hu. Morphology-controlled growth of chromium silicide nanostructures and their field emission properties. CrystEngComm 2012, 14 (5) , 1659-1664.
    71. Yongquan Qu, Jingwei Bai, Lei Liao, Rui Cheng, Yung-Chen Lin, Yu Huang, Ting Guo, Xiangfeng Duan. Synthesis and electric properties of dicobalt silicide nanobelts. Chem. Commun. 2011, 47 (4) , 1255-1257.
    72. Cheng-Lun Hsin, Shih-Ying Yu, Wen-Wei Wu. Cobalt silicide nanocables grown on Co films: synthesis and physical properties. Nanotechnology 2010, 21 (48) , 485602.
    73. Yinxiao Du, Pei Ding. Solvothermal route to Fe–N–S–O nanowires. Journal of Alloys and Compounds 2010, 508 (2) , L28-L31.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect