ACS Publications. Most Trusted. Most Cited. Most Read
Bistable Magnetoresistance Switching in Exchange-Coupled CoFe2O4–Fe3O4 Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing
My Activity

    Article

    Bistable Magnetoresistance Switching in Exchange-Coupled CoFe2O4–Fe3O4 Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ Department of Materials Science and Engineering, Department of Chemistry, §Department of Physics and Astronomy, and Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
    *Address correspondence to [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2013, 7, 2, 1478–1486
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn3052617
    Published December 30, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Self-assembly of multicomponent nanocrystal superlattices provides a modular approach to the design of metamaterials by choosing constituent nanocrystal building blocks with desired physical properties and engineering the interparticle coupling. In this work, we report the self-assembly of binary nanocrystal superlattices composed of magnetically hard CoFe2O4 nanocrystals and magnetically soft Fe3O4 nanocrystals. Both NaZn13- and MgZn2-type CoFe2O4–Fe3O4 binary nanocrystal superlattices have been formed by the liquid–air interfacial assembly approach. Exchange coupling is achieved in both types of binary superlattices after thermal annealing under vacuum at 400 °C. The exchange-coupled CoFe2O4–Fe3O4 binary nanocrystal superlattices show single-phase magnetization switching behavior and magnetoresistance switching behavior below 200 K. The NaZn13-type CoFe2O4–Fe3O4 binary nanocrystal superlattices annealed at 500 °C even exhibit bistable magnetoresistance switching behavior at room temperature constituting a simple nonvolatile memory function.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional structural models, TEM images, temperature dependent conductance, FC and ZFC warming curves of CoFe2O4–Fe3O4 BNSLs. FTIR and TGA results. Magnetization and magnetoresistance results shown up to 7 and 9 T, respectively. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 87 publications.

    1. Shah Qasim Jan, Noah Schulz, Rajeswari Roy Chowdhury, Ayomipo Israel Ojo, Dalaver Hussain Anjum, Hafsa Khurshid, Darío A. Arena, Hariharan Srikanth. Magnetization Dynamics in Cobalt-Decorated Cobalt Ferrite Nanocomposites: Implications for High-Frequency Electromagnetic Shielding. ACS Applied Nano Materials 2025, 8 (20) , 10459-10470. https://doi.org/10.1021/acsanm.5c01070
    2. Katelyn J. Baumler, Raymond E. Schaak. Tutorial on Describing, Classifying, and Visualizing Common Crystal Structures in Nanoscale Materials Systems. ACS Nanoscience Au 2024, 4 (5) , 290-316. https://doi.org/10.1021/acsnanoscienceau.4c00010
    3. Lingxin Meng, Javier Fonseca, Roberto Sánchez-Naya, Amir Mohammad Ghadiri, Inhar Imaz, Daniel Maspoch. Coassembly of Complementary Polyhedral Metal–Organic Framework Particles into Binary Ordered Superstructures. Journal of the American Chemical Society 2024, 146 (31) , 21225-21230. https://doi.org/10.1021/jacs.4c07194
    4. Sang-Jo Lee, Jiwhan Kim, Jahar Dey, Kyeong Sik Jin, Sung-Min Choi. Nanoparticle Superlattices Driven by Linker-Mediated Covalent Bonding Interaction. The Journal of Physical Chemistry Letters 2024, 15 (25) , 6691-6698. https://doi.org/10.1021/acs.jpclett.4c01469
    5. Shengsong Yang, R. Allen LaCour, Yi-Yu Cai, Jun Xu, Daniel J. Rosen, Yugang Zhang, Cherie R. Kagan, Sharon C. Glotzer, Christopher B. Murray. Self-Assembly of Atomically Aligned Nanoparticle Superlattices from Pt–Fe3O4 Heterodimer Nanoparticles. Journal of the American Chemical Society 2023, 145 (11) , 6280-6288. https://doi.org/10.1021/jacs.2c12993
    6. Rebecca L. Li, Carl J. Thrasher, Theodore Hueckel, Robert J. Macfarlane. Hierarchically Structured Nanocomposites via a “Systems Materials Science” Approach. Accounts of Materials Research 2022, 3 (12) , 1248-1259. https://doi.org/10.1021/accountsmr.2c00153
    7. Kyle M. Kirkpatrick, Benjamin H. Zhou, Philip C. Bunting, Jeffrey D. Rinehart. Size-Tunable Magnetite Nanoparticles from Well-Defined Iron Oleate Precursors. Chemistry of Materials 2022, 34 (17) , 8043-8053. https://doi.org/10.1021/acs.chemmater.2c02046
    8. Yuchi Yang, Jingyu Xiao, Yan Xia, Xiangyun Xi, Tongtao Li, Dong Yang, Angang Dong. Assembly of CoFe2O4 Nanocrystals into Superparticles with Tunable Porosities for Use as Anode Materials for Lithium-Ion Batteries. ACS Applied Nano Materials 2022, 5 (7) , 9698-9705. https://doi.org/10.1021/acsanm.2c01929
    9. Ihor Cherniukh, Taras V. Sekh, Gabriele Rainò, Olivia J. Ashton, Max Burian, Alex Travesset, Modestos Athanasiou, Andreas Manoli, Rohit Abraham John, Mariia Svyrydenko, Viktoriia Morad, Yevhen Shynkarenko, Federico Montanarella, Denys Naumenko, Heinz Amenitsch, Grigorios Itskos, Rainer F. Mahrt, Thilo Stöferle, Rolf Erni, Maksym V. Kovalenko, Maryna I. Bodnarchuk. Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes. ACS Nano 2022, 16 (5) , 7210-7232. https://doi.org/10.1021/acsnano.1c10702
    10. Emanuele Marino, Sjoerd W. van Dongen, Steven J. Neuhaus, Weixingyue Li, Austin W. Keller, Cherie R. Kagan, Thomas E. Kodger, Christopher B. Murray. Monodisperse Nanocrystal Superparticles through a Source–Sink Emulsion System. Chemistry of Materials 2022, 34 (6) , 2779-2789. https://doi.org/10.1021/acs.chemmater.2c00039
    11. Gopal Datt, Ganesh Kotnana, Ramu Maddu, Örjan Vallin, Deep Chandra Joshi, Davide Peddis, Gianni Barucca, M. Venkata Kamalakar, Tapati Sarkar. Combined Bottom-Up and Top-Down Approach for Highly Ordered One-Dimensional Composite Nanostructures for Spin Insulatronics. ACS Applied Materials & Interfaces 2021, 13 (31) , 37500-37509. https://doi.org/10.1021/acsami.1c09582
    12. Raffaella Buonsanti, Anna Loiudice, Valeria Mantella. Colloidal Nanocrystals as Precursors and Intermediates in Solid State Reactions for Multinary Oxide Nanomaterials. Accounts of Chemical Research 2021, 54 (4) , 754-764. https://doi.org/10.1021/acs.accounts.0c00698
    13. Chethana Gadiyar, Anna Loiudice, Florian D’Ambra, Emad Oveisi, Dragos Stoian, Pranit Iyengar, Laia Castilla-Amorós, Valeria Mantella, Raffaella Buonsanti. Nanocrystals as Precursors in Solid-State Reactions for Size- and Shape-Controlled Polyelemental Nanomaterials. Journal of the American Chemical Society 2020, 142 (37) , 15931-15940. https://doi.org/10.1021/jacs.0c06556
    14. Elena H. Sánchez, Marianna Vasilakaki, Su Seong Lee, Peter S. Normile, Giuseppe Muscas, Massimiliano Murgia, Mikael S. Andersson, Gurvinder Singh, Roland Mathieu, Per Nordblad, Pier Carlo Ricci, Davide Peddis, Kalliopi N. Trohidou, Josep Nogués, José A. De Toro. Simultaneous Individual and Dipolar Collective Properties in Binary Assemblies of Magnetic Nanoparticles. Chemistry of Materials 2020, 32 (3) , 969-981. https://doi.org/10.1021/acs.chemmater.9b03268
    15. R. Allen LaCour, Carl Simon Adorf, Julia Dshemuchadse, Sharon C. Glotzer. Influence of Softness on the Stability of Binary Colloidal Crystals. ACS Nano 2019, 13 (12) , 13829-13842. https://doi.org/10.1021/acsnano.9b04274
    16. Guibin Song, Mojtaba Ranjbar, David R. Daughton, Richard A. Kiehl. Nanoparticle-Induced Anomalous Hall Effect in Graphene. Nano Letters 2019, 19 (10) , 7112-7118. https://doi.org/10.1021/acs.nanolett.9b02643
    17. Hongseok Yun, Ji Woong Yu, Young Jun Lee, Jin-Seong Kim, Chan Ho Park, Chongyong Nam, Junghun Han, Tae-Young Heo, Soo-Hyung Choi, Doh C. Lee, Won Bo Lee, Gila E. Stein, Bumjoon J. Kim. Symmetry Transitions of Polymer-Grafted Nanoparticles: Grafting Density Effect. Chemistry of Materials 2019, 31 (14) , 5264-5273. https://doi.org/10.1021/acs.chemmater.9b01699
    18. Benjamin H. Zhou, Jeffrey D. Rinehart. Pseudo Spin Valve Behavior in Colloidally Prepared Nanoparticle Films. ACS Applied Electronic Materials 2019, 1 (7) , 1065-1069. https://doi.org/10.1021/acsaelm.9b00196
    19. Yuchi Yang, Biwei Wang, Xiudi Shen, Luyin Yao, Lei Wang, Xiao Chen, Songhai Xie, Tongtao Li, Jianhua Hu, Dong Yang, Angang Dong. Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties. Journal of the American Chemical Society 2018, 140 (44) , 15038-15047. https://doi.org/10.1021/jacs.8b09779
    20. Benjamin H. Zhou, Jeffrey D. Rinehart. A Size Threshold for Enhanced Magnetoresistance in Colloidally Prepared CoFe2O4 Nanoparticle Solids. ACS Central Science 2018, 4 (9) , 1222-1227. https://doi.org/10.1021/acscentsci.8b00399
    21. Tyler J. Pearson, Danna E. Freedman. Size Determines Efficacy of Nanoparticle Magnetoresistance. ACS Central Science 2018, 4 (9) , 1092-1094. https://doi.org/10.1021/acscentsci.8b00598
    22. Marco Sanna Angotzi, Anna Musinu, Valentina Mameli, Andrea Ardu, Claudio Cara, Daniel Niznansky, Huolin L. Xin, and Carla Cannas . Spinel Ferrite Core–Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces. ACS Nano 2017, 11 (8) , 7889-7900. https://doi.org/10.1021/acsnano.7b02349
    23. Qing Zhao, Zhenhua Yan, Chengcheng Chen, and Jun Chen . Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews 2017, 117 (15) , 10121-10211. https://doi.org/10.1021/acs.chemrev.7b00051
    24. Michael A. Boles, Michael Engel, and Dmitri V. Talapin . Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews 2016, 116 (18) , 11220-11289. https://doi.org/10.1021/acs.chemrev.6b00196
    25. Bharati Debnath, Aprajita Bansal, Hemant G. Salunke, Anustup Sadhu, and Sayan Bhattacharyya . Enhancement of Magnetization through Interface Exchange Interactions of Confined NiO Nanoparticles within the Mesopores of CoFe2O4. The Journal of Physical Chemistry C 2016, 120 (10) , 5523-5533. https://doi.org/10.1021/acs.jpcc.5b12332
    26. Dichen Li, Hongseok Yun, Benjamin T. Diroll, Vicky V. T. Doan-Nguyen, James M. Kikkawa, and Christopher B. Murray . Synthesis and Size-Selective Precipitation of Monodisperse Nonstoichiometric MxFe3–xO4 (M = Mn, Co) Nanocrystals and Their DC and AC Magnetic Properties. Chemistry of Materials 2016, 28 (2) , 480-489. https://doi.org/10.1021/acs.chemmater.5b03280
    27. Jun Li, Yongcheng Wang, Tong Zhou, Hui Zhang, Xuhui Sun, Jing Tang, Lijuan Zhang, Abdullah M. Al-Enizi, Zhongqin Yang, and Gengfeng Zheng . Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting. Journal of the American Chemical Society 2015, 137 (45) , 14305-14312. https://doi.org/10.1021/jacs.5b07756
    28. Benjamin T. Diroll, Nicholas J. Greybush, Cherie R. Kagan, and Christopher B. Murray . Smectic Nanorod Superlattices Assembled on Liquid Subphases: Structure, Orientation, Defects, and Optical Polarization. Chemistry of Materials 2015, 27 (8) , 2998-3008. https://doi.org/10.1021/acs.chemmater.5b00355
    29. Hongseok Yun, Xiyu Liu, Taejong Paik, Duraivelan Palanisamy, Jungkwun Kim, William D. Vogel, Arthur J. Viescas, Jun Chen, Georgia C. Papaefthymiou, James M. Kikkawa, Mark G. Allen, and Christopher B. Murray . Size- and Composition-Dependent Radio Frequency Magnetic Permeability of Iron Oxide Nanocrystals. ACS Nano 2014, 8 (12) , 12323-12337. https://doi.org/10.1021/nn504711g
    30. Benjamin T. Diroll, Vicky V. T. Doan-Nguyen, Matteo Cargnello, E. Ashley Gaulding, Cherie R. Kagan, and Christopher B. Murray . X-ray Mapping of Nanoparticle Superlattice Thin Films. ACS Nano 2014, 8 (12) , 12843-12850. https://doi.org/10.1021/nn5062832
    31. Danielle C. Reifsnyder, Xingchen Ye, Thomas R. Gordon, Chengyu Song, and Christopher B. Murray . Three-Dimensional Self-Assembly of Chalcopyrite Copper Indium Diselenide Nanocrystals into Oriented Films. ACS Nano 2013, 7 (5) , 4307-4315. https://doi.org/10.1021/nn4008059
    32. Junjie Qiu, Xiangyun Xi, Shuoran Zheng, Tongtao Li, Yajun Wang, Xiaomeng Ren, Angang Dong. Pre-carbonization-mediated construction of urchin-like NiFe2O4 superparticles with enhanced CNT growth for efficient oxygen evolution. Journal of Colloid and Interface Science 2025, 691 , 137463. https://doi.org/10.1016/j.jcis.2025.137463
    33. Jun Chen, Chenyu Yan, Baixu Zhu, Chuanliang Huang, Fanrui Cheng, Hanyi Duan, Xingchen Ye. Electron microscopy in nanoparticle self-assembly research. Nano Research 2025, 18 (7) , 94907286. https://doi.org/10.26599/NR.2025.94907286
    34. Pierfrancesco Maltoni, Raúl López-Martín, Elena H. Sánchez, Peter S. Normile, Marianna Vasilakaki, Su Seong Lee, Benito Santos Burgos, Eloy A. López del Castillo, Davide Peddis, Chris Binns, Kalliopi Trohidou, Roland Mathieu, Josep Nogués, José A. De Toro. Non-exchange bias hysteresis loop shifts in dense composites of soft-hard magnetic nanoparticles: New possibilities for simple reference layers in magnetic devices. Advanced Composites and Hybrid Materials 2024, 7 (5) https://doi.org/10.1007/s42114-024-00972-w
    35. Ji Woong Yu, Hongseok Yun, Won Bo Lee, YongJoo Kim. Two‐Regime Conformation of Grafted Polymer on Nanoparticle Determines Symmetry of Nanoparticle Self‐Assembly. Advanced Science 2024, 87 https://doi.org/10.1002/advs.202406720
    36. Emanuele Marino, R. Allen LaCour, Timothy C. Moore, Sjoerd W. van Dongen, Austin W. Keller, Di An, Shengsong Yang, Daniel J. Rosen, Guillaume Gouget, Esther H. R. Tsai, Cherie R. Kagan, Thomas E. Kodger, Sharon C. Glotzer, Christopher B. Murray. Crystallization of binary nanocrystal superlattices and the relevance of short-range attraction. Nature Synthesis 2024, 3 (1) , 111-122. https://doi.org/10.1038/s44160-023-00407-2
    37. Fernando Fabris, Enio Lima, Jorge Martín Nuñez, Horacio E Troiani, Myriam H Aguirre, Victor Leborán, Francisco Rivadulla, Elin L Winkler. Annealing effects on the magnetic and magnetotransport properties of iron oxide nanoparticles self-assemblies. Nanotechnology 2023, 34 (45) , 455702. https://doi.org/10.1088/1361-6528/aced0e
    38. Xiaolong Zhao, Yizhong Zhao, Zenglin Wang, Bin Chen, Shenwen Fang, Peng Li, Gang Chen, Xiaqing Li, Wei Liang, XueFeng Gao, QingCai Wei. Insight into the influence of morphology and structure of Fe 3 O 4 nanoparticles on demulsification efficiencies. Journal of Dispersion Science and Technology 2023, 44 (9) , 1562-1573. https://doi.org/10.1080/01932691.2022.2025822
    39. Nils Neugebauer, Yi Wang, Matthias T. Elm, Detlev M. Hofmann, Christian Heiliger, Xingchen Ye, Peter J. Klar. Distance and size dependence of the interactions within highly ordered magnetic nanoparticle mesocrystals. Physical Review B 2023, 107 (18) https://doi.org/10.1103/PhysRevB.107.184410
    40. Marco Sanna Angotzi, Valentina Mameli, Dominika Zákutná, Fausto Secci, Huolin L. Xin, Carla Cannas. Hard–Soft Core–Shell Architecture Formation from Cubic Cobalt Ferrite Nanoparticles. Nanomaterials 2023, 13 (10) , 1679. https://doi.org/10.3390/nano13101679
    41. Ketaki K. Patankar, Pragati Jadhav, Ketankumar Gayakvad. Introduction and applications of magnetic nanoparticles. 2022, 3-39. https://doi.org/10.1016/B978-0-12-822819-7.00017-X
    42. Xiao Ren, Tianze Wu, Yuanmiao Sun, Yan Li, Guoyu Xian, Xianhu Liu, Chengmin Shen, Jose Gracia, Hong-Jun Gao, Haitao Yang, Zhichuan J. Xu. Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22865-y
    43. O. Mounkachi, L. Fkhar, R. Lamouri, E. Salmani, A. El hat, M. Hamedoun, H. Ez-Zahraouy, E.K. Hlil, M. Ait Ali, A. Benyoussef. Magnetic properties and magnetoresistance effect of SnFe2O4 spinel nanoparticles: Experimental, ab initio and Monte Carlo simulation. Ceramics International 2021, 47 (22) , 31886-31893. https://doi.org/10.1016/j.ceramint.2021.08.074
    44. Hankyeol Jung, Alina M. Schimpf. Photochemical reduction of nanocrystalline maghemite to magnetite. Nanoscale 2021, 13 (41) , 17465-17472. https://doi.org/10.1039/D1NR02973H
    45. Verner Håkonsen, Gurvinder Singh, José A. De Toro, Peter S. Normile, Erik Wahlström, Jianying He, Zhiliang Zhang. Reconfigurable Mechanical Anisotropy in Self‐Assembled Magnetic Superstructures. Advanced Science 2021, 8 (8) https://doi.org/10.1002/advs.202002683
    46. Elin L. Winkler, Roberto D. Zysler. Core/Shell Bimagnetic Nanoparticles. 2021, 87-106. https://doi.org/10.1007/978-3-030-60473-8_4
    47. Gabriel C. Lavorato, Aldo A. Rubert, Yutao Xing, Raja Das, Joshua Robles, F. Jochen Litterst, Elisa Baggio-Saitovitch, Manh-Huong Phan, Hariharan Srikanth, Carolina Vericat, Mariano H. Fonticelli. Shell-mediated control of surface chemistry of highly stoichiometric magnetite nanoparticles. Nanoscale 2020, 12 (25) , 13626-13636. https://doi.org/10.1039/D0NR02069A
    48. M.V. Zdorovets, A.L. Kozlovskiy, M.S. Fadeev, K.B. Egizbek, V.S. Rusakov, T.V. Gubaidulina, K.K. Kadyrzhanov. The effect of electron irradiation on the structure and properties of α-Fe2O3 nanoparticles as cathode material. Ceramics International 2020, 46 (9) , 13580-13587. https://doi.org/10.1016/j.ceramint.2020.02.143
    49. Huiyong Li, Dafeng Hu, Zemin Zheng, Hao Jiang, Jiangwei Lu, Xuemin Geng, Xudong Zhang, Yanfen Wan, Peng Yang. Primary growth of binary nanoparticle superlattices with distinct systems contingent on synergy: softness and crystalline anisotropy. Applied Nanoscience 2020, 10 (5) , 1653-1666. https://doi.org/10.1007/s13204-019-01244-6
    50. Qingzhao Li, Xuehang Wu, Shaoping Ye, Wenwei Wu, Jiuyang Xia, Kaiwen Zhou, Yizhong Huang. Simultaneous enhancements of magnetization and remanence in sufficiently exchange-coupled Co0.8Al0.2Nd Fe2−O4/Co7Fe3(Co) composites. Journal of Magnetism and Magnetic Materials 2020, 498 , 166150. https://doi.org/10.1016/j.jmmm.2019.166150
    51. Kun Wang, Huilin Zhang, Aijun Shen, Peiran Zhao, Xianfu Meng, Xiaoyan Chen, Yang Liu, Yanyan Liu, Teng Gong, Wanlu Wu, Xiangming Fang, Peijun Wang, Wenbo Bu. Magnetic resonance energy transfer for in vivo glutathione susceptibility weighted imaging. Biomaterials 2020, 232 , 119703. https://doi.org/10.1016/j.biomaterials.2019.119703
    52. Harald Brune, Alexa Courty, Christophe Petit, Vincent Repain. Self-Assembly of Nanoalloys. 2020, 451-487. https://doi.org/10.1016/B978-0-12-819847-6.00018-8
    53. Romain Breitwieser, Adrien Garnier, Thomas Auvray, Anh-Tu Ngo, Benoit Baptiste, Nicolas Menguy, Anna Proust, Christophe Petit, Florence Volatron, Caroline Salzemann. Protective Effect of Polyoxometalates in {Mo132}/Maghemite Binary Superlattices Under Annealing. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00830
    54. Dorota Lachowicz, Weronika Górka, Angelika Kmita, Andrzej Bernasik, Jan Żukrowski, Wojciech Szczerba, Marcin Sikora, Czesław Kapusta, Szczepan Zapotoczny. Enhanced hyperthermic properties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating. Journal of Materials Chemistry B 2019, 7 (18) , 2962-2973. https://doi.org/10.1039/C9TB00029A
    55. Fernando Fabris, Enio Lima, Cynthia Quinteros, Lucas Neñer, Mara Granada, Martín Sirena, Roberto D. Zysler, Horacio E. Troiani, Victor Leborán, Francisco Rivadulla, Elin L. Winkler. Tunnel Magnetoresistance in Self-Assemblies of Exchange-Coupled Core/Shell Nanoparticles. Physical Review Applied 2019, 11 (5) https://doi.org/10.1103/PhysRevApplied.11.054089
    56. Dorota Lachowicz, Agnieszka Kaczyńska, Roma Wirecka, Angelika Kmita, Wojciech Szczerba, Anna Bodzoń-Kułakowska, Marcin Sikora, Anna Karewicz, Szczepan Zapotoczny. A Hybrid System for Magnetic Hyperthermia and Drug Delivery: SPION Functionalized by Curcumin Conjugate. Materials 2018, 11 (12) , 2388. https://doi.org/10.3390/ma11122388
    57. Ziyi Zhang, Yufeng Jiang, Caili Huang, Yu Chai, Elise Goldfine, Feng Liu, Wenqian Feng, Joe Forth, Teresa E. Williams, Paul D. Ashby, Thomas P. Russell, Brett A. Helms. Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands. Science Advances 2018, 4 (8) https://doi.org/10.1126/sciadv.aap8045
    58. Jin-Feng Wang, Zhao-Tong Zhuang, Shuai-Shuai Liu, Teng-Fei Shi, Zhao-Jing Jia. Investigation of ‘magnetic hardness’ of the grain boundary in Sr 2 FeMoO 6 ceramics. Journal of Physics D: Applied Physics 2018, 51 (28) , 285003. https://doi.org/10.1088/1361-6463/aacaab
    59. Shu Mi, Yong Xie, Yuanyuan Li, Rui Liu, Xiaoduo Liu, Ivan I. Smalyukh, Ziyu Chen. The Effect of Thickness‐Tunable ZrO 2 Shell on Enhancing the Tunneling Magnetoresistance of Fe 3 O 4 Supraparticles. Advanced Materials Interfaces 2018, 5 (12) https://doi.org/10.1002/admi.201800236
    60. Arijit Mitra, Jeotikanta Mohapatra, Himanshu Sharma, Sher Singh Meena, M Aslam. Controlled synthesis and enhanced tunnelling magnetoresistance in oriented Fe 3 O 4 nanorod assemblies. Journal of Physics D: Applied Physics 2018, 51 (8) , 085002. https://doi.org/10.1088/1361-6463/aaa697
    61. Mohammad A Islam, Mateusz Zuba, Vincent DeBiase, Nicholas Noviasky, Christopher J Hawley. High capacity lithium ion batteries composed of cobalt oxide nanoparticle anodes and Raman spectroscopic analysis of nanoparticle strain dynamics in batteries. Nanotechnology 2018, 29 (7) , 075403. https://doi.org/10.1088/1361-6528/aaa231
    62. Arijit Mitra, Jeotikanta Mohapatra, Himanshu Sharma, Mohammed Aslam. Engineering Magnetic and Tunneling Magnetoresistance Properties of Co x Fe 3−x O 4 Nanorods. physica status solidi (a) 2017, 214 (12) https://doi.org/10.1002/pssa.201700505
    63. Sung-Hwan Lim, Taehoon Lee, Younghoon Oh, Theyencheri Narayanan, Bong June Sung, Sung-Min Choi. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00512-9
    64. Liheng Wu, Joshua J. Willis, Ian Salmon McKay, Benjamin T. Diroll, Jian Qin, Matteo Cargnello, Christopher J. Tassone. High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature 2017, 548 (7666) , 197-201. https://doi.org/10.1038/nature23308
    65. Cunqing Ma, Kaiyu Yang, Lili Wang, Xin Wang. Facile Synthesis of Reduced Graphene Oxide/Fe 3 O 4 Nanocomposite Film. Journal of Applied Biomaterials & Functional Materials 2017, 15 (1_suppl) , 1-6. https://doi.org/10.5301/jabfm.5000341
    66. Mingliang Zhang, Daniel J. Magagnosc, Iñigo Liberal, Yao Yu, Hongseok Yun, Haoran Yang, Yaoting Wu, Jiacen Guo, Wenxiang Chen, Young Jae Shin, Aaron Stein, James M. Kikkawa, Nader Engheta, Daniel S. Gianola, Christopher B. Murray, Cherie R. Kagan. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nature Nanotechnology 2017, 12 (3) , 228-232. https://doi.org/10.1038/nnano.2016.235
    67. Xingchen Ye, Jun Chen, M. Eric Irrgang, Michael Engel, Angang Dong, Sharon C. Glotzer, Christopher B. Murray. Quasicrystalline nanocrystal superlattice with partial matching rules. Nature Materials 2017, 16 (2) , 214-219. https://doi.org/10.1038/nmat4759
    68. Yue Tang, Bin Su, Minsu Liu, Yuan Feng, Xuchuan Jiang, Lei Jiang, Aibing Yu. Superwettability Strategy: 1D Assembly of Binary Nanoparticles as Gas Sensors. Small 2017, 13 (4) https://doi.org/10.1002/smll.201601087
    69. Hongseok Yun, Jungkwun Kim, Taejong Paik, Lingyao Meng, Pil Sung Jo, James M. Kikkawa, Cherie R. Kagan, Mark G. Allen, Christopher B. Murray. Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process. Journal of Applied Physics 2016, 119 (11) https://doi.org/10.1063/1.4942865
    70. Romain Breitwieser, Thomas Auvray, Florence Volatron, Caroline Salzemann, Anh-Tu Ngo, Pierre-Antoine Albouy, Anna Proust, Christophe Petit. Binary Superlattices from {Mo 132 } Polyoxometalates and Maghemite Nanocrystals: Long-Range Ordering and Fine-Tuning of Dipole Interactions. Small 2016, 12 (2) , 220-228. https://doi.org/10.1002/smll.201502127
    71. Lin-Xiu Dai, Xin-Yu Wang, Xiao-Yu Zheng, Ya-Wen Zhang. Pt and Pt–Rh supercrystals self-assembled in N,N-dimethylformamide. Chemical Communications 2016, 52 (28) , 5023-5026. https://doi.org/10.1039/C6CC01110A
    72. Rui Tan, Hua Zhu, Can Cao, Ou Chen. Multi-component superstructures self-assembled from nanocrystal building blocks. Nanoscale 2016, 8 (19) , 9944-9961. https://doi.org/10.1039/C6NR01662F
    73. Wei Wu, Chang Zhong Jiang, Vellaisamy A. L. Roy. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 2016, 8 (47) , 19421-19474. https://doi.org/10.1039/C6NR07542H
    74. Shatabda Bhattacharya, Ramaprasad Maiti, Moni Baskey Sen, Shyamal Kumar Saha, Dipankar Chakravorty. Anomalous enhancement in the magnetoconductance of graphene/CoFe 2 O 4 composite due to spin–orbit coupling. Journal of Physics D: Applied Physics 2015, 48 (43) , 435002. https://doi.org/10.1088/0022-3727/48/43/435002
    75. Xingkun Ning, Zhanjie Wang, Zhidong Zhang. Controllable Self‐Assembled Microstructures of La 0.7 Ca 0.3 MnO 3 :NiO Nanocomposite Thin Films and Their Tunable Functional Properties. Advanced Materials Interfaces 2015, 2 (15) https://doi.org/10.1002/admi.201500302
    76. Jennifer A. Hollingsworth, Han Htoon, Andrei Piryatinski, Stephan Götzinger, Vahid Sandoghdar. When excitons and plasmons meet: Emerging function through synthesis and assembly. MRS Bulletin 2015, 40 (9) , 768-776. https://doi.org/10.1557/mrs.2015.200
    77. G.C. Lavorato, E. Lima, H.E. Troiani, R.D. Zysler, E.L. Winkler. Exchange-coupling in thermal annealed bimagnetic core/shell nanoparticles. Journal of Alloys and Compounds 2015, 633 , 333-337. https://doi.org/10.1016/j.jallcom.2015.02.050
    78. Yucong Jiao, Dandan Han, Yi Ding, Xianfeng Zhang, Guannan Guo, Jianhua Hu, Dong Yang, Angang Dong. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms7420
    79. Sung‐Hwan Lim, Hyung‐Sik Jang, Jae‐Min Ha, Tae‐Hwan Kim, Pawel Kwasniewski, Theyencheri Narayanan, Kyeong Sik Jin, Sung‐Min Choi. Highly Ordered and Highly Aligned Two‐Dimensional Binary Superlattice of a SWNT/Cylindrical‐Micellar System. Angewandte Chemie 2014, 126 (46) , 12756-12762. https://doi.org/10.1002/ange.201403458
    80. Sung‐Hwan Lim, Hyung‐Sik Jang, Jae‐Min Ha, Tae‐Hwan Kim, Pawel Kwasniewski, Theyencheri Narayanan, Kyeong Sik Jin, Sung‐Min Choi. Highly Ordered and Highly Aligned Two‐Dimensional Binary Superlattice of a SWNT/Cylindrical‐Micellar System. Angewandte Chemie International Edition 2014, 53 (46) , 12548-12554. https://doi.org/10.1002/anie.201403458
    81. Fei Liu, Yunhe Dong, Wenlong Yang, Jing Yu, Zhichuan Xu, Yanglong Hou. Exchange‐Coupled fct‐FePd/α‐Fe Nanocomposite Magnets Converted from Pd/Fe 3 O 4 Core/Shell Nanoparticles. Chemistry – A European Journal 2014, 20 (46) , 15197-15202. https://doi.org/10.1002/chem.201403787
    82. Ce Yang, Yang-Long Hou, Song Gao. Nanomagnetism: Principles, nanostructures, and biomedical applications. Chinese Physics B 2014, 23 (5) , 057505. https://doi.org/10.1088/1674-1056/23/5/057505
    83. Kiran Mathew, Ravishankar Sundararaman, Kendra Letchworth-Weaver, T. A. Arias, Richard G. Hennig. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. The Journal of Chemical Physics 2014, 140 (8) https://doi.org/10.1063/1.4865107
    84. Fei Liu, Jinghan Zhu, Wenlong Yang, Yunhe Dong, Yanglong Hou, Chenzhen Zhang, Han Yin, Shouheng Sun. Building Nanocomposite Magnets by Coating a Hard Magnetic Core with a Soft Magnetic Shell. Angewandte Chemie 2014, 126 (8) , 2208-2212. https://doi.org/10.1002/ange.201309723
    85. Fei Liu, Jinghan Zhu, Wenlong Yang, Yunhe Dong, Yanglong Hou, Chenzhen Zhang, Han Yin, Shouheng Sun. Building Nanocomposite Magnets by Coating a Hard Magnetic Core with a Soft Magnetic Shell. Angewandte Chemie International Edition 2014, 53 (8) , 2176-2180. https://doi.org/10.1002/anie.201309723
    86. Fei Liu, Yanglong Hou, Song Gao. Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chem. Soc. Rev. 2014, 43 (23) , 8098-8113. https://doi.org/10.1039/C4CS00162A
    87. X. Feng, G.Y. Mao, F.X. Bu, X.L. Cheng, D.M. Jiang, J.S. Jiang. Controlled synthesis of monodisperse CoFe2O4 nanoparticles by the phase transfer method and their catalytic activity on methylene blue discoloration with H2O2. Journal of Magnetism and Magnetic Materials 2013, 343 , 126-132. https://doi.org/10.1016/j.jmmm.2013.05.001

    ACS Nano

    Cite this: ACS Nano 2013, 7, 2, 1478–1486
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn3052617
    Published December 30, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    4142

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.