ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films

View Author Information
Microelectronics Research Center, Department of Electrical Engineering, Department of Mechanical Engineering and the Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
*Address correspondence to [email protected]
Cite this: ACS Nano 2012, 6, 3, 2319–2325
Publication Date (Web):February 7, 2012
https://doi.org/10.1021/nn205068n
Copyright © 2012 American Chemical Society

    Article Views

    6480

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We report new findings on the chemical vapor deposition (CVD) of monolayer graphene with negligible defects (≥95% negligible defect-peak over 200 μm × 200 μm areas) on evaporated copper films. Compared to copper foils used in the CVD of graphene, several new unexpected results have been observed including high-quality monolayer synthesis at temperatures <900 °C, a new growth window using a hydrogen-free methane precursor for low-defects, and electron microscope evidence of commensurate growth of graphene grains on underlying copper grains. These thermal, chemical, and physical growth characteristics of graphene on copper films can be attributed to the distinct differences in the dominant crystal orientation of copper films (111) versus foils (100), and consequent dissimilar interplay with the precursor gas. This study suggests that reduced temperature, hydrogen-free synthesis of defect-negligible monolayer graphene is feasible, with the potential to shape and scale graphene grains by controlling the size and crystal orientation of the underlying copper grains.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figure S1–S7 as described in the main text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 147 publications.

    1. Sivasakthya Mohan, Dmitry Kireev, Shanmukh Kutagulla, Nicholas Ignacio, Yuqian Gu, Hugo Celio, Xun Zhan, Deji Akinwande, Kenneth M. Liechti. Direct Metal-Free Growth and Dry Separation of Bilayer Graphene on Sapphire: Implications for Electronic Applications. ACS Applied Nano Materials 2023, 6 (20) , 19018-19028. https://doi.org/10.1021/acsanm.3c03533
    2. Xudong Xue, Liping Wang, Gui Yu. Surface Engineering of Substrates for Chemical Vapor Deposition Growth of Graphene and Applications in Electronic and Spintronic Devices. Chemistry of Materials 2021, 33 (23) , 8960-8989. https://doi.org/10.1021/acs.chemmater.1c01317
    3. C. Jeffrey Brinker, (Associate Editor)Jillian M. Buriak, (Associate Editor)Warren C. W. Chan, (Associate Editor)Manish Chhowalla, (Associate Editor)Sharon C. Glotzer, (Associate Editor)Yury Gogotsi, (Associate Editor)Paula T. Hammond, (Associate Editor)Mark C. Hersam, (Associate Editor)Ali Javey, (Associate Editor)Cherie R. Kagan, (Associate Editor)Kazunori Kataoka, (Associate Editor)Ali Khademhosseini, (Associate Editor)Il-Doo Kim, (Associate Editor)Nicholas A. Kotov, (Associate Editor)Shuit-Tong Lee, (Associate Editor)Young Hee Lee, (Associate Editor)Yan Li, (Associate Editor)Luis M. Liz-Marzán, (Associate Editor)Jill E. Millstone, (Associate Editor)Paul Mulvaney, (Associate Editor)Andre E. Nel, (Associate Editor)Peter Nordlander, (Associate Editor)Wolfgang J. Parak, (Associate Editor)Reginald M. Penner, (Associate Editor)Andrey L. Rogach, (Associate Editor)Raymond E. Schaak, (Associate Editor)A. K. Sood, (Associate Editor)Molly M. Stevens, (Associate Editor)Andrew T. S. Wee, (Associate Editor)Tanja Weil, (Associate Editor)C. Grant Wilson, (Associate Editor)Paul S. Weiss (Editor-in-Chief). Growing Contributions of Nano in 2020. ACS Nano 2020, 14 (12) , 16163-16164. https://doi.org/10.1021/acsnano.0c10429
    4. Oliver J. Burton, Vitaliy Babenko, Vlad-Petru Veigang-Radulescu, Barry Brennan, Andrew J. Pollard, Stephan Hofmann. The Role and Control of Residual Bulk Oxygen in the Catalytic Growth of 2D Materials. The Journal of Physical Chemistry C 2019, 123 (26) , 16257-16267. https://doi.org/10.1021/acs.jpcc.9b03808
    5. Phong Nguyen, Sanjay K. Behura, Michael R. Seacrist, Vikas Berry. Intergrain Diffusion of Carbon Radical for Wafer-Scale, Direct Growth of Graphene on Silicon-Based Dielectrics. ACS Applied Materials & Interfaces 2018, 10 (31) , 26517-26525. https://doi.org/10.1021/acsami.8b07655
    6. Behnaz Rahmani Didar and Perla B. Balbuena . Adsorption of Carbon on Partially Oxidized Low-Index Cu Surfaces. Langmuir 2018, 34 (4) , 1311-1320. https://doi.org/10.1021/acs.langmuir.7b03456
    7. Benjamin Huet and Jean-Pierre Raskin . Pressure-Controlled Chemical Vapor Deposition of Single-Layer Graphene with Millimeter-Size Domains on Thin Copper Film. Chemistry of Materials 2017, 29 (8) , 3431-3440. https://doi.org/10.1021/acs.chemmater.6b04928
    8. Lester F. Lampert, Roman Caudillo, Thomas Lindner, and Jun Jiao . C-Plane Sapphire and Catalyst Confinement Enable Wafer-Scale High-Quality Graphene Growth. The Journal of Physical Chemistry C 2016, 120 (46) , 26498-26507. https://doi.org/10.1021/acs.jpcc.6b06459
    9. Sana Frindy, Abdelkrim El Kadib, Mohamed Lahcini, Ana Primo, and Hermenegildo García . Isotropic and Oriented Copper Nanoparticles Supported on Graphene as Aniline Guanylation Catalysts. ACS Catalysis 2016, 6 (6) , 3863-3869. https://doi.org/10.1021/acscatal.6b00995
    10. Mark H. Griep, Emil Sandoz-Rosado, Travis M. Tumlin, and Eric Wetzel . Enhanced Graphene Mechanical Properties through Ultrasmooth Copper Growth Substrates. Nano Letters 2016, 16 (3) , 1657-1662. https://doi.org/10.1021/acs.nanolett.5b04531
    11. Ken Verguts, Bart Vermeulen, Nandi Vrancken, Koen Schouteden, Chris Van Haesendonck, Cedric Huyghebaert, Marc Heyns, Stefan De Gendt, and Steven Brems . Epitaxial Al2O3(0001)/Cu(111) Template Development for CVD Graphene Growth. The Journal of Physical Chemistry C 2016, 120 (1) , 297-304. https://doi.org/10.1021/acs.jpcc.5b09461
    12. S. Misra, T. Karan, and S. Ram . Dynamics of Surface Spins in Small Core–Shell Magnets of Li0.35Zn0.30Fe2.35O4 Bonds over a Carbon Surface and Tailored Magnetic Properties. The Journal of Physical Chemistry C 2015, 119 (40) , 23184-23195. https://doi.org/10.1021/acs.jpcc.5b04635
    13. Jinbo Pang, Alicja Bachmatiuk, Lei Fu, Chenglin Yan, Mengqi Zeng, Jiao Wang, Barbara Trzebicka, Thomas Gemming, Juergen Eckert, and Mark H. Rummeli . Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition. The Journal of Physical Chemistry C 2015, 119 (23) , 13363-13368. https://doi.org/10.1021/acs.jpcc.5b03911
    14. Robert M. Jacobberger, Pierre L. Levesque, Feng Xu, Meng-Yin Wu, Saman Choubak, Patrick Desjardins, Richard Martel, and Michael S. Arnold . Tailoring the Growth Rate and Surface Facet for Synthesis of High-Quality Continuous Graphene Films from CH4 at 750 °C via Chemical Vapor Deposition. The Journal of Physical Chemistry C 2015, 119 (21) , 11516-11523. https://doi.org/10.1021/jp5116355
    15. Seung Ryul Na, Ji Won Suk, Li Tao, Deji Akinwande, Rodney S. Ruoff, Rui Huang, and Kenneth M. Liechti . Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects. ACS Nano 2015, 9 (2) , 1325-1335. https://doi.org/10.1021/nn505178g
    16. Alvin L. Lee, Li Tao, and Deji Akinwande . Suppression of Copper Thin Film Loss during Graphene Synthesis. ACS Applied Materials & Interfaces 2015, 7 (3) , 1527-1532. https://doi.org/10.1021/am506601v
    17. Seung Ryul Na, Ji Won Suk, Rodney S. Ruoff, Rui Huang, and Kenneth M. Liechti . Ultra Long-Range Interactions between Large Area Graphene and Silicon. ACS Nano 2014, 8 (11) , 11234-11242. https://doi.org/10.1021/nn503624f
    18. Somayyeh Rahimi, Li Tao, Sk. Fahad Chowdhury, Saungeun Park, Alex Jouvray, Simon Buttress, Nalin Rupesinghe, Ken Teo, and Deji Akinwande . Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene Transistors. ACS Nano 2014, 8 (10) , 10471-10479. https://doi.org/10.1021/nn5038493
    19. Caterina Soldano, Andrea Stefani, Viviana Biondo, Laura Basiricò, Guido Turatti, Gianluca Generali, Luca Ortolani, Vittorio Morandi, Giulio Paolo Veronese, Rita Rizzoli, Raffaella Capelli, and Michele Muccini . ITO-Free Organic Light-Emitting Transistors with Graphene Gate Electrode. ACS Photonics 2014, 1 (10) , 1082-1088. https://doi.org/10.1021/ph500289s
    20. Michael S. Bresnehan, Ganesh R. Bhimanapati, Ke Wang, David W. Snyder, and Joshua A. Robinson . Impact of Copper Overpressure on the Synthesis of Hexagonal Boron Nitride Atomic Layers. ACS Applied Materials & Interfaces 2014, 6 (19) , 16755-16762. https://doi.org/10.1021/am503844u
    21. Pai-Yen Chen, Haiyu Huang, Deji Akinwande, and Andrea Alù . Graphene-Based Plasmonic Platform for Reconfigurable Terahertz Nanodevices. ACS Photonics 2014, 1 (8) , 647-654. https://doi.org/10.1021/ph500046r
    22. Adriano Ambrosi, Chun Kiang Chua, Alessandra Bonanni, and Martin Pumera . Electrochemistry of Graphene and Related Materials. Chemical Reviews 2014, 114 (14) , 7150-7188. https://doi.org/10.1021/cr500023c
    23. G. Faggio, A. Capasso, G. Messina, S. Santangelo, Th. Dikonimos, S. Gagliardi, R. Giorgi, V. Morandi, L. Ortolani, and N. Lisi . High-Temperature Growth of Graphene Films on Copper Foils by Ethanol Chemical Vapor Deposition. The Journal of Physical Chemistry C 2013, 117 (41) , 21569-21576. https://doi.org/10.1021/jp407013y
    24. Richard Piner, Huifeng Li, Xianghua Kong, Li Tao, Iskandar N. Kholmanov, Hengxing Ji, Wi Hyoung Lee, Ji Won Suk, Jongpil Ye, Yufeng Hao, Shanshan Chen, Carl W. Magnuson, Ariel F. Ismach, Deji Akinwande, and Rodney S. Ruoff . Graphene Synthesis via Magnetic Inductive Heating of Copper Substrates. ACS Nano 2013, 7 (9) , 7495-7499. https://doi.org/10.1021/nn4031564
    25. Jongho Lee, Tae-Jun Ha, Huifeng Li, Kristen N. Parrish, Milo Holt, Ananth Dodabalapur, Rodney S. Ruoff, and Deji Akinwande . 25 GHz Embedded-Gate Graphene Transistors with High-K Dielectrics on Extremely Flexible Plastic Sheets. ACS Nano 2013, 7 (9) , 7744-7750. https://doi.org/10.1021/nn403487y
    26. Lijuan Meng, Zilu Wang, Jian Jiang, Yonghong Yang, and Jinlan Wang . Defect Healing of Chemical Vapor Deposition Graphene Growth by Metal Substrate Step. The Journal of Physical Chemistry C 2013, 117 (29) , 15260-15265. https://doi.org/10.1021/jp312802e
    27. Robert M. Jacobberger and Michael S. Arnold . Graphene Growth Dynamics on Epitaxial Copper Thin Films. Chemistry of Materials 2013, 25 (6) , 871-877. https://doi.org/10.1021/cm303445s
    28. Adrian T. Murdock, Antal Koos, T. Ben Britton, Lothar Houben, Tim Batten, Tong Zhang, Angus J. Wilkinson, Rafal E. Dunin-Borkowski, Christina E. Lekka, and Nicole Grobert . Controlling the Orientation, Edge Geometry, and Thickness of Chemical Vapor Deposition Graphene. ACS Nano 2013, 7 (2) , 1351-1359. https://doi.org/10.1021/nn3049297
    29. Tae-Jun Ha, Jongho Lee, Sk. Fahad Chowdhury, Deji Akinwande, Peter J. Rossky, and Ananth Dodabalapur . Transformation of the Electrical Characteristics of Graphene Field-Effect Transistors with Fluoropolymer. ACS Applied Materials & Interfaces 2013, 5 (1) , 16-20. https://doi.org/10.1021/am3025323
    30. Zhiqiang Niu Lili Liu Peter Sherrell Jun Chen Xiaodong Chen . Flexible Supercapacitors – Development of Bendable Carbon Architectures. 2013, 101-141. https://doi.org/10.1021/bk-2013-1140.ch005
    31. Hamid Mehdipour and Kostya (Ken) Ostrikov . Kinetics of Low-Pressure, Low-Temperature Graphene Growth: Toward Single-Layer, Single-Crystalline Structure. ACS Nano 2012, 6 (11) , 10276-10286. https://doi.org/10.1021/nn3041446
    32. Li Tao, Jongho Lee, Milo Holt, Harry Chou, Stephen J. McDonnell, Domingo A. Ferrer, Matías G. Babenco, Robert M. Wallace, Sanjay K. Banerjee, Rodney S. Ruoff, and Deji Akinwande . Uniform Wafer-Scale Chemical Vapor Deposition of Graphene on Evaporated Cu (111) Film with Quality Comparable to Exfoliated Monolayer. The Journal of Physical Chemistry C 2012, 116 (45) , 24068-24074. https://doi.org/10.1021/jp3068848
    33. Woo Jin Lee, Sang Ho Kim, Jun Sun Eom, Arnaud Caron. Comparing the properties and growth of graphene on electrolytic and rolled Cu foils by chemical vapor deposition. Journal of Vacuum Science & Technology B 2024, 42 (2) https://doi.org/10.1116/6.0002893
    34. Prasenjit Mandal, Hari Shankar Biswas. Catalytic Performance of Graphene-Based Nanocomposites. 2023, 119-143. https://doi.org/10.1007/978-3-031-28942-2_6
    35. Verónica Libertad Medina-Llamas, Juan Luis Fajardo-Díaz, Aarón Morelos-Gomez, Morinobu Endo, Florentino López-Urías, Emilio Muñoz-Sandoval. Crystalline multilayer graphene nanoflakes synthesized by catalytic chemical vapor deposition using reduced nanostructured hematite as catalyst precursor and 1,2-dichlorobenzene and benzylamine mixture as carbon source. Carbon 2023, 203 , 813-826. https://doi.org/10.1016/j.carbon.2022.12.033
    36. Deping Huang, Yinwu Duan, Leining Zhang, Xin li, Yongna Zhang, Feng Ding, Jing Guo, Xiaoxu Huang, Zhancheng Li, Haofei Shi. Graphene Growth across the Twin Boundaries of Copper Substrate. Advanced Functional Materials 2022, 32 (42) https://doi.org/10.1002/adfm.202202415
    37. Kaicheng Jia, Jincan Zhang, Yeshu Zhu, Luzhao Sun, Li Lin, Zhongfan Liu. Toward the commercialization of chemical vapor deposition graphene films. Applied Physics Reviews 2021, 8 (4) https://doi.org/10.1063/5.0056413
    38. Lu Liu, Zhenyu Zhang, Bin Wu, Wei Hu, Fanning Meng, Yubiao Li. A review: green chemical mechanical polishing for metals and brittle wafers. Journal of Physics D: Applied Physics 2021, 54 (37) , 373001. https://doi.org/10.1088/1361-6463/ac0c4a
    39. Ming Huang, Bangwei Deng, Fan Dong, Lili Zhang, Zheye Zhang, Peng Chen. Substrate Engineering for CVD Growth of Single Crystal Graphene. Small Methods 2021, 5 (5) https://doi.org/10.1002/smtd.202001213
    40. Jongpil Ye, Jaehoon Jeong. Effects of structural characteristics of Cu grain boundaries on graphene growth. Carbon 2021, 176 , 262-270. https://doi.org/10.1016/j.carbon.2021.01.141
    41. K. Drogowska-Horná, O. Frank, M. Kalbac. Chemical vapor deposition (CVD) growth of graphene films. 2021, 199-222. https://doi.org/10.1016/B978-0-08-102848-3.00014-1
    42. Nurhidaya Soriadi, Mohd Faizol Abdullah, Firzalaila Syarina Md Yakin, Siti Aishah Mohamad Badaruddin, Mohd Ismahadi Syono. Effect of Cu thickness and temperature on growth of graphene on 8-inch Cu/SiO2/Si wafer using cold-wall CVD reactor. Materials Today: Proceedings 2021, 42 , 2948-2952. https://doi.org/10.1016/j.matpr.2020.12.800
    43. Chaitanya Arya, K. Kanishka H. De Silva, Masamichi Yoshimura. Adlayer-free large-area single-crystal CVD graphene growth on copper. Journal of Materials Science: Materials in Electronics 2020, 31 (24) , 21821-21831. https://doi.org/10.1007/s10854-020-04706-8
    44. Li Lynn Shiau, Simon Chun Kiat Goh, Xingli Wang, MinMin Zhu, Mamina Sahoo, Chuan Seng Tan, Chao-Sung Lai, Zheng Liu, Beng Kang Tay. Effects of precursors’ purity on graphene quality: Synthesis and thermoelectric effect. AIP Advances 2020, 10 (4) https://doi.org/10.1063/1.5142310
    45. Tianchao Niu, Qingling Meng, Dechun Zhou, Nan Si, Shuwei Zhai, Xiamin Hao, Miao Zhou, Harald Fuchs. Large‐Scale Synthesis of Strain‐Tunable Semiconducting Antimonene on Copper Oxide. Advanced Materials 2020, 32 (4) https://doi.org/10.1002/adma.201906873
    46. Preety Ahuja, Sanjeev Kumar Ujjain. Graphene-Based Materials for Flexible Supercapacitors. 2020, 297-326. https://doi.org/10.1007/978-3-030-29522-6_10
    47. Xiuyun Zhang, Feng Ding. The magic-sized carbon clusters on the transition metal surfaces with a four-fold symmetry. Carbon 2020, 156 , 282-286. https://doi.org/10.1016/j.carbon.2019.09.048
    48. Chitengfei Zhang, Rong Tu, Liu Liu, Jun Li, Mingdong Dong, Zegao Wang, Ji Shi, Haiwen Li, Hitoshi Ohmori, Song Zhang, Lianmeng Zhang, Takashi Goto. Growth and carrier transport performance of single-crystalline monolayer graphene over electrodeposited copper film on quartz glass. Ceramics International 2019, 45 (18) , 24254-24259. https://doi.org/10.1016/j.ceramint.2019.08.137
    49. Koteeswara Reddy Nandanapalli, Devika Mudusu, Sungwon Lee. Functionalization of graphene layers and advancements in device applications. Carbon 2019, 152 , 954-985. https://doi.org/10.1016/j.carbon.2019.06.081
    50. Yonas Tsegaye Megra, Ji Won Suk. Adhesion properties of 2D materials. Journal of Physics D: Applied Physics 2019, 52 (36) , 364002. https://doi.org/10.1088/1361-6463/ab27ad
    51. Jia-Qi Zhu, Xia Liu, Qing-Sheng Yang. Atomistic simulation of the nanoindentation behavior of graphene/Al multilayered nanocomposites. IOP Conference Series: Materials Science and Engineering 2019, 531 (1) , 012055. https://doi.org/10.1088/1757-899X/531/1/012055
    52. Seulgi Park, Hyunjin Park, YoungMoon Choi, Ohyun Kim. Selective growth of uniform single-layer graphene on Cu foil and fabrication of damage-free field effect transistor combining with direct transfer. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2019, 37 (4) https://doi.org/10.1116/1.5109737
    53. Yun-Jung Kim, Sung Hyun Kwon, Hyungjun Noh, Seongmin Yuk, Hongkyung Lee, Hyun soo Jin, Jinhong Lee, Ji-Guang Zhang, Seung Geol Lee, Hwanuk Guim, Hee-Tak Kim. Facet selectivity of Cu current collector for Li electrodeposition. Energy Storage Materials 2019, 19 , 154-162. https://doi.org/10.1016/j.ensm.2019.02.011
    54. Robert M. Jacobberger, Ellen A. Murray, Matthieu Fortin-Deschênes, Florian Göltl, Wyatt A. Behn, Zachary J. Krebs, Pierre L. Levesque, Donald E. Savage, Charles Smoot, Max G. Lagally, Patrick Desjardins, Richard Martel, Victor Brar, Oussama Moutanabbir, Manos Mavrikakis, Michael S. Arnold. Alignment of semiconducting graphene nanoribbons on vicinal Ge(001). Nanoscale 2019, 11 (11) , 4864-4875. https://doi.org/10.1039/C9NR00713J
    55. Jinxin Liu, Lei Fu. Controllable Growth of Graphene on Liquid Surfaces. Advanced Materials 2019, 31 (9) https://doi.org/10.1002/adma.201800690
    56. Trung T. Pham, Quyet H. Do, Thanh K.V. Ngo, Robert Sporken. Direct transfer of the CVD-grown graphene on copper foils on SiO2 substrate under supercritical CO2 assisted-cleaning technique. Materials Today Communications 2019, 18 , 184-190. https://doi.org/10.1016/j.mtcomm.2018.12.008
    57. Zhenyu Zhang, Junfeng Cui, Jiabo Zhang, Dongdong Liu, Zhijian Yu, Dongming Guo. Environment friendly chemical mechanical polishing of copper. Applied Surface Science 2019, 467-468 , 5-11. https://doi.org/10.1016/j.apsusc.2018.10.133
    58. Trung T. Pham, Trung H. Huynh, Quyet H. Do, Thanh K.V. Ngo. Optimum reproduction and characterization of graphene on copper foils by low pressure chemical vapor deposition. Materials Chemistry and Physics 2019, 224 , 286-292. https://doi.org/10.1016/j.matchemphys.2018.12.009
    59. Yichen Lu, Xin Liu, Ryoma Hattori, Chi Ren, Xingwang Zhang, Takaki Komiyama, Duygu Kuzum. Ultralow Impedance Graphene Microelectrodes with High Optical Transparency for Simultaneous Deep Two‐Photon Imaging in Transgenic Mice. Advanced Functional Materials 2018, 28 (31) https://doi.org/10.1002/adfm.201800002
    60. Youngwoo Kim, Eric Moyen, Hemian Yi, José Avila, Chaoyu Chen, Maria C Asensio, Young Hee Lee, Didier Pribat. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c -plane sapphire substrates. 2D Materials 2018, 5 (3) , 035008. https://doi.org/10.1088/2053-1583/aaba9c
    61. Joon Hyong Cho, Michael Cullinan. Graphene Growth on and Transfer From Platinum Thin Films. Journal of Micro and Nano-Manufacturing 2018, 6 (2) https://doi.org/10.1115/1.4038676
    62. Yinbo Zhao, Xianghe Peng, Tao Fu, Xiaofei Zhu, Ning Hu, Cheng Yan. Strengthening mechanisms of graphene coated copper under nanoindentation. Computational Materials Science 2018, 144 , 42-49. https://doi.org/10.1016/j.commatsci.2017.12.009
    63. Farhat Majeed, Thomas Fickenscher, Morteza Shahpari, David V. Thiel. Microwave conductivity measurements of a graphene monolayer over D-band. 2018, 63-64. https://doi.org/10.1109/AUSMS.2018.8346983
    64. Li Tao, Eugenio Cinquanta, Carlo Grazianetti, Alessandro Molle, Deji Akinwande. Encapsulated Silicene Field-Effect Transistors. 2018, 235-254. https://doi.org/10.1007/978-3-319-99964-7_12
    65. Indu Sharma, Sanjay R. Dhakate, Kiran M. Subhedar. CVD growth of continuous and spatially uniform single layer graphene across the grain boundary of preferred (111) oriented copper processed by sequential melting–resolidification–recrystallization. Materials Chemistry Frontiers 2018, 2 (6) , 1137-1145. https://doi.org/10.1039/C8QM00082D
    66. Sang Jin Lee, Yekyung Kim, Jun-Yeon Hwang, Ju-Ho Lee, Seungon Jung, Hyesung Park, Seungmin Cho, Sahn Nahm, Woo Seok Yang, Hyeongkeun Kim, Seung Ho Han. Flexible Indium–Tin Oxide Crystal on Plastic Substrates Supported by Graphene Monolayer. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02265-3
    67. Daniel T. Oldfield, Chi P. Huynh, Stephen C. Hawkins, James G. Partridge, Dougal G. McCulloch. Synthesis of multi-layer graphene films on silica using physical vapour deposition. Carbon 2017, 123 , 683-687. https://doi.org/10.1016/j.carbon.2017.08.014
    68. Joon Hyong Cho, Jason J. Gorman, Seung Ryul Na, Michael Cullinan. Growth of monolayer graphene on nanoscale copper-nickel alloy thin films. Carbon 2017, 115 , 441-448. https://doi.org/10.1016/j.carbon.2017.01.023
    69. Deji Akinwande, Christopher J. Brennan, J. Scott Bunch, Philip Egberts, Jonathan R. Felts, Huajian Gao, Rui Huang, Joon-Seok Kim, Teng Li, Yao Li, Kenneth M. Liechti, Nanshu Lu, Harold S. Park, Evan J. Reed, Peng Wang, Boris I. Yakobson, Teng Zhang, Yong-Wei Zhang, Yao Zhou, Yong Zhu. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mechanics Letters 2017, 13 , 42-77. https://doi.org/10.1016/j.eml.2017.01.008
    70. Junqi Xu, Can Fu, Haibin Sun, Lanxiang Meng, Yanjie Xia, Chongwu Zhang, Xiaolei Yi, Wenchao Yang, Pengfei Guo, Chunlei Wang, Jiangfeng Liu. Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure. Nanotechnology 2017, 28 (15) , 155605. https://doi.org/10.1088/1361-6528/aa6235
    71. Guo-Wei Cheng, Kevin Chu, Jeng Shiung Chen, Jeff T.H. Tsai. Fabrication of graphene from graphite by a thermal assisted vacuum arc discharge system. Superlattices and Microstructures 2017, 104 , 258-265. https://doi.org/10.1016/j.spmi.2017.02.040
    72. Arseny M Alexeev, Matthew D Barnes, V Karthik Nagareddy, Monica F Craciun, C David Wright. A simple process for the fabrication of large-area CVD graphene based devices via selective in situ functionalization and patterning. 2D Materials 2017, 4 (1) , 011010. https://doi.org/10.1088/2053-1583/4/1/011010
    73. Yexin Feng, Keqiu Chen, Xin-Zheng Li, Enge Wang, Lixin Zhang. Hydrogen induced contrasting modes of initial nucleations of graphene on transition metal surfaces. The Journal of Chemical Physics 2017, 146 (3) https://doi.org/10.1063/1.4974178
    74. Abd Elhamid M. Abd Elhamid, Mohamed A. Hafez, Abdelnaser M. Aboulfotouh, Iftitan M. Azzouz. Study of graphene growth on copper foil by pulsed laser deposition at reduced temperature. Journal of Applied Physics 2017, 121 (2) https://doi.org/10.1063/1.4973736
    75. H. Cheun Lee, Wei-Wen Liu, Siang-Piao Chai, Abdul Rahman Mohamed, C.H. Voon, U. Hashim, M.K. Md Arshad, P.Y.P. Adelyn, A.R.N. Huda, S.M. Kahar, N.M.S. Hidayah, Chin Wei Lai, Cheng-Seong Khe. The Impact of Reaction Parameters on Graphene-like Material Synthesized Using Chemical Vapour Deposition. Procedia Engineering 2017, 184 , 460-468. https://doi.org/10.1016/j.proeng.2017.04.117
    76. Hongyan Sun, Ding Chen, Yuming Wu, Qilong Yuan, Liangchao Guo, Dan Dai, Yang Xu, Pei Zhao, Nan Jiang, Cheng-Te Lin. High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. Journal of Materials Chemistry C 2017, 5 (8) , 1880-1884. https://doi.org/10.1039/C6TC05505B
    77. Aaesha Alnuaimi, Ibraheem Almansouri, Irfan Saadat, Ammar Nayfeh. Toward fast growth of large area high quality graphene using a cold-wall CVD reactor. RSC Advances 2017, 7 (82) , 51951-51957. https://doi.org/10.1039/C7RA10336K
    78. Haiyu Huang, Li Tao, Fei Liu, Li Ji, Ye Hu, Mark Ming-Cheng Cheng, Pai-Yen Chen, Deji Akinwande. Chemical-sensitive graphene modulator with a memory effect for internet-of-things applications. Microsystems & Nanoengineering 2016, 2 (1) https://doi.org/10.1038/micronano.2016.18
    79. M. Zhang, B.-C. Huang, Y. Wang, J. C. S. Woo. Selective LPCVD growth of graphene on patterned copper and its growth mechanism. Applied Physics Letters 2016, 109 (25) https://doi.org/10.1063/1.4972846
    80. S. Noor Mohammad. VQS (vapor-quasiliquid-solid, vapor-quasisolid-solid) mechanism lays down general platform for the syntheses of graphene by chemical vapor deposition. Journal of Applied Physics 2016, 120 (21) https://doi.org/10.1063/1.4971174
    81. Liqiang Lu, Yingchun Zhu, Chao Shi, Yutao T. Pei. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon 2016, 109 , 373-383. https://doi.org/10.1016/j.carbon.2016.08.023
    82. Alexander V. Sidorenkov, Sergey V. Kolesnikov, Alexander M. Saletsky. Molecular dynamics simulation of graphene on Cu (111) with different Lennard-Jones parameters. The European Physical Journal B 2016, 89 (10) https://doi.org/10.1140/epjb/e2016-70278-0
    83. Rajesh, Zhaoli Gao, Ramya Vishnubhotla, Pedro Ducos, Madeline Díaz Serrano, Jinglei Ping, Matthew K. Robinson, Alan Thornton Charlie Johnson. Genetically Engineered Antibody Functionalized Platinum Nanoparticles Modified CVD‐Graphene Nanohybrid Transistor for the Detection of Breast Cancer Biomarker, HER3. Advanced Materials Interfaces 2016, 3 (17) https://doi.org/10.1002/admi.201600124
    84. Jianping Shi, Qingqing Ji, Zhongfan Liu, Yanfeng Zhang. Recent Advances in Controlling Syntheses and Energy Related Applications of MX 2 and MX 2 /Graphene Heterostructures. Advanced Energy Materials 2016, 6 (17) https://doi.org/10.1002/aenm.201600459
    85. Jaehyun Han, Jun-Young Lee, Jong-Souk Yeo. Large-area layer-by-layer controlled and fully bernal stacked synthesis of graphene. Carbon 2016, 105 , 205-213. https://doi.org/10.1016/j.carbon.2016.04.039
    86. Seyedeh Maryam Mortazavi Zanjani, Mir Mohammad Sadeghi, Milo Holt, Sk. Fahad Chowdhury, Li Tao, Deji Akinwande. Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Applied Physics Letters 2016, 108 (3) https://doi.org/10.1063/1.4940128
    87. Jinbo Pang, Alicja Bachmatiuk, Imad Ibrahim, Lei Fu, Daniela Placha, Grazyna Simha Martynkova, Barbara Trzebicka, Thomas Gemming, Juergen Eckert, Mark H. Rümmeli. CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science 2016, 51 (2) , 640-667. https://doi.org/10.1007/s10853-015-9440-z
    88. Jiao Wang, Linfeng Chen, Nian Wu, Zhizhi Kong, Mengqi Zeng, Tao Zhang, Lin Zhuang, Lei Fu. Uniform graphene on liquid metal by chemical vapour deposition at reduced temperature. Carbon 2016, 96 , 799-804. https://doi.org/10.1016/j.carbon.2015.10.015
    89. Zefei Wu, Yanqing Guo, Yuzheng Guo, Rui Huang, Shuigang Xu, Jie Song, Huanhuan Lu, Zhenxu Lin, Yu Han, Hongliang Li, Tianyi Han, Jiangxiazi Lin, Yingying Wu, Gen Long, Yuan Cai, Chun Cheng, Dangsheng Su, John Robertson, Ning Wang. A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale 2016, 8 (5) , 2594-2600. https://doi.org/10.1039/C5NR05393E
    90. S. R. Na, S. Rahimi, L. Tao, H. Chou, S. K. Ameri, D. Akinwande, K. M. Liechti. Clean graphene interfaces by selective dry transfer for large area silicon integration. Nanoscale 2016, 8 (14) , 7523-7533. https://doi.org/10.1039/C5NR06637A
    91. Wesley T. E. van den Beld, Albert van den Berg, Jan C. T. Eijkel. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting. RSC Advances 2016, 6 (92) , 89380-89386. https://doi.org/10.1039/C6RA16935J
    92. Birong Luo, Bingyan Chen, Anle Wang, Dechao Geng, Jie Xu, Huaping Wang, Zhiyong Zhang, Lianmao Peng, Zhiping Xu, Gui Yu. Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. Journal of Materials Chemistry C 2016, 4 (31) , 7464-7471. https://doi.org/10.1039/C6TC02339H
    93. Tae-Jun Ha. Hybrid Graphene/Fluoropolymer Field-Effect Transistors With Improved Device Performance. IEEE Transactions on Electron Devices 2015, 62 (12) , 4340-4344. https://doi.org/10.1109/TED.2015.2494602
    94. Daniel T. Oldfield, Dougal G. McCulloch, Chi P. Huynh, Kallista Sears, Stephen C. Hawkins. Multilayered graphene films prepared at moderate temperatures using energetic physical vapour deposition. Carbon 2015, 94 , 378-385. https://doi.org/10.1016/j.carbon.2015.06.071
    95. Deji Akinwande, Li Tao, Qingkai Yu, Xiaojing Lou, Peng Peng, Duygu Kuzum. Large-Area Graphene Electrodes: Using CVD to facilitate applications in commercial touchscreens, flexible nanoelectronics, and neural interfaces. IEEE Nanotechnology Magazine 2015, 9 (3) , 6-14. https://doi.org/10.1109/MNANO.2015.2441105
    96. Joon-Seok Kim, Yingnan Liu, Weinan Zhu, Seohee Kim, Di Wu, Li Tao, Ananth Dodabalapur, Keji Lai, Deji Akinwande. Toward air-stable multilayer phosphorene thin-films and transistors. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep08989
    97. Jian Liu, Siva P. Adusumilli, John J. Condoluci, Alok C. Rastogi, William E. Bernier, Wayne E. Jones. Effects of H2 annealing on polycrystalline copper substrates for graphene growth during low pressure chemical vapor deposition. Materials Letters 2015, 153 , 132-135. https://doi.org/10.1016/j.matlet.2015.03.150
    98. Tae-Jun Ha, Alvin Lee. Chemical vapor deposition grown monolayer graphene field-effect transistors with reduced impurity concentration. Electronic Materials Letters 2015, 11 (4) , 552-558. https://doi.org/10.1007/s13391-015-5017-x
    99. G.P. Veronese, M. Allegrezza, M. Canino, E. Centurioni, L. Ortolani, R. Rizzoli, V. Morandi, C. Summonte. Graphene as transparent conducting layer for high temperature thin film device applications. Solar Energy Materials and Solar Cells 2015, 138 , 35-40. https://doi.org/10.1016/j.solmat.2015.02.026
    100. Syed Muhammad Hafiz, Su Kong Chong, Nay Ming Huang, Saadah Abdul Rahman. Fabrication of high-quality graphene by hot-filament thermal chemical vapor deposition. Carbon 2015, 86 , 1-11. https://doi.org/10.1016/j.carbon.2015.01.018
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect