ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Inorganic Hollow Nanotube Aerogels by Atomic Layer Deposition onto Native Nanocellulose Templates

View Author Information
Molecular Materials, Department of Applied Physics, Aalto University (formerly Helsinki University of Technology), Puumiehenkuja 2, 02150 Espoo, Finland
Laboratory of Inorganic Chemistry, Aalto University, Kemistintie 1, 02150 Espoo, Finland
*Address correspondence to [email protected]
Cite this: ACS Nano 2011, 5, 3, 1967–1974
Publication Date (Web):March 1, 2011
https://doi.org/10.1021/nn200108s
Copyright © 2011 American Chemical Society

    Article Views

    9455

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Hollow nano-objects have raised interest in applications such as sensing, encapsulation, and drug-release. Here we report on a new class of porous materials, namely inorganic nanotube aerogels that, unlike other aerogels, have a framework consisting of inorganic hollow nanotubes. First we show a preparation method for titanium dioxide, zinc oxide, and aluminum oxide nanotube aerogels based on atomic layer deposition (ALD) on biological nanofibrillar aerogel templates, that is, nanofibrillated cellulose (NFC), also called microfibrillated cellulose (MFC) or nanocellulose. The aerogel templates are prepared from nanocellulose hydrogels either by freeze-drying in liquid nitrogen or liquid propane or by supercritical drying, and they consist of a highly porous percolating network of cellulose nanofibrils. They can be prepared as films on substrates or as freestanding objects. We show that, in contrast to freeze-drying, supercritical drying produces nanocellulose aerogels without major interfibrillar aggregation even in thick films. Uniform oxide layers are readily deposited by ALD onto the fibrils leading to organic−inorganic core−shell nanofibers. We further demonstrate that calcination at 450 °C removes the organic core leading to purely inorganic self-supporting aerogels consisting of hollow nanotubular networks. They can also be dispersed by grinding, for example, in ethanol to create a slurry of inorganic hollow nanotubes, which in turn can be deposited to form a porous film. Finally we demonstrate the use of a titanium dioxide nanotube network as a resistive humidity sensor with a fast response.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Inorganic layer thickness data (S1), larger SEM micrographs of single nanocellulose fibrils (S2), several samples demonstrating differences in preparation methods (S3, S4) and different coatings (S5−S7), XRD data for a TiO2 nanotube film (S8). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 282 publications.

    1. Tuukka Levä, Ville Rissanen, Lauri Nikkanen, Vilja Siitonen, Maria Heilala, Josphat Phiri, Thaddeus C. Maloney, Sergey Kosourov, Yagut Allahverdiyeva, Mikko Mäkelä, Tekla Tammelin. Mapping Nanocellulose- and Alginate-Based Photosynthetic Cell Factory Scaffolds: Interlinking Porosity, Wet Strength, and Gas Exchange. Biomacromolecules 2023, 24 (8) , 3484-3497. https://doi.org/10.1021/acs.biomac.3c00261
    2. Jing Li, Hongchao Zhao, Yanjie Wang, Ruijie Zhang, Cheng Zou, Yong Zhou. Mesoporous WS2-Decorated Cellulose Nanofiber-Templated CuO Heterostructures for High-Performance Chemiresistive Hydrogen Sulfide Sensors. Analytical Chemistry 2022, 94 (46) , 16160-16170. https://doi.org/10.1021/acs.analchem.2c03596
    3. Rasel Das, Tom Lindström, Priyanka R. Sharma, Kai Chi, Benjamin S. Hsiao. Nanocellulose for Sustainable Water Purification. Chemical Reviews 2022, 122 (9) , 8936-9031. https://doi.org/10.1021/acs.chemrev.1c00683
    4. Marco Beaumont, Remy Tran, Grace Vera, Dennis Niedrist, Aurelie Rousset, Ronan Pierre, V. Prasad Shastri, Aurelien Forget. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22 (3) , 1027-1052. https://doi.org/10.1021/acs.biomac.0c01406
    5. Lahja Martikainen, Kia Bertula, Matti Turunen, Olli Ikkala. Strain Stiffening and Negative Normal Force of Agarose Hydrogels. Macromolecules 2020, 53 (22) , 9983-9992. https://doi.org/10.1021/acs.macromol.0c00601
    6. Jianwei Lu, Yi Li, Wei Song, Mark D. Losego, Rebhadevi Monikandan, Karl I. Jacob, Ru Xiao. Atomic Layer Deposition onto Thermoplastic Polymeric Nanofibrous Aerogel Templates for Tailored Surface Properties. ACS Nano 2020, 14 (7) , 7999-8011. https://doi.org/10.1021/acsnano.9b09497
    7. Qin Qin, Ronghui Guo, Erhui Ren, Xiaoxu Lai, Ce Cui, Hongyan Xiao, Mi Zhou, Guo Yao, Shouxiang Jiang, Jianwu Lan. Waste Cotton Fabric/Zinc Borate Composite Aerogel with Excellent Flame Retardancy. ACS Sustainable Chemistry & Engineering 2020, 8 (28) , 10335-10344. https://doi.org/10.1021/acssuschemeng.0c00210
    8. Hee-Jin Cho, Il-Doo Kim, Sung Mi Jung. Multifunctional Inorganic Nanomaterial Aerogel Assembled into fSWNT Hydrogel Platform for Ultraselective NO2 Sensing. ACS Applied Materials & Interfaces 2020, 12 (9) , 10637-10647. https://doi.org/10.1021/acsami.9b21174
    9. Christoph Hörenz, Kia Bertula, Tony Tiainen, Sami Hietala, Ville Hynninen, Olli Ikkala. UV-Triggered On-Demand Temperature-Responsive Reversible and Irreversible Gelation of Cellulose Nanocrystals. Biomacromolecules 2020, 21 (2) , 830-838. https://doi.org/10.1021/acs.biomac.9b01519
    10. Tyler Or, Sokunthearath Saem, Aurore Esteve, Daniel A. Osorio, Kevin J. De France, Jaana Vapaavuori, Todd Hoare, Aline Cerf, Emily D. Cranston, Jose M. Moran-Mirabal. Patterned Cellulose Nanocrystal Aerogel Films with Tunable Dimensions and Morphologies as Ultra-Porous Scaffolds for Cell Culture. ACS Applied Nano Materials 2019, 2 (7) , 4169-4179. https://doi.org/10.1021/acsanm.9b00640
    11. Kia Bertula, Lahja Martikainen, Pauliina Munne, Sami Hietala, Juha Klefström, Olli Ikkala, Nonappa. Strain-Stiffening of Agarose Gels. ACS Macro Letters 2019, 8 (6) , 670-675. https://doi.org/10.1021/acsmacrolett.9b00258
    12. Dongdong Ye, Xiaojuan Lei, Tian Li, Qiaoyun Cheng, Chunyu Chang, Liangbing Hu, Lina Zhang. Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. ACS Nano 2019, 13 (4) , 4843-4853. https://doi.org/10.1021/acsnano.9b02081
    13. Lili Zhang, Hailong Lu, Juan Yu, Eleanor McSporran, Avik Khan, Yimin Fan, Yiqin Yang, Zhiguo Wang, Yonghao Ni. Preparation of High-Strength Sustainable Lignocellulose Gels and Their Applications for Antiultraviolet Weathering and Dye Removal. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 2998-3009. https://doi.org/10.1021/acssuschemeng.8b04413
    14. Sven F. Plappert, Jean-Marie Nedelec, Harald Rennhofer, Helga C. Lichtenegger, Sigrid Bernstorff, Falk W. Liebner. Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Biomacromolecules 2018, 19 (11) , 4411-4422. https://doi.org/10.1021/acs.biomac.8b01278
    15. Chung-Yi Su, Li-Chen Wang, Wei-Szu Liu, Chih-Chieh Wang, Tsong-Pyng Perng. Photocatalysis and Hydrogen Evolution of Al- and Zn-Doped TiO2 Nanotubes Fabricated by Atomic Layer Deposition. ACS Applied Materials & Interfaces 2018, 10 (39) , 33287-33295. https://doi.org/10.1021/acsami.8b12299
    16. Mattia Alberto Lucchini, Erlantz Lizundia, Simon Moser, Markus Niederberger, Gustav Nyström. Titania-Cellulose Hybrid Monolith for In-Flow Purification of Water under Solar Illumination. ACS Applied Materials & Interfaces 2018, 10 (35) , 29599-29607. https://doi.org/10.1021/acsami.8b09735
    17. Xin Li, Jin Wang, Yibo Zhao, Xuetong Zhang. Template-Free Self-Assembly of Fluorine-Free Hydrophobic Polyimide Aerogels with Lotus or Petal Effect. ACS Applied Materials & Interfaces 2018, 10 (19) , 16901-16910. https://doi.org/10.1021/acsami.8b04081
    18. Rui Xiong, Ho Shin Kim, Shuaidi Zhang, Sunghan Kim, Volodymyr F. Korolovych, Ruilong Ma, Yaroslava G. Yingling, Canhui Lu, and Vladimir V. Tsukruk . Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport. ACS Nano 2017, 11 (12) , 12008-12019. https://doi.org/10.1021/acsnano.7b04235
    19. Bin Yuan, Jinming Zhang, Qinyong Mi, Jian Yu, Rui Song, and Jun Zhang . Transparent Cellulose–Silica Composite Aerogels with Excellent Flame Retardancy via an in Situ Sol–Gel Process. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 11117-11123. https://doi.org/10.1021/acssuschemeng.7b03211
    20. Maria Morits, Jason R. McKee, Johanna Majoinen, Jani-Markus Malho, Nikolay Houbenov, Jani Seitsonen, Janne Laine, André H. Gröschel, and Olli Ikkala . Polymer Brushes on Cellulose Nanofibers: Modification, SI-ATRP, and Unexpected Degradation Processes. ACS Sustainable Chemistry & Engineering 2017, 5 (9) , 7642-7650. https://doi.org/10.1021/acssuschemeng.7b00972
    21. Kevin J. De France, Todd Hoare, and Emily D. Cranston . Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials 2017, 29 (11) , 4609-4631. https://doi.org/10.1021/acs.chemmater.7b00531
    22. Yun Lu, Hongwei Liu, Runan Gao, Shaoliang Xiao, Ming Zhang, Yafang Yin, Siqun Wang, Jian Li, and Dongjiang Yang . Coherent-Interface-Assembled Ag2O-Anchored Nanofibrillated Cellulose Porous Aerogels for Radioactive Iodine Capture. ACS Applied Materials & Interfaces 2016, 8 (42) , 29179-29185. https://doi.org/10.1021/acsami.6b10749
    23. Christian Buesch, Sean W. Smith, Peter Eschbach, John F. Conley, Jr., and John Simonsen . The Microstructure of Cellulose Nanocrystal Aerogels as Revealed by Transmission Electron Microscope Tomography. Biomacromolecules 2016, 17 (9) , 2956-2962. https://doi.org/10.1021/acs.biomac.6b00764
    24. Hongli Zhu, Wei Luo, Peter N. Ciesielski, Zhiqiang Fang, J. Y. Zhu, Gunnar Henriksson, Michael E. Himmel, and Liangbing Hu . Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews 2016, 116 (16) , 9305-9374. https://doi.org/10.1021/acs.chemrev.6b00225
    25. Marco Beaumont, Harald Rennhofer, Martina Opietnik, Helga C. Lichtenegger, Antje Potthast, and Thomas Rosenau . Nanostructured Cellulose II Gel Consisting of Spherical Particles. ACS Sustainable Chemistry & Engineering 2016, 4 (8) , 4424-4432. https://doi.org/10.1021/acssuschemeng.6b01036
    26. Hua Sun and David A. Schiraldi , Dayong Chen , Danqi Wang , Miguel Sánchez-Soto . Tough Polymer Aerogels Incorporating a Conformal Inorganic Coating for Low Flammability and Durable Hydrophobicity. ACS Applied Materials & Interfaces 2016, 8 (20) , 13051-13057. https://doi.org/10.1021/acsami.6b02829
    27. Lucia Panzella, Lucio Melone, Alessandro Pezzella, Bianca Rossi, Nadia Pastori, Marco Perfetti, Gerardino D’Errico, Carlo Punta, and Marco d’Ischia . Surface-Functionalization of Nanostructured Cellulose Aerogels by Solid State Eumelanin Coating. Biomacromolecules 2016, 17 (2) , 564-571. https://doi.org/10.1021/acs.biomac.5b01497
    28. Sukun Zhou, Meng Wang, Xiong Chen, and Feng Xu . Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties. ACS Sustainable Chemistry & Engineering 2015, 3 (12) , 3346-3354. https://doi.org/10.1021/acssuschemeng.5b01020
    29. Eden Morales-Narváez, Hamed Golmohammadi, Tina Naghdi, Hossein Yousefi, Uliana Kostiv, Daniel Horák, Nahid Pourreza, and Arben Merkoçi . Nanopaper as an Optical Sensing Platform. ACS Nano 2015, 9 (7) , 7296-7305. https://doi.org/10.1021/acsnano.5b03097
    30. Aurélien Henry, Sandrine Plumejeau, Laurent Heux, Nicolas Louvain, Laure Monconduit, Lorenzo Stievano, and Bruno Boury . Conversion of Nanocellulose Aerogel into TiO2 and TiO2@C Nano-thorns by Direct Anhydrous Mineralization with TiCl4. Evaluation of Electrochemical Properties in Li Batteries. ACS Applied Materials & Interfaces 2015, 7 (27) , 14584-14592. https://doi.org/10.1021/acsami.5b00299
    31. Guoqing Zu, Jun Shen, Wenqin Wang, Liping Zou, Ya Lian, and Zhihua Zhang . Silica–Titania Composite Aerogel Photocatalysts by Chemical Liquid Deposition of Titania onto Nanoporous Silica Scaffolds. ACS Applied Materials & Interfaces 2015, 7 (9) , 5400-5409. https://doi.org/10.1021/am5089132
    32. Brandon J. O’Neill, David H. K. Jackson, Jechan Lee, Christian Canlas, Peter C. Stair, Christopher L. Marshall, Jeffrey W. Elam, Thomas F. Kuech, James A. Dumesic, and George W. Huber . Catalyst Design with Atomic Layer Deposition. ACS Catalysis 2015, 5 (3) , 1804-1825. https://doi.org/10.1021/cs501862h
    33. Keith E. Gregorczyk, David F. Pickup, Miren Garcia Sanz, Itxasne Azpitarte Irakulis, Celia Rogero, and Mato Knez . Tuning the Tensile Strength of Cellulose through Vapor-Phase Metalation. Chemistry of Materials 2015, 27 (1) , 181-188. https://doi.org/10.1021/cm503724c
    34. Feng Jiang and You-Lo Hsieh . Assembling and Redispersibility of Rice Straw Nanocellulose: Effect of tert-Butanol. ACS Applied Materials & Interfaces 2014, 6 (22) , 20075-20084. https://doi.org/10.1021/am505626a
    35. Guoqing Zu, Jun Shen, Wenqin Wang, Liping Zou, Ya Lian, Zhihua Zhang, Bin Liu, and Fan Zhang . Robust, Highly Thermally Stable, Core–Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts. Chemistry of Materials 2014, 26 (19) , 5761-5772. https://doi.org/10.1021/cm502886t
    36. Anna J. Svagan, Dmitry Busko, Yuri Avlasevich, Gunnar Glasser, Stanislav Baluschev, and Katharina Landfester . Photon Energy Upconverting Nanopaper: A Bioinspired Oxygen Protection Strategy. ACS Nano 2014, 8 (8) , 8198-8207. https://doi.org/10.1021/nn502496a
    37. Vennesa O. Williams, Erica J. DeMarco, Michael J. Katz, Joseph A. Libera, Shannon C. Riha, Dong Wook Kim, Jason R. Avila, Alex B. F. Martinson, Jeffrey W. Elam, Michael J. Pellin, Omar K. Farha, and Joseph T. Hupp . Fabrication of Transparent-Conducting-Oxide-Coated Inverse Opals as Mesostructured Architectures for Electrocatalysis Applications: A Case Study with NiO. ACS Applied Materials & Interfaces 2014, 6 (15) , 12290-12294. https://doi.org/10.1021/am501910n
    38. Trung-Dung Dang, Arghya Narayan Banerjee, Sang Woo Joo, and Bong-Ki Min . Synthesis of Amourphous and Crystalline Hollow Manganese Oxide Nanotubes with Highly Porous Walls Using Carbon Nanotube Templates and Enhanced Catalytic Activity. Industrial & Engineering Chemistry Research 2014, 53 (23) , 9743-9753. https://doi.org/10.1021/ie5006756
    39. Alesja Ivanova, Dina Fattakhova-Rohlfing, Bugra Eymer Kayaalp, Jiri Rathouský, and Thomas Bein . Tailoring the Morphology of Mesoporous Titania Thin Films through Biotemplating with Nanocrystalline Cellulose. Journal of the American Chemical Society 2014, 136 (16) , 5930-5937. https://doi.org/10.1021/ja411292u
    40. Sung Mi Jung, Hyun Young Jung, Wenjing Fang, Mildred S. Dresselhaus, and Jing Kong . A Facile Methodology for the Production of In Situ Inorganic Nanowire Hydrogels/Aerogels. Nano Letters 2014, 14 (4) , 1810-1817. https://doi.org/10.1021/nl404392j
    41. Jie Wu and J. Carson Meredith . Assembly of Chitin Nanofibers into Porous Biomimetic Structures via Freeze Drying. ACS Macro Letters 2014, 3 (2) , 185-190. https://doi.org/10.1021/mz400543f
    42. Susanna Holappa, Katri S. Kontturi, Arto Salminen, Jukka Seppälä, and Janne Laine . Adsorption of Hydrophobically End-Capped Poly(ethylene glycol) on Cellulose. Langmuir 2013, 29 (45) , 13750-13759. https://doi.org/10.1021/la402494m
    43. Matthieu Fumagalli, Djamila Ouhab, Sonia Molina Boisseau, and Laurent Heux . Versatile Gas-Phase Reactions for Surface to Bulk Esterification of Cellulose Microfibrils Aerogels. Biomacromolecules 2013, 14 (9) , 3246-3255. https://doi.org/10.1021/bm400864z
    44. Hong Dong, James F. Snyder, Kristen S. Williams, and Jan W. Andzelm . Cation-Induced Hydrogels of Cellulose Nanofibrils with Tunable Moduli. Biomacromolecules 2013, 14 (9) , 3338-3345. https://doi.org/10.1021/bm400993f
    45. Xi-Lin Wu, Tao Wen, Hong-Li Guo, Shubin Yang, Xiangke Wang, and An-Wu Xu . Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors. ACS Nano 2013, 7 (4) , 3589-3597. https://doi.org/10.1021/nn400566d
    46. Fatma Kayaci, Cagla Ozgit-Akgun, Inci Donmez, Necmi Biyikli, and Tamer Uyar . Polymer–Inorganic Core–Shell Nanofibers by Electrospinning and Atomic Layer Deposition: Flexible Nylon–ZnO Core–Shell Nanofiber Mats and Their Photocatalytic Activity. ACS Applied Materials & Interfaces 2012, 4 (11) , 6185-6194. https://doi.org/10.1021/am3017976
    47. Fengbin Li, Xueping Yao, Zhaogen Wang, Weihong Xing, Wanqin Jin, Jun Huang, and Yong Wang . Highly Porous Metal Oxide Networks of Interconnected Nanotubes by Atomic Layer Deposition. Nano Letters 2012, 12 (9) , 5033-5038. https://doi.org/10.1021/nl3028312
    48. Jani-Markus Malho, Päivi Laaksonen, Andreas Walther, Olli Ikkala, and Markus B. Linder . Facile Method for Stiff, Tough, and Strong Nanocomposites by Direct Exfoliation of Multilayered Graphene into Native Nanocellulose Matrix. Biomacromolecules 2012, 13 (4) , 1093-1099. https://doi.org/10.1021/bm2018189
    49. Ilari Filpponen, Eero Kontturi, Sami Nummelin, Henna Rosilo, Erkki Kolehmainen, Olli Ikkala, and Janne Laine . Generic Method for Modular Surface Modification of Cellulosic Materials in Aqueous Medium by Sequential “Click” Reaction and Adsorption. Biomacromolecules 2012, 13 (3) , 736-742. https://doi.org/10.1021/bm201661k
    50. Houssine Sehaqui, Qi Zhou, Olli Ikkala, and Lars A. Berglund . Strong and Tough Cellulose Nanopaper with High Specific Surface Area and Porosity. Biomacromolecules 2011, 12 (10) , 3638-3644. https://doi.org/10.1021/bm2008907
    51. Sohee Jeong, Jae Hyo Han, Jung-tak Jang, Jung-wook Seo, Jin-Gyu Kim, and Jinwoo Cheon . Transformative Two-Dimensional Layered Nanocrystals. Journal of the American Chemical Society 2011, 133 (37) , 14500-14503. https://doi.org/10.1021/ja2049594
    52. Juuso T. Korhonen, Marjo Kettunen, Robin H. A. Ras, and Olli Ikkala . Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Applied Materials & Interfaces 2011, 3 (6) , 1813-1816. https://doi.org/10.1021/am200475b
    53. Madhumita Srivastava, Pooja Gaur, Neerja Tiwari, Karuna Shanker. Phytochemical-embedded nanocomposites: an update on processes and their applications. 2024, 53-96. https://doi.org/10.1016/B978-0-323-99682-2.00003-7
    54. Garima Joshi, S. R. Shukla, Shakti Singh Chauhan. Nanocellulose extraction from lignocellulosic materials and its potential applications: a review. Journal of the Indian Academy of Wood Science 2023, 126 https://doi.org/10.1007/s13196-023-00325-y
    55. Walker J. Tuff, Robert A. Hughes, Brendan D. Nieukirk, Luca Ciambriello, Robert D. Neal, Spencer D. Golze, Luca Gavioli, Svetlana Neretina. Periodic arrays of structurally complex oxide nanoshells and their use as substrate-confined nanoreactors. Nanoscale 2023, 15 (43) , 17609-17620. https://doi.org/10.1039/D3NR04345B
    56. Aleksandra Mikhailidi, Elena Ungureanu, Dan Belosinschi, Bogdan-Marian Tofanica, Irina Volf. Cellulose-Based Metallogels—Part 3: Multifunctional Materials. Gels 2023, 9 (11) , 878. https://doi.org/10.3390/gels9110878
    57. Xuebin Zhou, Zhihua Ying, Xingxin He, Chenhan Zhang, Xiaolong Zheng, Peng Zheng. Enhanced Sensing Performance of Au-decorated Cellulose Nanofiber-SnO2 for NO2 Detection Under UV Light. Journal of Electronic Materials 2023, 52 (9) , 5964-5974. https://doi.org/10.1007/s11664-023-10531-6
    58. Hye-Lee Kim, Romel Hidayat, Khabib Khumaini, Won-Jun Lee. A theoretical study on the surface reaction of tetrakis(dimethylamino)titanium on titanium oxide. Physical Chemistry Chemical Physics 2023, 25 (33) , 22250-22257. https://doi.org/10.1039/D3CP02009F
    59. Chen Chen, Yanxia Chen, Zhiwei Chen, Lei Qin. The Study and Application of Nanosilica Biosensor for Sweat Detection. Journal of Physics: Conference Series 2023, 2539 (1) , 012013. https://doi.org/10.1088/1742-6596/2539/1/012013
    60. Junaid Saleem, Zubair Khalid Baig Moghal, Gordon McKay. Up-cycling plastic waste into swellable super-sorbents. Journal of Hazardous Materials 2023, 453 , 131356. https://doi.org/10.1016/j.jhazmat.2023.131356
    61. Yanhuizhi Feng, Helmut Cölfen, Rui Xiong. Organized mineralized cellulose nanostructures for biomedical applications. Journal of Materials Chemistry B 2023, 11 (24) , 5321-5349. https://doi.org/10.1039/D2TB02611B
    62. Shouzhen Li, Xiaota Cheng, Guangting Han, Yang Si, Yitao Liu, Jianyong Yu, Bin Ding. Elastic and compressible Al2O3/ZrO2/La2O3 nanofibrous membranes for firefighting protective clothing. Journal of Colloid and Interface Science 2023, 636 , 83-89. https://doi.org/10.1016/j.jcis.2022.12.163
    63. Muhammad Aamir, Saba Ashraf, Ahmed Shuja, Javeed Akhtar*,. Graphene‐based Nanoelectronic Biosensors. 2023, 25-61. https://doi.org/10.1002/9783527824229.ch2
    64. Wenshuai Chen, Haipeng Yu, Ming Dai, Chaoji Chen, Shengjie Ling, Li-Feng Chen, Qing Li. Nanocellulose Aerogels. 2023, 107-139. https://doi.org/10.1007/978-3-031-14043-3_4
    65. Meenu Eldhose, Roshny Roy, Cincy George, Alex Joseph. Sensing and Biosensing Applications of Nanocellulose. 2023, 1-26. https://doi.org/10.1007/978-981-16-6603-2_37-1
    66. Meenu Eldhose, Roshny Roy, Cincy George, Alex Joseph. Sensing and Biosensing Applications of Nanocellulose. 2023, 1007-1032. https://doi.org/10.1007/978-981-19-0710-4_37
    67. Vijaykumar S. Bhamare, Raviraj M. Kulkarni. Methods for fabrication of ceramic coatings. 2023, 215-242. https://doi.org/10.1016/B978-0-323-98824-7.00010-5
    68. Haiwei Yao, Rong Xue, Chouxuan Wang, Chengzhi Chen, Xin Xie, Pengfei Zhang, Zhongguo Zhao, Yapeng Li. High-Temperature Response Polylactic Acid Composites by Tuning Double-Percolated Structures. Polymers 2023, 15 (1) , 138. https://doi.org/10.3390/polym15010138
    69. Stephen A. Steiner, Justin S. Griffin, Ryan T. Nelson, Frances I. Hurwitz, Marcus A. Worsley. Postprocessing. 2023, 133-147. https://doi.org/10.1007/978-3-030-27322-4_6
    70. Vesna Žepič, Primož Oven, Matjaž Čop, Viljem Vek, Biljana Janković, Ida Poljanšek. Physical, Rheological and Mechanical Properties of Alkali Activated Hydrogels Based on Nanofibrillated Cellulose. Journal of Natural Fibers 2022, 19 (17) , 16040-16052. https://doi.org/10.1080/15440478.2022.2123879
    71. Jing Zhang, Junxiong Zhang, Qilong Sun, Xinli Ye, Xiaomin Ma, Jin Wang. Sol–Gel Routes toward Ceramic Nanofibers for High-Performance Thermal Management. Chemistry 2022, 4 (4) , 1475-1497. https://doi.org/10.3390/chemistry4040098
    72. Fan Wu, Siyu Qiang, Xiaohua Zhang, Fei Wang, Xia Yin, Lifang Liu, Jianyong Yu, Yi‐Tao Liu, Bin Ding. The Rising of Flexible and Elastic Ceramic Fiber Materials: Fundamental Concept, Design Principle, and Toughening Mechanism. Advanced Functional Materials 2022, 32 (45) https://doi.org/10.1002/adfm.202207130
    73. Run-Ze Hu, Zheng-Feng Zhang, Ben-Qing Yu, Jun Wang, Xiao-Hui Yao, Tao Chen, Wei-Guo Zhao, Dong-Yang Zhang. Natural phenolics and flavonoids modified the hierarchical cellular cellulose sponges for efficient water disinfection. Carbohydrate Polymers 2022, 296 , 119962. https://doi.org/10.1016/j.carbpol.2022.119962
    74. Graciano B. De Souza, Dachamir Hotza, Rolf Janßen, Kaline P. Furlan, Carlos R. Rambo, . Functionalization of Carbon Electrodes with Nanotitania by Atomic Layer Deposition. Advances in Materials Science and Engineering 2022, 2022 , 1-12. https://doi.org/10.1155/2022/9575845
    75. Chao Jia, Zhe Xu, Dianfeng Luo, Hengxue Xiang, Meifang Zhu. Flexible Ceramic Fibers: Recent Development in Preparation and Application. Advanced Fiber Materials 2022, 4 (4) , 573-603. https://doi.org/10.1007/s42765-022-00133-y
    76. Guangzhou Geng, Zhongshan Zhang, Chensheng Li, Ruhao Pan, Yunlong Li, Haifang Yang, Junjie Li. Atomic Layer Assembly Based on Sacrificial Templates for 3D Nanofabrication. Micromachines 2022, 13 (6) , 856. https://doi.org/10.3390/mi13060856
    77. Alojz Anžlovar, Ema Žagar. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. Nanomaterials 2022, 12 (11) , 1837. https://doi.org/10.3390/nano12111837
    78. Seongyoon Kim, Romel Hidayat, Hyeonsu Roh, Jaemin Kim, Hye-Lee Kim, Khabib Khumaini, Mira Park, Jang-Hyeon Seok, Jung Woo Park, Won-Jun Lee. Atomic layer deposition of titanium oxide thin films using a titanium precursor with a linked amido-cyclopentadienyl ligand. Journal of Materials Chemistry C 2022, 10 (17) , 6696-6709. https://doi.org/10.1039/D2TC00574C
    79. Qianqian Wang, Rui Zhou, Simeng Liu, Sivasamy Sethupathy, Jun Liu, Jianzhong Sun, Lihua Zou, Qianqian Zhu. Templated synthesis and assembly with sustainable cellulose nanomaterial for functional nanostructure. Cellulose 2022, 29 (8) , 4287-4321. https://doi.org/10.1007/s10570-022-04577-8
    80. Gang Wei, Jianming Zhang, Mattia Usuelli, Xiaofang Zhang, Bin Liu, Raffaele Mezzenga. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Progress in Materials Science 2022, 125 , 100915. https://doi.org/10.1016/j.pmatsci.2021.100915
    81. Alaa A. A. Aljabali, Mohammad A. Obeid, Meriem M. Rezigue, Alaa Alqudah, Nitin Bharat Charbe, Dinesh Kumar Chellappan, Vijay Mishra, Dinesh M. Pardhi, Harish Dureja, Gaurav Gupta, Parteek Prasher, Kamal Dua, Ahmed Barhoum, Murtaza M. Tambuwala. Nanocelluloses as a Novel Vehicle for Controlled Drug Delivery. 2022, 507-542. https://doi.org/10.1007/978-3-030-89621-8_36
    82. S.B. Mohamed Khalith, Sathish Kumar Karuppannan, Mohammed Junaid Hussain Dowlath, G.I. Darul Raiyan, Kantha Deivi Arunachalam. Nanostructured catalytic membranes for water filtration. 2022, 389-412. https://doi.org/10.1016/B978-0-12-823962-9.00003-9
    83. Md. Sazedul Islam, Md. Shahruzzaman, M. Nuruzzaman Khan, Md. Minhajul Islam, Sumaya Farhana Kabir, Abul K. Mallik, Mohammed Mizanur Rahman, Papia Haque. Composite materials: Concept, recent advancements, and applications. 2022, 1-43. https://doi.org/10.1016/B978-0-323-85155-8.00011-X
    84. Atta Muhammad, Abdul Sattar Jatoi, Shaukat Ali Mazari, Rashid Abro, Nabisab Mujawar Mubarak, Shoaib Ahmed, Asif Shah, Abdul Qayoom Memon, Faheem Akhter, Shafique Ahmed Wahocho. Recent advances and developments in advanced green porous nanomaterial for sustainable energy storage application. Journal of Porous Materials 2021, 28 (6) , 1945-1960. https://doi.org/10.1007/s10934-021-01138-5
    85. Shuai Wang, Wei Chen, Chenrui Zhang, Hui Pan. Efficient and selective adsorption of cationic dyes with regenerated cellulose. Chemical Physics Letters 2021, 784 , 139104. https://doi.org/10.1016/j.cplett.2021.139104
    86. Minwoo Lee, Minhaeng Heo, Hyunho Lee, Jihoon Shin. Facile and Quantitative Method for Estimating the Isolation Degree of Cellulose Nanocrystals (CNCs) Suspensions. Materials 2021, 14 (21) , 6463. https://doi.org/10.3390/ma14216463
    87. Ahmed Salama, Ragab Abouzeid, Wei Sun Leong, Jaison Jeevanandam, Pieter Samyn, Alain Dufresne, Mikhael Bechelany, Ahmed Barhoum. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. Nanomaterials 2021, 11 (11) , 3008. https://doi.org/10.3390/nano11113008
    88. Muhammad Irfan, Xianhua Liu, Suraya Mushtaq, Afaque Ahmed, Jiao Wang, Yang Li, Yexin Dai, Pingping Zhang. Value-added apple-derived carbonaceous aerogel for robust supercapacitor. International Journal of Hydrogen Energy 2021, 46 (60) , 30727-30738. https://doi.org/10.1016/j.ijhydene.2021.06.198
    89. Muhamad Fareez Ismail, Ainil Hawa Jasni, Der Jiun Ooi. Fabrications of cellulose nanocomposite for tailor-made applications. Polymers and Polymer Composites 2021, 29 (6) , 814-826. https://doi.org/10.1177/0967391120932055
    90. Arto Hiltunen, Tyler Or, Kimmo Lahtonen, Harri Ali‐Löytty, Nikolai Tkachenko, Mika Valden, Essi Sarlin, Emily D. Cranston, Jose M. Moran‐Mirabal, Jaana Vapaavuori. Ultrathin‐Walled 3D Inorganic Nanostructured Networks Templated from Cross‐Linked Cellulose Nanocrystal Aerogels. Advanced Materials Interfaces 2021, 8 (11) https://doi.org/10.1002/admi.202001181
    91. Mengwei Chen, Tao Liu, Xiaobin Zhang, Ruoqian Zhang, Shuai Tang, Yihui Yuan, Zuji Xie, Yinjiang Liu, Hui Wang, Kuzin Victor Fedorovich, Ning Wang. Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel. Advanced Functional Materials 2021, 31 (22) https://doi.org/10.1002/adfm.202100106
    92. Anitha Senthamizhan, Brabu Balusamy, Asli Celebioglu, Tamer Uyar. General Strategy for Fabrication of Ordered One Dimensional Inorganic Structures by Electrospinning: Structural Evolution From Belt to Solid via Hollow Tubes. Advanced Engineering Materials 2021, 23 (4) https://doi.org/10.1002/adem.202001129
    93. Junzong Feng, Bao-Lian Su, Hesheng Xia, Shanyu Zhao, Chao Gao, Lukai Wang, Osarenkhoe Ogbeide, Jian Feng, Tawfique Hasan. Printed aerogels: chemistry, processing, and applications. Chemical Society Reviews 2021, 50 (6) , 3842-3888. https://doi.org/10.1039/C9CS00757A
    94. Chengbin Jin, Jianwei Nai, Ouwei Sheng, Huadong Yuan, Wenkui Zhang, Xinyong Tao, Xiong Wen (David) Lou. Biomass-based materials for green lithium secondary batteries. Energy & Environmental Science 2021, 14 (3) , 1326-1379. https://doi.org/10.1039/D0EE02848G
    95. Meghan E. Lamm, Kai Li, Ji Qian, Lu Wang, Nathalie Lavoine, Reagan Newman, Douglas J. Gardner, Teng Li, Liangbing Hu, Arthur J. Ragauskas, Halil Tekinalp, Vlastimil Kunc, Soydan Ozcan. Recent Advances in Functional Materials through Cellulose Nanofiber Templating. Advanced Materials 2021, 33 (12) https://doi.org/10.1002/adma.202005538
    96. Yiming Chen, Lin Zhang, Yang Yang, Bo Pang, Wenhui Xu, Gaigai Duan, Shaohua Jiang, Kai Zhang. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Advanced Materials 2021, 33 (11) https://doi.org/10.1002/adma.202005569
    97. Tatiya Siripongpreda, Benjawan Somchob, Nadnudda Rodthongkum, Voravee P. Hoven. Bacterial cellulose-based re-swellable hydrogel: Facile preparation and its potential application as colorimetric sensor of sweat pH and glucose. Carbohydrate Polymers 2021, 256 , 117506. https://doi.org/10.1016/j.carbpol.2020.117506
    98. Zoilo Gonzalez, Joaquin Yus, Yessica Bravo, Antonio Javier Sanchez-Herencia, Begoña Ferrari. Exploitation of Lignocellulose Fiber-Based Biotemplates to Improve the Performance of an Immobilized TiO2 Photocatalyst. Catalysts 2021, 11 (2) , 156. https://doi.org/10.3390/catal11020156
    99. Alaa A. A. Aljabali, Mohammad A. Obeid, Meriem M. Rezigue, Alaa Alqudah, Nitin Bharat Charbe, Dinesh Kumar Chellappan, Vijay Mishra, Dinesh M. Pardhi, Harish Dureja, Gaurav Gupta, Parteek Prasher, Kamal Dua, Ahmed Barhoum, Murtaza M. Tambuwala. Nanocelluloses as a Novel Vehicle for Controlled Drug Delivery. 2021, 1-37. https://doi.org/10.1007/978-3-030-62976-2_36-1
    100. Ainil Hawa Jasni. Fabrication of nanostructures by physical techniques. 2021, 131-162. https://doi.org/10.1016/B978-0-12-820569-3.00005-0
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect