ACS Publications. Most Trusted. Most Cited. Most Read
Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought
My Activity
    Article

    Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought
    Click to copy article linkArticle link copied!

    View Author Information
    † ⊥ Department of Materials Science and Engineering, Department of Electrical and Computer Engineering, §Beckman Institute for Advanced Science and Technology, Department of Chemistry, Department of Bioengineering, and Department of Mechanical Science and Engineering, Micro and Nanotechnology Laboratory and University of Illinois Cancer Center, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
    *Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2013, 7, 3, 2099–2105
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn305710k
    Published February 25, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Design of nanoparticles for surface-enhanced Raman scattering (SERS) within suspensions is more involved than simply maximizing the local field enhancement. The enhancement at the nanoparticle surface and the extinction of both the incident and scattered light during propagation act in concert to determine the observed signal intensity. Here we explore these critical aspects of signal generation and propagation through experiment and theory. We synthesized gold nanorods of six different aspect ratios in order to obtain longitudinal surface plasmon resonances that incrementally spanned 600–800 nm. The Raman reporter molecule methylene blue was trap-coated near the surface of each nanorod sample, generating SERS spectra, which were used to compare Raman signals. The average number of reporter molecules per nanorod was quantified against known standards using electrospray ionization liquid chromatography mass spectrometry. The magnitude of the observed Raman signal is reported for each aspect ratio along with the attenuation due to extinction in suspension. The highest Raman signal was obtained from the nanorod suspension with a plasmon resonance blue-shifted from the laser excitation wavelength. This finding is in contrast to SERS measurements obtained from molecules dried onto the surface of roughened or patterned metal substrates where the maximum observed signal is near or red-shifted from the laser excitation wavelength. We explain these results as a competition between SERS enhancement and extinction, at the excitation and scattered wavelengths, on propagation through the sample.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional characterization details of mass spectrometry and electronic absorption between synthetic steps. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 123 publications.

    1. Guili Zhao, Florian Lochon, Kassiogé Dembélé, Ileana Florea, Alexandre Baron, Razvigor Ossikovski, Aleix G. Güell. Rapid and Facile Synthesis of Gold Trisoctahedrons for Surface-Enhanced Raman Spectroscopy and Refractive Index Sensing. ACS Applied Nano Materials 2024, 7 (5) , 5598-5609. https://doi.org/10.1021/acsanm.4c00455
    2. Fareeha Safir, Nhat Vu, Loza F. Tadesse, Kamyar Firouzi, Niaz Banaei, Stefanie S. Jeffrey, Amr. A. E. Saleh, Butrus (Pierre) T. Khuri-Yakub, Jennifer A. Dionne. Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood. Nano Letters 2023, 23 (6) , 2065-2073. https://doi.org/10.1021/acs.nanolett.2c03015
    3. Samadhi Nawalage, Pathum Wathudura, Ankai Wang, Max Wamsley, Shengli Zou, Dongmao Zhang. Effects of Cascading Optical Processes: Part I: Impacts on Quantification of Sample Scattering Extinction, Intensity, and Depolarization. Analytical Chemistry 2023, 95 (3) , 1899-1907. https://doi.org/10.1021/acs.analchem.2c03917
    4. Chiara Deriu, Asier Bracho, Bruce McCord. Tailored Colloidal Nanostars for Surface-Enhanced Raman Spectroscopy: Optimization of Formulation Components and Study of the Stabilizer–Nanoparticle Interactions. The Journal of Physical Chemistry C 2022, 126 (4) , 2023-2040. https://doi.org/10.1021/acs.jpcc.1c08145
    5. Jiapeng Zheng, Xizhe Cheng, Han Zhang, Xiaopeng Bai, Ruoqi Ai, Lei Shao, Jianfang Wang. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews 2021, 121 (21) , 13342-13453. https://doi.org/10.1021/acs.chemrev.1c00422
    6. Sean M. Meyer, Jacob Pettine, David J. Nesbitt, Catherine J. Murphy. Size Effects in Gold Nanorod Light-to-Heat Conversion under Femtosecond Illumination. The Journal of Physical Chemistry C 2021, 125 (29) , 16268-16278. https://doi.org/10.1021/acs.jpcc.1c03898
    7. Roland P. M. Höller, Izabella J. Jahn, Dana Cialla-May, Munish Chanana, Jürgen Popp, Andreas Fery, Christian Kuttner. Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing. ACS Applied Materials & Interfaces 2020, 12 (51) , 57302-57313. https://doi.org/10.1021/acsami.0c16398
    8. Loza F. Tadesse, Chi-Sing Ho, Dong-Hua Chen, Hamed Arami, Niaz Banaei, Sanjiv S. Gambhir, Stefanie S. Jeffrey, Amr A. E. Saleh, Jennifer Dionne. Plasmonic and Electrostatic Interactions Enable Uniformly Enhanced Liquid Bacterial Surface-Enhanced Raman Scattering (SERS). Nano Letters 2020, 20 (10) , 7655-7661. https://doi.org/10.1021/acs.nanolett.0c03189
    9. Yuan Zhang, Javier Aizpurua, Ruben Esteban. Optomechanical Collective Effects in Surface-Enhanced Raman Scattering from Many Molecules. ACS Photonics 2020, 7 (7) , 1676-1688. https://doi.org/10.1021/acsphotonics.0c00032
    10. Roland P. M. Höller, Christian Kuttner, Martin Mayer, Ruosong Wang, Martin Dulle, Rafael Contreras-Cáceres, Andreas Fery, Luis M. Liz-Marzán. Colloidal Superstructures with Triangular Cores: Size Effects on SERS Efficiency. ACS Photonics 2020, 7 (7) , 1839-1848. https://doi.org/10.1021/acsphotonics.0c00642
    11. Boris N. Khlebtsov, Vitaly A. Khanadeev, Andrey M. Burov, Eric C. Le Ru, Nikolai G. Khlebtsov. Reexamination of Surface-Enhanced Raman Scattering from Gold Nanorods as a Function of Aspect Ratio and Shape. The Journal of Physical Chemistry C 2020, 124 (19) , 10647-10658. https://doi.org/10.1021/acs.jpcc.0c00991
    12. Toshiaki Fukagawa, Hiroaki Tanaka, Kouki Morikawa, Shunsuke Tanaka, Yoshikiyo Hatakeyama, Kazuyuki Hino. Spatial Ordering of the Structure of Polymer-Capped Gold Nanorods under an External DC Electric Field. The Journal of Physical Chemistry Letters 2020, 11 (6) , 2086-2091. https://doi.org/10.1021/acs.jpclett.0c00566
    13. Da Huo, Myung Jun Kim, Zhiheng Lyu, Yifeng Shi, Benjamin J. Wiley, Younan Xia. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chemical Reviews 2019, 119 (15) , 8972-9073. https://doi.org/10.1021/acs.chemrev.8b00745
    14. Jamila Djafari, Adrián Fernández-Lodeiro, Daniel García-Lojo, Javier Fernández-Lodeiro, Benito Rodríguez-González, Isabel Pastoriza-Santos, Jorge Pérez-Juste, José Luis Capelo, Carlos Lodeiro. Iron(II) as a Green Reducing Agent in Gold Nanoparticle Synthesis. ACS Sustainable Chemistry & Engineering 2019, 7 (9) , 8295-8302. https://doi.org/10.1021/acssuschemeng.8b06690
    15. Jehyeok Ryu, Seung-Hoon Lee, Yuan-Han Lee, Yu-Hsu Chang, Jae-Won Jang. Helical Structure-Dependent Surface-Enhanced Raman Spectroscopy Enhancement in Gold Nanohelices. The Journal of Physical Chemistry C 2019, 123 (9) , 5626-5633. https://doi.org/10.1021/acs.jpcc.9b00187
    16. Christian Kuttner, Martin Mayer, Martin Dulle, Ana Moscoso, Juan Manuel López-Romero, Stephan Förster, Andreas Fery, Jorge Pérez-Juste, Rafael Contreras-Cáceres. Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance. ACS Applied Materials & Interfaces 2018, 10 (13) , 11152-11163. https://doi.org/10.1021/acsami.7b19081
    17. Nathan D. Burrows, Wayne Lin, Joshua G. Hinman, Jordan M. Dennison, Ariane M. Vartanian, Nardine S. Abadeer, Elissa M. Grzincic, Lisa M. Jacob, Ji Li, and Catherine J. Murphy . Surface Chemistry of Gold Nanorods. Langmuir 2016, 32 (39) , 9905-9921. https://doi.org/10.1021/acs.langmuir.6b02706
    18. Mikolaj K. Schmidt, Ruben Esteban, Alejandro González-Tudela, Geza Giedke, and Javier Aizpurua . Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. ACS Nano 2016, 10 (6) , 6291-6298. https://doi.org/10.1021/acsnano.6b02484
    19. Wansun Kim, Jae-Chul Lee, Jae-Ho Shin, Kyung-Hyun Jin, Hun-Kuk Park, and Samjin Choi . Instrument-Free Synthesizable Fabrication of Label-Free Optical Biosensing Paper Strips for the Early Detection of Infectious Keratoconjunctivitides. Analytical Chemistry 2016, 88 (10) , 5531-5537. https://doi.org/10.1021/acs.analchem.6b01123
    20. Wiebke Albrecht, Tian-Song Deng, Bart Goris, Marijn A. van Huis, Sara Bals, and Alfons van Blaaderen . Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation. Nano Letters 2016, 16 (3) , 1818-1825. https://doi.org/10.1021/acs.nanolett.5b04851
    21. Qingfeng Zhang, Lili Han, Hao Jing, Douglas A. Blom, Ye Lin, Huolin L. Xin, and Hui Wang . Facet Control of Gold Nanorods. ACS Nano 2016, 10 (2) , 2960-2974. https://doi.org/10.1021/acsnano.6b00258
    22. Tian-Song Deng, Jessi E. S. van der Hoeven, Anil O. Yalcin, Henny W. Zandbergen, Marijn A. van Huis, and Alfons van Blaaderen . Oxidative Etching and Metal Overgrowth of Gold Nanorods within Mesoporous Silica Shells. Chemistry of Materials 2015, 27 (20) , 7196-7203. https://doi.org/10.1021/acs.chemmater.5b03749
    23. Amber M. Paul, Zhen Fan, Sudarson S. Sinha, Yongliang Shi, Linda Le, Fengwei Bai, and Paresh C. Ray . Bioconjugated Gold Nanoparticle Based SERS Probe for Ultrasensitive Identification of Mosquito-Borne Viruses Using Raman Fingerprinting. The Journal of Physical Chemistry C 2015, 119 (41) , 23669-23675. https://doi.org/10.1021/acs.jpcc.5b07387
    24. Lucas A. Lane, Ximei Qian, and Shuming Nie . SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chemical Reviews 2015, 115 (19) , 10489-10529. https://doi.org/10.1021/acs.chemrev.5b00265
    25. Limei Tian, Sirimuvva Tadepalli, Max Fei, Jeremiah J. Morrissey, Evan D. Kharasch, and Srikanth Singamaneni . Off-Resonant Gold Superstructures as Ultrabright Minimally Invasive Surface-Enhanced Raman Scattering (SERS) Probes. Chemistry of Materials 2015, 27 (16) , 5678-5684. https://doi.org/10.1021/acs.chemmater.5b02100
    26. Timea Simon, Monica Potara, Ana-Maria Gabudean, Emilia Licarete, Manuela Banciu, and Simion Astilean . Designing Theranostic Agents Based on Pluronic Stabilized Gold Nanoaggregates Loaded with Methylene Blue for Multimodal Cell Imaging and Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces 2015, 7 (30) , 16191-16201. https://doi.org/10.1021/acsami.5b04734
    27. Jeremy W. Jarrett, Tian Zhao, Jeffrey S. Johnson, and Kenneth L. Knappenberger, Jr. . Investigating Plasmonic Structure-Dependent Light Amplification and Electronic Dynamics Using Advances in Nonlinear Optical Microscopy. The Journal of Physical Chemistry C 2015, 119 (28) , 15779-15800. https://doi.org/10.1021/acs.jpcc.5b02494
    28. Jinhu Yang, Ying Li, Lianhai Zu, Lianming Tong, Guanglei Liu, Yao Qin, and Donglu Shi . Light-Concentrating Plasmonic Au Superstructures with Significantly Visible-Light-Enhanced Catalytic Performance. ACS Applied Materials & Interfaces 2015, 7 (15) , 8200-8208. https://doi.org/10.1021/acsami.5b01078
    29. Min Lin, Yunqing Wang, Xiuyan Sun, Wenhai Wang, and Lingxin Chen . “Elastic” Property of Mesoporous Silica Shell: For Dynamic Surface Enhanced Raman Scattering Ability Monitoring of Growing Noble Metal Nanostructures via a Simplified Spatially Confined Growth Method. ACS Applied Materials & Interfaces 2015, 7 (14) , 7516-7525. https://doi.org/10.1021/acsami.5b01077
    30. Xiaoli Wang, Yannick Guillet, Periasamy R. Selvakannan, Hynd Remita, and Bruno Palpant . Broadband Spectral Signature of the Ultrafast Transient Optical Response of Gold Nanorods. The Journal of Physical Chemistry C 2015, 119 (13) , 7416-7427. https://doi.org/10.1021/acs.jpcc.5b00131
    31. Moritz Tebbe, Max Maennel, Andreas Fery, Nicolas Pazos-Perez, and Ramon A. Alvarez-Puebla . Organized Solid Thin Films of Gold Nanorods with Different Sizes for Surface-Enhanced Raman Scattering Applications. The Journal of Physical Chemistry C 2014, 118 (48) , 28095-28100. https://doi.org/10.1021/jp5086685
    32. Qingfeng Zhang and Hui Wang . Facet-Dependent Catalytic Activities of Au Nanoparticles Enclosed by High-Index Facets. ACS Catalysis 2014, 4 (11) , 4027-4033. https://doi.org/10.1021/cs501445h
    33. Qingfeng Zhang, Nicolas Large, and Hui Wang . Gold Nanoparticles with Tipped Surface Structures as Substrates for Single-Particle Surface-Enhanced Raman Spectroscopy: Concave Nanocubes, Nanotrisoctahedra, and Nanostars. ACS Applied Materials & Interfaces 2014, 6 (19) , 17255-17267. https://doi.org/10.1021/am505245z
    34. Alison McLintock, Carlota A. Cunha-Matos, Michele Zagnoni, Owain R. Millington, and Alastair W. Wark . Universal Surface-Enhanced Raman Tags: Individual Nanorods for Measurements from the Visible to the Infrared (514–1064 nm). ACS Nano 2014, 8 (8) , 8600-8609. https://doi.org/10.1021/nn503311d
    35. Brent M. DeVetter, Sean T. Sivapalan, Dwani D. Patel, Matthew V. Schulmerich, Catherine J. Murphy, and Rohit Bhargava . Observation of Molecular Diffusion in Polyelectrolyte-Wrapped SERS Nanoprobes. Langmuir 2014, 30 (29) , 8931-8937. https://doi.org/10.1021/la501944k
    36. Rajashekhar Kanchanapally, Sudarson Sekhar Sinha, Zhen Fan, Madan Dubey, Eugene Zakar, and Paresh Chandra Ray . Graphene Oxide–Gold Nanocage Hybrid Platform for Trace Level Identification of Nitro Explosives Using a Raman Fingerprint. The Journal of Physical Chemistry C 2014, 118 (13) , 7070-7075. https://doi.org/10.1021/jp5015548
    37. Andrew M. Fales, Hsiangkuo Yuan, and Tuan Vo-Dinh . Development of Hybrid Silver-Coated Gold Nanostars for Nonaggregated Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2014, 118 (7) , 3708-3715. https://doi.org/10.1021/jp4091393
    38. Stefano P. Boulos, Tyler A. Davis, Jie An Yang, Samuel E. Lohse, Alaaldin M. Alkilany, Lisa A. Holland, and Catherine J. Murphy . Nanoparticle–Protein Interactions: A Thermodynamic and Kinetic Study of the Adsorption of Bovine Serum Albumin to Gold Nanoparticle Surfaces. Langmuir 2013, 29 (48) , 14984-14996. https://doi.org/10.1021/la402920f
    39. Zhen Fan, Rajashekhar Kanchanapally, and Paresh Chandra Ray . Hybrid Graphene Oxide Based Ultrasensitive SERS Probe for Label-Free Biosensing. The Journal of Physical Chemistry Letters 2013, 4 (21) , 3813-3818. https://doi.org/10.1021/jz4020597
    40. Sean T. Sivapalan, Brent M. DeVetter, Timothy K. Yang, Matthew V. Schulmerich, Rohit Bhargava, and Catherine J. Murphy . Surface-Enhanced Raman Spectroscopy of Polyelectrolyte-Wrapped Gold Nanoparticles in Colloidal Suspension. The Journal of Physical Chemistry C 2013, 117 (20) , 10677-10682. https://doi.org/10.1021/jp402392y
    41. Anil K. Kodali, Matthew Schulmerich, Rohun Palekar, and Rohit Bhargava . Sculpting the Analytical Volume in and around Nanoparticle Sensors Using a Multilayer Geometry. Analytical Chemistry 2013, 85 (8) , 3842-3848. https://doi.org/10.1021/ac302744g
    42. Kseniya V. Serebrennikova, Nadezhda S. Komova, Lyubov V. Barshevskaya, Anatoly V. Zherdev, Boris B. Dzantiev. Highly sensitive SERS-based lateral flow immunoassay of fipronil using bimetallic Au@Ag@Ag nanorods. Microchimica Acta 2024, 191 (12) https://doi.org/10.1007/s00604-024-06811-5
    43. Yaxuan Lu, Ming Li. Rational Design of Near‐infrared II Plasmonic Optofunctional Materials for Diagnostic and Therapeutic Applications. Advanced Functional Materials 2024, 34 (18) https://doi.org/10.1002/adfm.202312753
    44. Boris N. Khlebtsov, Andrey M. Burov, Sergey V. Zarkov, Nikolai G. Khlebtsov. Surface-enhanced Raman scattering from Au nanorods, nanotriangles, and nanostars with tuned plasmon resonances. Physical Chemistry Chemical Physics 2023, 25 (45) , 30903-30913. https://doi.org/10.1039/D3CP04541B
    45. Pohar Borah, Rajib Biswas. Impactful analytical schemes for assessing pesticides in tea: A comprehensive review. Measurement 2023, 221 , 113505. https://doi.org/10.1016/j.measurement.2023.113505
    46. Feng Gao, Fang Li, Jianhao Wang, Hang Yu, Xiang Li, Hongyu Chen, Jiabei Wang, Dongdong Qin, Yiyi Li, Songyan Liu, Xi Zhang, Zhi-Hao Wang. SERS-Based Optical Nanobiosensors for the Detection of Alzheimer’s Disease. Biosensors 2023, 13 (9) , 880. https://doi.org/10.3390/bios13090880
    47. Yue Ying, Zhiyong Tang, Yaling Liu. Material design, development, and trend for surface-enhanced Raman scattering substrates. Nanoscale 2023, 15 (26) , 10860-10881. https://doi.org/10.1039/D3NR01456H
    48. Chiara Deriu, Shaila Thakur, Olimpia Tammaro, Laura Fabris. Challenges and opportunities for SERS in the infrared: materials and methods. Nanoscale Advances 2023, 5 (8) , 2132-2166. https://doi.org/10.1039/D2NA00930G
    49. Jessi E.S. van der Hoeven, Harith Gurunarayanan, Maarten Bransen, D.A. Matthijs de Winter, Petra E. de Jongh, Alfons van Blaaderen. Silica‐Coated Gold Nanorod Supraparticles: A Tunable Platform for Surface Enhanced Raman Spectroscopy. Advanced Functional Materials 2022, 32 (27) https://doi.org/10.1002/adfm.202200148
    50. Sean M. Meyer, Catherine J. Murphy. Anisotropic silica coating on gold nanorods boosts their potential as SERS sensors. Nanoscale 2022, 14 (13) , 5214-5226. https://doi.org/10.1039/D1NR07918B
    51. Rebeca Moldovan, Valentin Toma, Bogdan-Cezar Iacob, Rareș Ionuț Știufiuc, Ede Bodoki. Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications. Sensors 2022, 22 (1) , 236. https://doi.org/10.3390/s22010236
    52. Ana-Maria Craciun, Laurentiu Susu, Monica Baia. Two-photon excited photoluminescence lifetime imaging studies on individual gelatin-coated gold nanorods. Journal of Molecular Structure 2021, 1243 , 130785. https://doi.org/10.1016/j.molstruc.2021.130785
    53. D. Jonker, Z. Jafari, J. P. Winczewski, C. Eyovge, J. W. Berenschot, N. R. Tas, J. G. E. Gardeniers, I. De Leon, A. Susarrey-Arce. A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars. Nanoscale Advances 2021, 3 (17) , 4926-4939. https://doi.org/10.1039/D1NA00316J
    54. Shanlin Ke, Caixia Kan, Xingzhong Zhu, Changshun Wang, Xiu Wang, Yuan Chen, Xiaoguang Zhu, Zhaosheng Li, Daning Shi. Synthesis of porous Au–Ag alloy nanorods with tunable plasmonic properties and intrinsic hotspots for surface-enhanced Raman scattering. CrystEngComm 2021, 23 (19) , 3467-3476. https://doi.org/10.1039/D1CE00258A
    55. María Paz Oyarzún, Andreas Tapia-Arellano, Pablo Cabrera, Pedro Jara-Guajardo, Marcelo J. Kogan. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer’s Disease. Sensors 2021, 21 (6) , 2067. https://doi.org/10.3390/s21062067
    56. Benjamin Gardner, Pavel Matousek, Nicholas Stone. Self-absorption corrected non-invasive transmission Raman spectroscopy (of biological tissue). The Analyst 2021, 146 (4) , 1260-1267. https://doi.org/10.1039/D0AN01940B
    57. Nikolai G. Khlebtsov, Eric C. Le Ru. Analytical solutions for the surface‐ and orientation‐averaged SERS enhancement factor of small plasmonic particles. Journal of Raman Spectroscopy 2021, 52 (2) , 285-295. https://doi.org/10.1002/jrs.5980
    58. Tian Zhao, Kenneth L. Knappenberger. Advances in multi-dimensional super-resolution nonlinear optical microscopy. Advances in Physics: X 2021, 6 (1) https://doi.org/10.1080/23746149.2021.1964378
    59. Yitian Zeng, Steven J. Madsen, Andrew B. Yankovich, Eva Olsson, Robert Sinclair. Comparative electron and photon excitation of localized surface plasmon resonance in lithographic gold arrays for enhanced Raman scattering. Nanoscale 2020, 12 (46) , 23768-23779. https://doi.org/10.1039/D0NR04081A
    60. Jose E. Ortiz-Castillo, Roberto C. Gallo-Villanueva, Marc J. Madou, Victor H. Perez-Gonzalez. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coordination Chemistry Reviews 2020, 425 , 213489. https://doi.org/10.1016/j.ccr.2020.213489
    61. Ajay P Manuel, Priyash Barya, Saralyn Riddell, Sheng Zeng, Kazi M Alam, Karthik Shankar. Plasmonic photocatalysis and SERS sensing using ellipsometrically modeled Ag nanoisland substrates. Nanotechnology 2020, 31 (36) , 365301. https://doi.org/10.1088/1361-6528/ab814c
    62. Ilia L. Rasskazov, P. Scott Carney, Alexander Moroz. Intriguing branching of the maximum position of the absorption cross section in Mie theory explained. Optics Letters 2020, 45 (14) , 4056. https://doi.org/10.1364/OL.397782
    63. Timothy T.X. Ong, Ewan W. Blanch, Oliver A.H. Jones. Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment. Science of The Total Environment 2020, 720 , 137601. https://doi.org/10.1016/j.scitotenv.2020.137601
    64. Murilo Pastorello, Fernando A. Sigoli, Diego P. dos Santos, Italo O. Mazali. On the use of Au@Ag core-shell nanorods for SERS detection of Thiram diluted solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 231 , 118113. https://doi.org/10.1016/j.saa.2020.118113
    65. Zhang Can, Dou Xinyi, Zhang Jie, Zhu Yong. Comparative analysis on Raman enhancement properties of waveguide coupled SERS probe. Optics Express 2019, 27 (24) , 35555. https://doi.org/10.1364/OE.27.035555
    66. Xue Han, Kun Liu, Changsen Sun. Plasmonics for Biosensing. Materials 2019, 12 (9) , 1411. https://doi.org/10.3390/ma12091411
    67. Hengyang Xiang, Hung-Ju Lin, Tingting Niu, Zhuoying Chen, Lionel Aigouy. Nanoscale thermal characterization of high aspect ratio gold nanorods for photothermal applications at λ  = 1.5  μ m. Journal of Applied Physics 2019, 125 (16) https://doi.org/10.1063/1.5088944
    68. Paula C. Pinheiro, Sara Fateixa, Helena I. S. Nogueira, Tito Trindade. Magnetite-Supported Gold Nanostars for the Uptake and SERS Detection of Tetracycline. Nanomaterials 2019, 9 (1) , 31. https://doi.org/10.3390/nano9010031
    69. Ilia L. Rasskazov, Lang Wang, Catherine J. Murphy, Rohit Bhargava, P. Scott Carney. Plasmon-enhanced upconversion: engineering enhancement and quenching at nano and macro scales. Optical Materials Express 2018, 8 (12) , 3787. https://doi.org/10.1364/OME.8.003787
    70. Christian Kuttner. Plasmonics in Sensing: From Colorimetry to SERS Analytics. 2018https://doi.org/10.5772/intechopen.79055
    71. Vladimir Turzhitsky, Lei Zhang, Gary L. Horowitz, Edward Vitkin, Umar Khan, Yuri Zakharov, Le Qiu, Irving Itzkan, Lev T. Perelman. Picoanalysis of Drugs in Biofluids with Quantitative Label‐Free Surface‐Enhanced Raman Spectroscopy. Small 2018, 14 (47) https://doi.org/10.1002/smll.201802392
    72. Wiebke Albrecht, Arjen van de Glind, Hideto Yoshida, Yusuke Isozaki, Arnout Imhof, Alfons van Blaaderen, Petra E. de Jongh, Krijn P. de Jong, Jovana Zečević, Seiji Takeda. Impact of the electron beam on the thermal stability of gold nanorods studied by environmental transmission electron microscopy. Ultramicroscopy 2018, 193 , 97-103. https://doi.org/10.1016/j.ultramic.2018.05.006
    73. Paula C. Pinheiro, Ana L. Daniel‐da‐Silva, Helena I. S. Nogueira, Tito Trindade. Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. European Journal of Inorganic Chemistry 2018, 2018 (30) , 3443-3461. https://doi.org/10.1002/ejic.201800132
    74. Lucas A Lane, Ruiyang Xue, Shuming Nie. Emergence of two near-infrared windows for in vivo and intraoperative SERS. Current Opinion in Chemical Biology 2018, 45 , 95-103. https://doi.org/10.1016/j.cbpa.2018.03.015
    75. Wansun Kim, Sung Ho Lee, Yong Jin Ahn, Seung Ho Lee, Jiwook Ryu, Seok Keun Choi, Samjin Choi. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosensors and Bioelectronics 2018, 111 , 59-65. https://doi.org/10.1016/j.bios.2018.04.003
    76. Chongning Li, Yuyao Liu, Aihui Liang, Zhiliang Jiang. SERS quantitative analysis of trace ferritin based on immunoreaction regulation of graphene oxide catalytic nanogold reaction. Sensors and Actuators B: Chemical 2018, 263 , 183-189. https://doi.org/10.1016/j.snb.2018.02.080
    77. Dania Hernández-Sánchez, Giovanny Villabona-Leal, Izcoatl Saucedo-Orozco, Victoria Bracamonte, Elías Pérez, Carla Bittencourt, Mildred Quintana. Stable graphene oxide–gold nanoparticle platforms for biosensing applications. Physical Chemistry Chemical Physics 2018, 20 (3) , 1685-1692. https://doi.org/10.1039/C7CP04817C
    78. Anju Ajayan, Vineeth Madhavan, Sumitha Chandran, Poovathinthodiyil Raveendran. A simple anti-solvent method for the controlled deposition of metal and alloy nanoparticles. New Journal of Chemistry 2018, 42 (14) , 11979-11983. https://doi.org/10.1039/C8NJ01285G
    79. JORGE R. MEJÍA-SALAZAR, SABRINA A. CAMACHO, CARLOS J.L. CONSTANTINO, OSVALDO N. OLIVEIRA JUNIOR. New trends in plasmonic (bio)sensing. Anais da Academia Brasileira de Ciências 2018, 90 (1 suppl 1) , 779-801. https://doi.org/10.1590/0001-3765201820170571
    80. Lu Bai, Zhaodong Yan, Lu Jia, Zhicheng Liu, Yaqing Liu. Morphology evolution of nanorods decorated on electrospun nanofibers and their applications in SERS and catalysis. Materials & Design 2017, 135 , 9-15. https://doi.org/10.1016/j.matdes.2017.09.010
    81. Lili Yang, Yong Yang, Yunfeng Ma, Shuai Li, Yuquan Wei, Zhengren Huang, Nguyen Viet Long. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application. Nanomaterials 2017, 7 (11) , 398. https://doi.org/10.3390/nano7110398
    82. Liangcai Cao, Shenghan Wu, Jinping Hao, Chen Zhu, Zehao He, Zheyuan Zhang, Song Zong, Fushi Zhang, Guofan Jin. Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite. Applied Physics Letters 2017, 111 (14) https://doi.org/10.1063/1.5000953
    83. Andrew M. Fales, Tuan Vo-Dinh. Theranostic Nanoprobes for SERS Imaging and Photodynamic Therapy. 2017, 669-678. https://doi.org/10.1201/9781315374581-31
    84. Kien Voon Kong. SERS Biosensing and Bioimaging: Design and Applications in Cancer Diagnostics. 2017, 345-364. https://doi.org/10.1007/978-981-10-4726-8_15
    85. Poornima Budime Santhosh, Neethu Thomas, Swathi Sudhakar, Anju Chadha, Ethayaraja Mani. Phospholipid stabilized gold nanorods: towards improved colloidal stability and biocompatibility. Physical Chemistry Chemical Physics 2017, 19 (28) , 18494-18504. https://doi.org/10.1039/C7CP03403B
    86. Javier Reguera, Judith Langer, Dorleta Jiménez de Aberasturi, Luis M. Liz-Marzán. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chemical Society Reviews 2017, 46 (13) , 3866-3885. https://doi.org/10.1039/C7CS00158D
    87. Youguo Yan, Chuanyong Li, Lixia Zhou, Bing Liu, Jun Zhang. Tuning aspect ratio of hierarchical ZnO nanotetrapod. Applied Physics A 2016, 122 (12) https://doi.org/10.1007/s00339-016-0555-0
    88. Anna Gołąbiewska, Anna Malankowska, Marcin Jarek, Wojciech Lisowski, Grzegorz Nowaczyk, Stefan Jurga, Adriana Zaleska-Medynska. The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2. Applied Catalysis B: Environmental 2016, 196 , 27-40. https://doi.org/10.1016/j.apcatb.2016.05.013
    89. S. Chatterjee, A. B. Ringane, A. Arya, G. M. Das, V. R. Dantham, R. Laha, S. Hussian. A high-yield, one-step synthesis of surfactant-free gold nanostars and numerical study for single-molecule SERS application. Journal of Nanoparticle Research 2016, 18 (8) https://doi.org/10.1007/s11051-016-3557-0
    90. Jie Yu, Junxi Zhang, Lide Zhang, Junhui Jia, Wei Xu, Junfeng Wang, Guangtao Fei. Size and dielectric-environment dependence of transversal resonance modes of localized surface plasmons in silver nanorods. Applied Optics 2016, 55 (18) , 4871. https://doi.org/10.1364/AO.55.004871
    91. Vipul Sharma, Niraj Sinha, Sunil Dutt, Mohit Chawla, Prem Felix Siril. Tuning the surface enhanced Raman scattering and catalytic activities of gold nanorods by controlled coating of platinum. Journal of Colloid and Interface Science 2016, 463 , 180-187. https://doi.org/10.1016/j.jcis.2015.10.036
    92. Suwussa Bamrungsap, Alongkot Treetong, Chayachon Apiwat, Tuksadon Wuttikhun, Tararaj Dharakul. SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods. Microchimica Acta 2016, 183 (1) , 249-256. https://doi.org/10.1007/s00604-015-1639-9
    93. E. Carbó-Argibay, S. Mourdikoudis, I. Pastoriza-Santos, J. Pérez-Juste. Nanocolloids of Noble Metals. 2016, 37-73. https://doi.org/10.1016/B978-0-12-801578-0.00002-3
    94. Andrea Pescaglini, Eleonora Secco, Alfonso Martin, Davide Cammi, Carsten Ronning, Andrés Cantarero, Nuria Garro, Daniela Iacopino. Non-resonant Raman spectroscopy of individual ZnO nanowires via Au nanorod surface plasmons. Journal of Materials Chemistry C 2016, 4 (8) , 1651-1657. https://doi.org/10.1039/C5TC03990H
    95. Aquiles Carattino, Saumyakanti Khatua, Michel Orrit. In situ tuning of gold nanorod plasmon through oxidative cyanide etching. Physical Chemistry Chemical Physics 2016, 18 (23) , 15619-15624. https://doi.org/10.1039/C6CP01679K
    96. Ming Li, Sangeeta Ray Banerjee, Chao Zheng, Martin G. Pomper, Ishan Barman. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer. Chemical Science 2016, 7 (11) , 6779-6785. https://doi.org/10.1039/C6SC01739H
    97. Qianqian Ding, Hongjian Zhou, Haimin Zhang, Yunxia Zhang, Guozhong Wang, Huijun Zhao. 3D Fe 3 O 4 @Au@Ag nanoflowers assembled magnetoplasmonic chains for in situ SERS monitoring of plasmon-assisted catalytic reactions. Journal of Materials Chemistry A 2016, 4 (22) , 8866-8874. https://doi.org/10.1039/C6TA02264B
    98. Xianli Zong, Rong Zhu, Xiaoliang Guo. Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep16454
    99. Shuai He, Malvin Wei Cherng Kang, Fahima Jaleel Khan, Eddie Khay Ming Tan, Miguel Arnold Reyes, James Chen Yong Kah. Optimizing gold nanostars as a colloid-based surface-enhanced Raman scattering (SERS) substrate. Journal of Optics 2015, 17 (11) , 114013. https://doi.org/10.1088/2040-8978/17/11/114013
    100. Hung-Fei Kuo, Yi-Jun Huang, Yu-Ting Chen. Investigation of Various Types of Nanorods as Sensitive Surface-Enhanced Raman Scattering Substrates. IEEE Transactions on NanoBioscience 2015, 14 (6) , 581-590. https://doi.org/10.1109/TNB.2015.2435812
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2013, 7, 3, 2099–2105
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn305710k
    Published February 25, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    5169

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.