ACS Publications. Most Trusted. Most Cited. Most Read
Ambipolar and Unipolar PbSe Nanowire Field-Effect Transistors
My Activity

    Article

    Ambipolar and Unipolar PbSe Nanowire Field-Effect Transistors
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ § Department of Materials Science & Engineering, Department of Chemistry, and §Department of Electrical Systems and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
    *Address correspondence to [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2011, 5, 4, 3230–3236
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn200348p
    Published March 15, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Wet-chemical methods, under rigorous air-free conditions, were used to synthesize single-crystalline 10 nm diameter PbSe nanowires (NWs), and electric-field, directed assembly was employed to align NW arrays to form the semiconducting channels of field-effect transistors (FETs). Electrical measurements revealed as-aligned NWs in bottom, gold, contact FETs are predominantly p-type ambipolar, consistent with the presentation of small barriers to electron and hole injection for this low band gap semiconductor. Exposing the NW FET to UV-ozone p-doped the NWs, illustrating the sensitivity of PbSe to oxygen, but controlled oxidation allowed the fabrication of unipolar p-type FETs. Selectively exposing the contact region of as-aligned NW FETs to low to moderate concentrations of hydrazine, commonly used to n-dope nanocrystal and NW devices, switched the predominantly p- to n-type ambipolar behavior as if the entire NW channel was exposed. At these hydrazine concentrations, charge transfer doping the metal−semiconductor interface dominates the FET characteristics. Only upon exposing the NW FETs to high hydrazine concentrations did charge transfer doping of the NW channel overcome the large intrinsic, thermally generated carrier concentration of this low band gap material, modulating the NW carrier concentration and forming unipolar n-type FETs. Pulling low vacuum removed surface hydrazine returning the predominantly p-type ambipolar FET behavior. Doping and dedoping with hydrazine were repeatedly reversible. By applying surface modification to n- and p-dope PbSe NW FETs, we fabricated the first PbSe NW inverters, demonstrating the promise of these nanostructured materials in integrated circuits.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Characterization of PbSe NWs, as well as electric-field assisted alignment of PbSe NW FETs and fabrication of the blocking layer. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 31 publications.

    1. Santanu Jana, Rodrigo Martins, Elvira Fortunato. Stacking-Dependent Electrical Transport in a Colloidal CdSe Nanoplatelet Thin-Film Transistor. Nano Letters 2022, 22 (7) , 2780-2785. https://doi.org/10.1021/acs.nanolett.1c04822
    2. Cherie R. Kagan, Lee C. Bassett, Christopher B. Murray, Sarah M. Thompson. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews 2021, 121 (5) , 3186-3233. https://doi.org/10.1021/acs.chemrev.0c00831
    3. Abigail R. Freyer, Peter C. Sercel, Zhentao Hou, Benjamin H. Savitzky, Lena F. Kourkoutis, Alexander L. Efros, Todd D. Krauss. Explaining the Unusual Photoluminescence of Semiconductor Nanocrystals Doped via Cation Exchange. Nano Letters 2019, 19 (7) , 4797-4803. https://doi.org/10.1021/acs.nanolett.9b02284
    4. Qinghua Zhao, Tianshuo Zhao, Jiacen Guo, Wenxiang Chen, Mingliang Zhang, and Cherie R. Kagan . The Effect of Dielectric Environment on Doping Efficiency in Colloidal PbSe Nanostructures. ACS Nano 2018, 12 (2) , 1313-1320. https://doi.org/10.1021/acsnano.7b07602
    5. Jun Yang and F. W. Wise . Electronic States of Lead-Salt Nanosheets. The Journal of Physical Chemistry C 2015, 119 (48) , 26809-26816. https://doi.org/10.1021/acs.jpcc.5b08207
    6. Soong Ju Oh, Chawit Uswachoke, Tianshuo Zhao, Ji-Hyuk Choi, Benjamin T. Diroll, Christopher B. Murray, and Cherie R. Kagan . Selective p- and n-Doping of Colloidal PbSe Nanowires To Construct Electronic and Optoelectronic Devices. ACS Nano 2015, 9 (7) , 7536-7544. https://doi.org/10.1021/acsnano.5b02734
    7. Yuming Lai, Haipeng Li, David K. Kim, Benjamin T. Diroll, Christopher B. Murray, and Cherie R. Kagan . Low-Frequency (1/f) Noise in Nanocrystal Field-Effect Transistors. ACS Nano 2014, 8 (9) , 9664-9672. https://doi.org/10.1021/nn504303b
    8. Kwang Seob Jeong, Zhiyou Deng, Sean Keuleyan, Heng Liu, and Philippe Guyot-Sionnest . Air-Stable n-Doped Colloidal HgS Quantum Dots. The Journal of Physical Chemistry Letters 2014, 5 (7) , 1139-1143. https://doi.org/10.1021/jz500436x
    9. Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Hangfei Lin, Taejong Paik, Benjamin. T. Diroll, Shin Muramoto, Christopher B. Murray, and Cherie R. Kagan . Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition. Nano Letters 2014, 14 (3) , 1559-1566. https://doi.org/10.1021/nl404818z
    10. Paul S. Weiss (Editor-in-Chief). What Can Nano Do?. ACS Nano 2013, 7 (11) , 9507-9508. https://doi.org/10.1021/nn4059105
    11. David K. Kim, Aaron T. Fafarman, Benjamin T. Diroll, Silvia H. Chan, Thomas R. Gordon, Christopher B. Murray, and Cherie R. Kagan . Solution-Based Stoichiometric Control over Charge Transport in Nanocrystalline CdSe Devices. ACS Nano 2013, 7 (10) , 8760-8770. https://doi.org/10.1021/nn403132x
    12. Ji-Hyuk Choi, Soong Ju Oh, Yuming Lai, David K. Kim, Tianshuo Zhao, Aaron T. Fafarman, Benjamin T. Diroll, Christopher B. Murray, and Cherie R. Kagan . In Situ Repair of High-Performance, Flexible Nanocrystal Electronics for Large-Area Fabrication and Operation in Air. ACS Nano 2013, 7 (9) , 8275-8283. https://doi.org/10.1021/nn403752d
    13. Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Taejong Paik, Sung-Hoon Hong, Christopher B. Murray, and Cherie R. Kagan . Stoichiometric Control of Lead Chalcogenide Nanocrystal Solids to Enhance Their Electronic and Optoelectronic Device Performance. ACS Nano 2013, 7 (3) , 2413-2421. https://doi.org/10.1021/nn3057356
    14. Stefan Thiemann, Mathias Gruber, Irina Lokteva, Johannes Hirschmann, Marcus Halik, and Jana Zaumseil . High-Mobility ZnO Nanorod Field-Effect Transistors by Self-Alignment and Electrolyte-Gating. ACS Applied Materials & Interfaces 2013, 5 (5) , 1656-1662. https://doi.org/10.1021/am3026739
    15. Rion Graham and Dong Yu . High Carrier Mobility in Single Ultrathin Colloidal Lead Selenide Nanowire Field Effect Transistors. Nano Letters 2012, 12 (8) , 4360-4365. https://doi.org/10.1021/nl302161n
    16. Soong Ju Oh, David K. Kim, and Cherie. R. Kagan . Remote Doping and Schottky Barrier Formation in Strongly Quantum Confined Single PbSe Nanowire Field-Effect Transistors. ACS Nano 2012, 6 (5) , 4328-4334. https://doi.org/10.1021/nn3009382
    17. David K. Kim, Yuming Lai, Tarun R. Vemulkar, and Cherie R. Kagan . Flexible, Low-Voltage, and Low-Hysteresis PbSe Nanowire Field-Effect Transistors. ACS Nano 2011, 5 (12) , 10074-10083. https://doi.org/10.1021/nn203948x
    18. Jing Wang, Meysam Bagheri Tagani, Li Zhang, Yu Xia, Qilong Wu, Bo Li, Qiwei Tian, Yuan Tian, Long-Jing Yin, Lijie Zhang, Zhihui Qin. Selective formation of ultrathin PbSe on Ag(111). Chinese Physics B 2022, 31 (9) , 096801. https://doi.org/10.1088/1674-1056/ac7867
    19. I. D. Avdeev. Shape effect on the valley splitting in lead selenide nanowires. Physical Review B 2019, 99 (19) https://doi.org/10.1103/PhysRevB.99.195303
    20. Aabhash Shrestha, Munkhbayar Batmunkh, Antonio Tricoli, Shi Zhang Qiao, Sheng Dai. Nahinfrarotaktive Bleichalkogenid‐Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. Angewandte Chemie 2019, 131 (16) , 5256-5279. https://doi.org/10.1002/ange.201804053
    21. Aabhash Shrestha, Munkhbayar Batmunkh, Antonio Tricoli, Shi Zhang Qiao, Sheng Dai. Near‐Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Post‐Synthesis Ligand Exchange, and Applications in Solar Cells. Angewandte Chemie International Edition 2019, 58 (16) , 5202-5224. https://doi.org/10.1002/anie.201804053
    22. Cherie R. Kagan. Flexible colloidal nanocrystal electronics. Chemical Society Reviews 2019, 48 (6) , 1626-1641. https://doi.org/10.1039/C8CS00629F
    23. Chao Fan, Xing Xu, Yushuang Zhang, Tianren Chen, Songyang Wang, Chi Zhang, Qinglin Zhang. Self-catalyzed VLS growth of PbSe wires with significant suppression of the VS process. CrystEngComm 2018, 20 (35) , 5269-5274. https://doi.org/10.1039/C8CE00817E
    24. Weon‐kyu Koh, Taeho Shin, Changhoon Jung, Dr‐ Kyung‐Sang Cho. TCNQ Interlayers for Colloidal Quantum Dot Light‐Emitting Diodes. ChemPhysChem 2016, 17 (8) , 1095-1097. https://doi.org/10.1002/cphc.201600054
    25. Qisheng Wang, Yao Wen, Fengrui Yao, Yun Huang, Zhenxing Wang, Molin Li, Xueying Zhan, Kai Xu, Fengmei Wang, Feng Wang, Jie Li, Kaihui Liu, Chao Jiang, Fengqi Liu, Jun He. BN‐Enabled Epitaxy of Pb 1– x Sn x Se Nanoplates on SiO 2 /Si for High‐Performance Mid‐Infrared Detection. Small 2015, 11 (40) , 5388-5394. https://doi.org/10.1002/smll.201502049
    26. Stefan B. Grimm, Florian Jakubka, Stefan P. Schießl, Florentina Gannott, Jana Zaumseil. Mapping Charge‐Carrier Density Across the p–n Junction in Ambipolar Carbon‐Nanotube Networks by Raman Microscopy. Advanced Materials 2014, 26 (47) , 7986-7992. https://doi.org/10.1002/adma.201403655
    27. Appan Merari Masillamani, Silvio Osella, Andrea Liscio, Oliver Fenwick, Federica Reinders, Marcel Mayor, Vincenzo Palermo, Jérôme Cornil, Paolo Samorì. Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111). Nanoscale 2014, 6 (15) , 8969-8977. https://doi.org/10.1039/C4NR01880J
    28. Manoj K. Jana, Banavoth Murali, S. B. Krupanidhi, Kanishka Biswas, C. N. R. Rao. Fabrication of large-area PbSe films at the organic–aqueous interface and their near-infrared photoresponse. Journal of Materials Chemistry C 2014, 2 (31) , 6283. https://doi.org/10.1039/C4TC00908H
    29. Stephen V. Kershaw, Andrei S. Susha, Andrey L. Rogach. Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chemical Society Reviews 2013, 42 (7) , 3033. https://doi.org/10.1039/c2cs35331h
    30. Irina Lokteva, Stefan Thiemann, Florentina Gannott, Jana Zaumseil. Ambipolar, low-voltage and low-hysteresis PbSe nanowire field-effect transistors by electrolyte gating. Nanoscale 2013, 5 (10) , 4230. https://doi.org/10.1039/c3nr33723e
    31. Hsiang‐Yu Chen, Jianhui Hou, Smita Dayal, Lijun Huo, Nikos Kopidakis, Matthew C. Beard, Joseph M. Luther. A p ‐Type Quantum Dot/Organic Donor:Acceptor Solar‐Cell Structure for Extended Spectral Response. Advanced Energy Materials 2011, 1 (4) , 528-533. https://doi.org/10.1002/aenm.201100190

    ACS Nano

    Cite this: ACS Nano 2011, 5, 4, 3230–3236
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn200348p
    Published March 15, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2401

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.