ACS Publications. Most Trusted. Most Cited. Most Read
Two-Wave Nanotherapy To Target the Stroma and Optimize Gemcitabine Delivery To a Human Pancreatic Cancer Model in Mice
My Activity
    Article

    Two-Wave Nanotherapy To Target the Stroma and Optimize Gemcitabine Delivery To a Human Pancreatic Cancer Model in Mice
    Click to copy article linkArticle link copied!

    View Author Information
    † § Division of NanoMedicine, Department of Medicine, Department of Chemistry & Biochemistry, and §California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
    Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
    Center for Micro-Engineered Materials, The University of New Mexico, Albuquerque, New Mexico 87131, United States
    Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, and Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
    *Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2013, 7, 11, 10048–10065
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn404083m
    Published October 21, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Pancreatic ductal adenocarcinoma (PDAC) elicits a dense stromal response that blocks vascular access because of pericyte coverage of vascular fenestrations. In this way, the PDAC stroma contributes to chemotherapy resistance in addition to causing other problems. In order to improve the delivery of gemcitabine, a first-line chemotherapeutic agent, a PEGylated drug-carrying liposome was developed, using a transmembrane ammonium sulfate gradient to encapsulate the protonated drug up to 20% w/w. However, because the liposome was precluded from entering the xenograft site due to the stromal interference, we developed a first-wave nanocarrier that decreases pericyte coverage of the vasculature through interference in the pericyte recruiting TGF-β signaling pathway. This was accomplished using a polyethyleneimine (PEI)/polyethylene glycol (PEG)-coated mesoporous silica nanoparticle (MSNP) for molecular complexation to a small molecule TGF-β inhibitor, LY364947. LY364947 contains a nitrogen atom that attaches, through H-bonding, to PEI amines with a high rate of efficiency. The copolymer coating also facilitates systemic biodistribution and retention at the tumor site. Because of the high loading capacity and pH-dependent LY364947 release from the MSNPs, we achieved rapid entry of IV-injected liposomes and MSNPs at the PDAC tumor site. This two-wave approach provided effective shrinkage of the tumor xenografts beyond 25 days, compared to the treatment with free drug or gemcitabine-loaded liposomes only. Not only does this approach overcome stromal resistance to drug delivery in PDAC, but it also introduces the concept of using a stepwise engineered approach to address a range of biological impediments that interfere in nanocancer therapy in a spectrum of cancers.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional figures, table, results, and method descriptions as described in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 155 publications.

    1. Sreejith Thrivikraman Nair, C Abhi, Kaladhar Kamalasanan, K. Pavithran, Ashok R. Unni, MS Sithara, Manjit Sarma, T S Mangalanandan. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Molecular Pharmaceutics 2024, 21 (12) , 5960-5988. https://doi.org/10.1021/acs.molpharmaceut.4c00801
    2. Quan Zhou, Jiajia Xiang, Nasha Qiu, Yechun Wang, Ying Piao, Shiqun Shao, Jianbin Tang, Zhuxian Zhou, Youqing Shen. Tumor Abnormality-Oriented Nanomedicine Design. Chemical Reviews 2023, 123 (18) , 10920-10989. https://doi.org/10.1021/acs.chemrev.3c00062
    3. André E. Nel, Kuo-Ching Mei, Yu-Pei Liao, Xiangsheng Liu. Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS Nano 2022, 16 (4) , 5184-5232. https://doi.org/10.1021/acsnano.2c01252
    4. Morgan Craig, Adrianne L. Jenner, Bumseok Namgung, Luke P. Lee, Aaron Goldman. Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chemical Reviews 2021, 121 (6) , 3352-3389. https://doi.org/10.1021/acs.chemrev.0c00356
    5. Mukaddes Izci, Christy Maksoudian, Bella B. Manshian, Stefaan J. Soenen. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chemical Reviews 2021, 121 (3) , 1746-1803. https://doi.org/10.1021/acs.chemrev.0c00779
    6. Prabhuraj R S, Arijit Mal, Snehal K. Valvi, Rohit Srivastava, Abhijit De, Rajdip Bandyopadhyaya. Noninvasive Preclinical Evaluation of Targeted Nanoparticles for the Delivery of Curcumin in Treating Pancreatic Cancer. ACS Applied Bio Materials 2020, 3 (7) , 4643-4654. https://doi.org/10.1021/acsabm.0c00515
    7. Hanchun Yao, Xiaofang Guo, Huijuan Zhou, Jinjin Ren, Ying Li, Songchao Duan, Xiaobao Gong, Bin Du. Mild Acid-Responsive “Nanoenzyme Capsule” Remodeling of the Tumor Microenvironment to Increase Tumor Penetration. ACS Applied Materials & Interfaces 2020, 12 (18) , 20214-20227. https://doi.org/10.1021/acsami.0c03022
    8. Haijie Han, Yi Hou, Xiaohui Chen, Peisen Zhang, Muxing Kang, Qiao Jin, Jian Ji, Mingyuan Gao. Metformin-Induced Stromal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic Nanoparticles for Pancreatic Cancer Targeted Therapy. Journal of the American Chemical Society 2020, 142 (10) , 4944-4954. https://doi.org/10.1021/jacs.0c00650
    9. Yanzuo Chen, Wantong Song, Limei shen, Nasha Qiu, Mengying Hu, Yun Liu, Qi Liu, Leaf Huang. Vasodilator Hydralazine Promotes Nanoparticle Penetration in Advanced Desmoplastic Tumors. ACS Nano 2019, 13 (2) , 1751-1763. https://doi.org/10.1021/acsnano.8b07830
    10. Xiangsheng Liu, Jinhong Jiang, Ryan Chan, Ying Ji, Jianqin Lu, Yu-Pei Liao, Michael Okene, Joshua Lin, Paulina Lin, Chong Hyun Chang, Xiang Wang, Ivanna Tang, Emily Zheng, Waveley Qiu, Zev A. Wainberg, Andre E. Nel, Huan Meng. Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano 2019, 13 (1) , 38-53. https://doi.org/10.1021/acsnano.8b06164
    11. Zhimin Tao, Mandar Deepak Muzumdar, Alexandre Detappe, Xing Huang, Eric S. Xu, Yingjie Yu, Tarek H. Mouhieddine, Haiqin Song, Tyler Jacks, P. Peter Ghoroghchian. Differences in Nanoparticle Uptake in Transplanted and Autochthonous Models of Pancreatic Cancer. Nano Letters 2018, 18 (4) , 2195-2208. https://doi.org/10.1021/acs.nanolett.7b04043
    12. Andre Nel (Associate Editor), Erkki Ruoslahti , Huan Meng . New Insights into “Permeability” as in the Enhanced Permeability and Retention Effect of Cancer Nanotherapeutics. ACS Nano 2017, 11 (10) , 9567-9569. https://doi.org/10.1021/acsnano.7b07214
    13. Kaili Hu, Lei Miao, Tyler J. Goodwin, Jun Li, Qi Liu, and Leaf Huang . Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles. ACS Nano 2017, 11 (5) , 4916-4925. https://doi.org/10.1021/acsnano.7b01522
    14. Beatriz Pelaz, Christoph Alexiou, Ramon A. Alvarez-Puebla, Frauke Alves, Anne M. Andrews, Sumaira Ashraf, Lajos P. Balogh, Laura Ballerini, Alessandra Bestetti, Cornelia Brendel, Susanna Bosi, Monica Carril, Warren C. W. Chan, Chunying Chen, Xiaodong Chen, Xiaoyuan Chen, Zhen Cheng, Daxiang Cui, Jianzhong Du, Christian Dullin, Alberto Escudero, Neus Feliu, Mingyuan Gao, Michael George, Yury Gogotsi, Arnold Grünweller, Zhongwei Gu, Naomi J. Halas, Norbert Hampp, Roland K. Hartmann, Mark C. Hersam, Patrick Hunziker, Ji Jian, Xingyu Jiang, Philipp Jungebluth, Pranav Kadhiresan, Kazunori Kataoka, Ali Khademhosseini, Jindřich Kopeček, Nicholas A. Kotov, Harald F. Krug, Dong Soo Lee, Claus-Michael Lehr, Kam W. Leong, Xing-Jie Liang, Mei Ling Lim, Luis M. Liz-Marzán, Xiaowei Ma, Paolo Macchiarini, Huan Meng, Helmuth Möhwald, Paul Mulvaney, Andre E. Nel, Shuming Nie, Peter Nordlander, Teruo Okano, Jose Oliveira, Tai Hyun Park, Reginald M. Penner, Maurizio Prato, Victor Puntes, Vincent M. Rotello, Amila Samarakoon, Raymond E. Schaak, Youqing Shen, Sebastian Sjöqvist, Andre G. Skirtach, Mahmoud G. Soliman, Molly M. Stevens, Hsing-Wen Sung, Ben Zhong Tang, Rainer Tietze, Buddhisha N. Udugama, J. Scott VanEpps, Tanja Weil, Paul S. Weiss, Itamar Willner, Yuzhou Wu, Lily Yang, Zhao Yue, Qian Zhang, Qiang Zhang, Xian-En Zhang, Yuliang Zhao, Xin Zhou, and Wolfgang J. Parak . Diverse Applications of Nanomedicine. ACS Nano 2017, 11 (3) , 2313-2381. https://doi.org/10.1021/acsnano.6b06040
    15. Meysam Keshavarz, Bo Tan, and Krishnan Venkatakrishnan . Cell Selective Apoptosis Induced by Polymorphic Alteration of Self-Assembled Silica Nanowebs. ACS Applied Materials & Interfaces 2017, 9 (7) , 6292-6305. https://doi.org/10.1021/acsami.6b14836
    16. Dean Ho, Ali Zarrinpar, and Edward Kai-Hua Chow . Diamonds, Digital Health, and Drug Development: Optimizing Combinatorial Nanomedicine. ACS Nano 2016, 10 (10) , 9087-9092. https://doi.org/10.1021/acsnano.6b06174
    17. Xiangsheng Liu, Allen Situ, Yanan Kang, Katie Rose Villabroza, Yupei Liao, Chong Hyun Chang, Timothy Donahue, Andre E. Nel, and Huan Meng . Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer. ACS Nano 2016, 10 (2) , 2702-2715. https://doi.org/10.1021/acsnano.5b07781
    18. Elena Aznar, Mar Oroval, Lluís Pascual, Jose Ramón Murguía, Ramón Martínez-Máñez, and Félix Sancenón . Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews 2016, 116 (2) , 561-718. https://doi.org/10.1021/acs.chemrev.5b00456
    19. Hongyu Zhou, Weiping Qian, Fatih M. Uckun, Liya Wang, Y. Andrew Wang, Hongyu Chen, David Kooby, Qian Yu, Malgorzata Lipowska, Charles A. Staley, Hui Mao, and Lily Yang . IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer. ACS Nano 2015, 9 (8) , 7976-7991. https://doi.org/10.1021/acsnano.5b01288
    20. Huan Meng, Meiying Wang, Huiyu Liu, Xiangsheng Liu, Allen Situ, Bobby Wu, Zhaoxia Ji, Chong Hyun Chang, and Andre E. Nel . Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice. ACS Nano 2015, 9 (4) , 3540-3557. https://doi.org/10.1021/acsnano.5b00510
    21. Shutao Guo, C. Michael Lin, Zhenghong Xu, Lei Miao, Yuhua Wang, and Leaf Huang . Co-delivery of Cisplatin and Rapamycin for Enhanced Anticancer Therapy through Synergistic Effects and Microenvironment Modulation. ACS Nano 2014, 8 (5) , 4996-5009. https://doi.org/10.1021/nn5010815
    22. Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Velmurugan Meganathan, James Renuka, Selvakumar Palaniappan. Fabrication of drugs loaded UiO-66 nanoparticles loaded core-shell nanofibers: investigation of antiproliferative activity and apoptosis induction in lung cancer cells. Materials Technology 2024, 39 (1) https://doi.org/10.1080/10667857.2024.2304437
    23. Laksiri Weerasinghe, Imalka Munaweera, Senuri Kumarage. Nanotechnology for Drug Design and Drug Delivery. 2024, 108-147. https://doi.org/10.2174/9789815238815124010005
    24. Wenhao Luo, Taiping Zhang. The new era of pancreatic cancer treatment: Application of nanotechnology breaking through bottlenecks. Cancer Letters 2024, 594 , 216979. https://doi.org/10.1016/j.canlet.2024.216979
    25. Happy Agarwal, Ryan C. Bynum, Nada Saleh, Danielle Harris, William M. MacCuaig, Vung Kim, Emma J. Sanderson, Isabel S. Dennahy, Rohit Singh, Bahareh Behkam, Jorge G. Gomez‐Gutierrez, Ajay Jain, Barish H. Edil, Lacey R. McNally. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WIREs Nanomedicine and Nanobiotechnology 2024, 16 (4) https://doi.org/10.1002/wnan.1983
    26. Adrianna Zygmunt, Jerzy Gubernator. Metabolism and structure of PDA as the target for new therapies: possibilities and limitations for nanotechnology. Expert Opinion on Drug Delivery 2024, 21 (6) , 845-865. https://doi.org/10.1080/17425247.2024.2370492
    27. Dan Li, Xiaohui Chen, Wenbin Dai, Qiao Jin, Dong Wang, Jian Ji, Ben Zhong Tang. Photo‐Triggered Cascade Therapy: A NIR‐II AIE Luminogen Collaborating with Nitric Oxide Facilitates Efficient Collagen Depletion for Boosting Pancreatic Cancer Phototheranostics. Advanced Materials 2024, 36 (13) https://doi.org/10.1002/adma.202306476
    28. Dayuan Zhong, Hui Cheng, Huixian Liu, Shihui Feng, Yumei Liu, Huier Xiang, Jiaqi Chen. Bibliometric analysis of Traditional Chinese Medicine nanoparticles research from 2005 to 2023. ELECTROPHORESIS 2024, 45 (3-4) , 288-299. https://doi.org/10.1002/elps.202300207
    29. Lin Wang, Skyler Quine, Alex N. Frickenstein, Michael Lee, Wen Yang, Vinit M. Sheth, Margaret D. Bourlon, Yuxin He, Shanxin Lyu, Lucila Garcia‐Contreras, Yan D. Zhao, Stefan Wilhelm. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. Advanced Functional Materials 2024, 34 (8) https://doi.org/10.1002/adfm.202308446
    30. Ying Jia, Xiaoling Huang, Sijing Li, Yutong Wu, Jin Wu, Zhaoning Duan, Ming Luo, Junying Tang. Engineering of surface-altered polydopamine nanocomposites for successive drug release and in vivo antitumor effects in cervical cancer therapy: Investigation of antiproliferative effects and apoptosis. Journal of Drug Delivery Science and Technology 2024, 91 , 105189. https://doi.org/10.1016/j.jddst.2023.105189
    31. Ruiyang Ding, Yang Li, Yang Yu, Zhiwei Sun, Junchao Duan. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnology Advances 2023, 69 , 108277. https://doi.org/10.1016/j.biotechadv.2023.108277
    32. Epiphane K. Silli, Mengfei Li, Yuting Shao, Yiran Zhang, Guilin Hou, Jiaqian Du, Jingdan Liang, Ying Wang. Liposomal nanostructures for Gemcitabine and Paclitaxel delivery in pancreatic cancer. European Journal of Pharmaceutics and Biopharmaceutics 2023, 192 , 13-24. https://doi.org/10.1016/j.ejpb.2023.09.014
    33. Kiran Kumar Bellapu, Ramesh Joga, Bharthi R Kannan, Sravani Yerram, Priya Varpe, Tejaswini Mergu, Pavan Y Vasu, Saurabh Srivastava, Sandeep Kumar. Lipid-Based Mesoporous Silica Nanoparticles: A Paradigm Shift in Management of Pancreatic Cancer. Pharmaceutical Patent Analyst 2023, 12 (6) , 261-273. https://doi.org/10.4155/ppa-2023-0024
    34. Faisal Raza, Lauren Evans, Mahzad Motallebi, Hajra Zafar, Miguel Pereira-Silva, Kalsoom Saleem, Diana Peixoto, Abbas Rahdar, Esmaeel Sharifi, Francisco Veiga, Clare Hoskins, Ana Cláudia Paiva-Santos. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomaterialia 2023, 157 , 1-23. https://doi.org/10.1016/j.actbio.2022.12.013
    35. Anas Ahmad, Summya Rashid, Anis Ahmad Chaudhary, Abdullah S. Alawam, Mohammad Ibrahim Alghonaim, Syed Shadab Raza, Rehan Khan. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. Seminars in Cancer Biology 2023, 89 , 38-60. https://doi.org/10.1016/j.semcancer.2023.01.002
    36. Aalok Basu, Md Saquib Hasnain, Amit Kumar Nayak, Tejraj M. Aminabhavi. Advanced nanoformulations for theranostics: current status and challenges. 2023, 1-19. https://doi.org/10.1016/B978-0-323-85785-7.00035-8
    37. Yuancun Cheng, Xiaoyi Zheng, Liying Zhang, Jiulong Zhao, Lianghao Hu, Shige Wang. Enhanced photothermal and chemotherapy of pancreatic tumors by degrading the extracellular matrix. Colloids and Surfaces B: Biointerfaces 2023, 221 , 113010. https://doi.org/10.1016/j.colsurfb.2022.113010
    38. Rui Sun, Jiajia Xiang, Quan Zhou, Ying Piao, Jianbin Tang, Shiqun Shao, Zhuxian Zhou, You Han Bae, Youqing Shen. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives. Advanced Drug Delivery Reviews 2022, 191 , 114614. https://doi.org/10.1016/j.addr.2022.114614
    39. Roger Borges, Agatha Maria Pelosine, Ana Carolina Santos de Souza, Joel Machado, Giselle Zenker Justo, Lionel Fernel Gamarra, Juliana Marchi. Bioactive Glasses as Carriers of Cancer-Targeted Drugs: Challenges and Opportunities in Bone Cancer Treatment. Materials 2022, 15 (24) , 9082. https://doi.org/10.3390/ma15249082
    40. Masoud Najafi, Shima Tavakol, Ali Zarrabi, Milad Ashrafizadeh. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Archives of Physiology and Biochemistry 2022, 128 (6) , 1438-1452. https://doi.org/10.1080/13813455.2020.1773864
    41. Marzia Conte, Valentina Cauda. Multimodal Therapies against Pancreatic Ductal Adenocarcinoma: A Review on Synergistic Approaches toward Ultimate Nanomedicine Treatments. Advanced Therapeutics 2022, 5 (11) https://doi.org/10.1002/adtp.202200079
    42. Ting-ting Chen, Ming-ming Yuan, Yu-mei Tao, Xiao-yan Ren, Sufen Li. Engineering of Self-assembly Polymers Encapsulated with Dual Anticancer Drugs for the Treatment of Endometrial Cancer. Journal of Cluster Science 2022, 33 (6) , 2661-2671. https://doi.org/10.1007/s10876-021-02175-5
    43. Xiaodong Xie, Jinhong Jiang, Xiangsheng Liu, Yuhong Cao, Jiulong Li, Tian Xia, Huan Meng. Interleukin-10 plasmid delivery by polymeric nanocarrier shows efficient and safe tissue repair in acute muscle damage models in mice. Nano Today 2022, 46 , 101544. https://doi.org/10.1016/j.nantod.2022.101544
    44. Guangfu Feng, Sijie Liao, Yufeng Liu, Huaizu Zhang, Xingyu Luo, Xiangming Zhou, Jun Fang. When AIE meets enzymes. The Analyst 2022, 147 (18) , 3958-3973. https://doi.org/10.1039/D2AN00679K
    45. Rui Wang, Xiaodan Xu, Dongdong Li, Wei Zhang, Xueying Shi, Hongxia Xu, Jianqiao Hong, Shasha Yao, Jiwei Liu, Zhenli Wei, Ying Piao, Zhuxian Zhou, Youqing Shen, Jianbin Tang. Smart pH-responsive polyhydralazine/bortezomib nanoparticles for remodeling tumor microenvironment and enhancing chemotherapy. Biomaterials 2022, 288 , 121737. https://doi.org/10.1016/j.biomaterials.2022.121737
    46. Gaetan Aime Noubissi Nzeteu, Bernhard F. Gibbs, Nika Kotnik, Achim Troja, Maximilian Bockhorn, N. Helge Meyer. Nanoparticle-based immunotherapy of pancreatic cancer. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.948898
    47. Mubin Tarannum, Juan L. Vivero-Escoto. Nanoparticle-based therapeutic strategies targeting major clinical challenges in pancreatic cancer treatment. Advanced Drug Delivery Reviews 2022, 187 , 114357. https://doi.org/10.1016/j.addr.2022.114357
    48. Nengyi Ni, Weiyi Wang, Yu Sun, Xiao Sun, David Tai Leong. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials 2022, 287 , 121640. https://doi.org/10.1016/j.biomaterials.2022.121640
    49. Taotao Huo, Xiaoyi Zhang, Min Qian, Huifang Nie, Dong Liang, Chenteng Lin, Yafeng Yang, Wei Guo, Ulrich Lächelt, Rongqin Huang. A Space‐Time Conversion Vehicle for Programmed Multi‐Drugs Delivery into Pancreatic Tumor to Overcome Matrix and Reflux Barriers. Advanced Science 2022, 9 (20) https://doi.org/10.1002/advs.202200608
    50. Mubin Tarannum, Katherine Holtzman, Didier Dréau, Pinku Mukherjee, Juan L. Vivero-Escoto. Nanoparticle combination for precise stroma modulation and improved delivery for pancreatic cancer. Journal of Controlled Release 2022, 347 , 425-434. https://doi.org/10.1016/j.jconrel.2022.05.019
    51. Josef Gillson, Yomna S. Abd El-Aziz, Lionel Y. W. Leck, Patric J. Jansson, Nick Pavlakis, Jaswinder S. Samra, Anubhav Mittal, Sumit Sahni. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers 2022, 14 (14) , 3528. https://doi.org/10.3390/cancers14143528
    52. Wenbin Wang, Hui Sun, Yan Gong, Xiangsheng Liu, Xiao Liu, Mengru Wang, Silu Li, Jiulong Li, Lin Zhu, Huan Meng. Ratiometric co-delivery of hydroxychloroquine and calculated low-dose paclitaxel efficiently suppresses tumor growth in hepatocellular carcinoma mouse models in vivo. Nano Today 2022, 44 , 101446. https://doi.org/10.1016/j.nantod.2022.101446
    53. Muhammad Usman Munir. Nanomedicine Penetration to Tumor: Challenges, and Advanced Strategies to Tackle This Issue. Cancers 2022, 14 (12) , 2904. https://doi.org/10.3390/cancers14122904
    54. Jianguo Wang, Guoyu Jiang. AIE‐active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics. 2022, 355-397. https://doi.org/10.1002/9781119643098.ch54
    55. Huiming Peng, Jian Shen, Xin Long, Xiaoqi Zhou, Jiaqi Zhang, Xina Xu, Teng Huang, Hui Xu, Shuguo Sun, Chun Li, Ping Lei, Heshui Wu, Jun Zhao. Local Release of TGF‐ β Inhibitor Modulates Tumor‐Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy. Advanced Science 2022, 9 (10) https://doi.org/10.1002/advs.202105240
    56. Yige Fu, Aishwarya L. Saraswat, Jasmin Monpara, Ketan Patel. Stromal disruption facilitating invasion of a ‘nano-arsenal’ into the solid tumor. Drug Discovery Today 2022, 27 (4) , 1132-1141. https://doi.org/10.1016/j.drudis.2021.11.015
    57. Xiangsheng Liu, Hui Sun, Xueqing Wang, Huan Meng. Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge. Frontiers of Chemical Science and Engineering 2022, 16 (3) , 333-344. https://doi.org/10.1007/s11705-021-2059-5
    58. Etienne J. Slapak, Mouad el Mandili, Maarten F. Bijlsma, C. Arnold Spek. Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview. Pharmaceutics 2022, 14 (2) , 390. https://doi.org/10.3390/pharmaceutics14020390
    59. Vishakha Chaudhary, Anju Anju, Deepika Sharma, Shubhra Chaturvedi, A. K. Mishra. Harnessing Microenvironment Variation for Nanotechnology Based Therapeutics of ROS-Induced Cancer. 2022, 1-11. https://doi.org/10.1007/978-981-16-1247-3_132-1
    60. Haijie Han, Su Li, Yueyang Zhong, Yue Huang, Kai Wang, Qiao Jin, Jian Ji, Ke Yao. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences 2022, 17 (1) , 35-52. https://doi.org/10.1016/j.ajps.2021.06.001
    61. Zhengting Jiang, Wenjie Zhang, Jie Zhang, Tian Liu, Juan Xing, Huan Zhang, Dong Tang. Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy. International Journal of Nanomedicine 2022, Volume 17 , 4677-4696. https://doi.org/10.2147/IJN.S376216
    62. Vishakha Chaudhary, Anju Anju, Deepika Sharma, Shubhra Chaturvedi, Anil K. Mishra. Harnessing Microenvironment Variation for Nanotechnology-Based Therapeutics of ROS-Induced Cancer. 2022, 2959-2969. https://doi.org/10.1007/978-981-16-5422-0_132
    63. Michelle K. Greene, Michael C. Johnston, Christopher J. Scott. Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers 2021, 13 (24) , 6175. https://doi.org/10.3390/cancers13246175
    64. Jinxiu Li, Qian Xie, Rong Ma, Yong Li, Jianmei Yuan, Mihong Ren, Hongyan Li, Jiajun Wang, Danni Lu, Zhuo Xu, Jian Wang. Recent Progress on the Synergistic Antitumor Effect of a Borneol-Modified Nanocarrier Drug Delivery System. Frontiers in Medicine 2021, 8 https://doi.org/10.3389/fmed.2021.750170
    65. Zhenhan Feng, Huan Meng. Efficient nano-enabled therapy for gastrointestinal cancer using silicasome delivery technology. Science China Chemistry 2021, 64 (11) , 1946-1957. https://doi.org/10.1007/s11426-021-1126-x
    66. Irene de Lázaro, David J. Mooney. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nature Materials 2021, 20 (11) , 1469-1479. https://doi.org/10.1038/s41563-021-01047-7
    67. Kazunori Igarashi, Horacio Cabral, Taehun Hong, Yasutaka Anraku, Fotios Mpekris, Triantafyllos Stylianopoulos, Thahomina Khan, Akira Matsumoto, Kazunori Kataoka, Yu Matsumoto, Tatsuya Yamasoba. Vascular Bursts Act as a Versatile Tumor Vessel Permeation Route for Blood‐Borne Particles and Cells. Small 2021, 17 (42) https://doi.org/10.1002/smll.202103751
    68. Xiangsheng Liu, Xiaodong Xie, Jinhong Jiang, Matthew Lin, Emily Zheng, Waveley Qiu, Iwin Yeung, Motao Zhu, Qinglin Li, Tian Xia, Huan Meng. Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials 2021, 31 (38) https://doi.org/10.1002/adfm.202104487
    69. Yueqiang Zhu, Yonghong Song, Ziyang Cao, Liang Dong, Yang Lu, Xianzhu Yang, Jun Wang. Magnetically Actuated Active Deep Tumor Penetration of Deformable Large Nanocarriers for Enhanced Cancer Therapy. Advanced Functional Materials 2021, 31 (35) https://doi.org/10.1002/adfm.202103655
    70. Jitang Chen, Si Li, Xin Liu, Sha Liu, Chen Xiao, Zhijie Zhang, Shiyou Li, Zifu Li, Xiangliang Yang. Transforming growth factor-β blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy. Nanoscale 2021, 13 (22) , 9989-10001. https://doi.org/10.1039/D1NR01552D
    71. Tingxizi Liang, Benhua Zhang, Zejing Xing, Yuxiang Dong, Hongmei Xu, Xueqin Chen, Liping Jiang, Jun‐Jie Zhu, Qianhao Min. Adapting and Remolding: Orchestrating Tumor Microenvironment Normalization with Photodynamic Therapy by Size Transformable Nanoframeworks. Angewandte Chemie 2021, 133 (20) , 11565-11574. https://doi.org/10.1002/ange.202102180
    72. Tingxizi Liang, Benhua Zhang, Zejing Xing, Yuxiang Dong, Hongmei Xu, Xueqin Chen, Liping Jiang, Jun‐Jie Zhu, Qianhao Min. Adapting and Remolding: Orchestrating Tumor Microenvironment Normalization with Photodynamic Therapy by Size Transformable Nanoframeworks. Angewandte Chemie International Edition 2021, 60 (20) , 11464-11473. https://doi.org/10.1002/anie.202102180
    73. Yanhong Liu, Jiyuan Zhou, Qiang Li, Lingchao Li, Yue Jia, Feiyang Geng, Jianping Zhou, Tingjie Yin. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Advanced Drug Delivery Reviews 2021, 172 , 80-103. https://doi.org/10.1016/j.addr.2021.02.019
    74. Xi Hu, Fan Xia, Jiyoung Lee, Fangyuan Li, Xiaoyang Lu, Xiaozhen Zhuo, Guangjun Nie, Daishun Ling. Tailor‐Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Advanced Science 2021, 8 (7) https://doi.org/10.1002/advs.202002545
    75. Angela E. Peter, B. V. Sandeep, B. Ganga Rao, V. Lakshmi Kalpana. Nanotechnology to the Rescue: Treatment Perspective for the Immune Dysregulation Observed in COVID-19. Frontiers in Nanotechnology 2021, 3 https://doi.org/10.3389/fnano.2021.644023
    76. Xiangsheng Liu, Jinhong Jiang, Yu‐Pei Liao, Ivanna Tang, Emily Zheng, Waveley Qiu, Matthew Lin, Xiang Wang, Ying Ji, Kuo‐Ching Mei, Qi Liu, Chong Hyun Chang, Zev A. Wainberg, Andre E. Nel, Huan Meng. Combination Chemo‐Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Anti‐PD‐1. Advanced Science 2021, 8 (6) https://doi.org/10.1002/advs.202002147
    77. Victor A. Naumenko, Stepan S. Vodopyanov, Kseniya Yu. Vlasova, Daria M. Potashnikova, Pavel A. Melnikov, Daniil A. Vishnevskiy, Anastasiia S. Garanina, Marat P. Valikhov, Anastasiia V. Lipatova, Vladimir P. Chekhonin, Alexander G. Majouga, Maxim A. Abakumov. Intravital imaging of liposome behavior upon repeated administration: A step towards the development of liposomal companion diagnostic for cancer nanotherapy. Journal of Controlled Release 2021, 330 , 244-256. https://doi.org/10.1016/j.jconrel.2020.12.014
    78. Ying Ji, Xiangsheng Liu, Juan Li, Xiaodong Xie, Max Huang, Jinhong Jiang, Yu-Pei Liao, Timothy Donahue, Huan Meng. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17996-7
    79. Jonas G. Croissant, Kimberly S. Butler, Jeffrey I. Zink, C. Jeffrey Brinker. Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nature Reviews Materials 2020, 5 (12) , 886-909. https://doi.org/10.1038/s41578-020-0230-0
    80. Kiyomi Ishizawa, Kohei Togami, Hitoshi Tada, Sumio Chono. Evaluation of tissue-clearing techniques for intraorgan imaging of distribution of polymeric nanoparticles as drug carriers. Drug Development and Industrial Pharmacy 2020, 46 (12) , 2061-2069. https://doi.org/10.1080/03639045.2020.1843476
    81. Zili Gu, Candido Da Silva, Koen Van der Maaden, Ferry Ossendorp, Luis Cruz. Liposome-Based Drug Delivery Systems in Cancer Immunotherapy. Pharmaceutics 2020, 12 (11) , 1054. https://doi.org/10.3390/pharmaceutics12111054
    82. Yang Wang, Zhuxin Gao, Xiaojiao Du, Senbiao Chen, Wangcheng Zhang, Jilong Wang, Hongjun Li, Xinyu He, Jie Cao, Jun Wang. Co-inhibition of the TGF-β pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. Biomaterials Science 2020, 8 (18) , 5121-5132. https://doi.org/10.1039/D0BM00916D
    83. Da Huo, Xiqun Jiang, Yong Hu. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials 2020, 32 (27) https://doi.org/10.1002/adma.201904337
    84. Xiaohui Chen, Fan Jia, Yongzhou Li, Yongyan Deng, Yue Huang, Weifeng Liu, Qiao Jin, Jian Ji. Nitric oxide-induced stromal depletion for improved nanoparticle penetration in pancreatic cancer treatment. Biomaterials 2020, 246 , 119999. https://doi.org/10.1016/j.biomaterials.2020.119999
    85. James T. Oswald, Haritosh Patel, Daid Khan, Ninweh N. Jeorje, Hossein Golzar, Erin L. Oswald, Shirley Tang. Drug Delivery Systems Using Surface Markers for Targeting Cancer Stem Cells. Current Pharmaceutical Design 2020, 26 (17) , 2057-2071. https://doi.org/10.2174/1381612826666200406084900
    86. Luisa M Russell, Christina H Liu, Piotr Grodzinski. Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials 2020, 242 , 119926. https://doi.org/10.1016/j.biomaterials.2020.119926
    87. Quan Zhou, Chengyuan Dong, Wufa Fan, Haiping Jiang, Jiajia Xiang, Nasha Qiu, Ying Piao, Tao Xie, Yingwu Luo, Zichen Li, Fusheng Liu, Youqing Shen. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020, 240 , 119902. https://doi.org/10.1016/j.biomaterials.2020.119902
    88. Xiaoling Nie, Yuan Liu, Ming Li, Xuesong Yu, Wanwen Yuan, Sixi Huang, Di Ren, Ying Wang, Yan Wang. SP94 Peptide-Functionalized PEG-PLGA Nanoparticle Loading with Cryptotanshinone for Targeting Therapy of Hepatocellular Carcinoma. AAPS PharmSciTech 2020, 21 (4) https://doi.org/10.1208/s12249-020-01655-7
    89. Prashant Dogra, Javier R. Ramírez, María J. Peláez, Zhihui Wang, Vittorio Cristini, Gulshan Parasher, Manmeet Rawat. Mathematical Modeling to Address Challenges in Pancreatic Cancer. Current Topics in Medicinal Chemistry 2020, 20 (5) , 367-376. https://doi.org/10.2174/1568026620666200101095641
    90. Yujie Su, Tingting Wang, Yangnan Su, Min Li, Jianping Zhou, Wei Zhang, Wei Wang. A neutrophil membrane-functionalized black phosphorus riding inflammatory signal for positive feedback and multimode cancer therapy. Materials Horizons 2020, 7 (2) , 574-585. https://doi.org/10.1039/C9MH01068H
    91. Xuexiang Han, Ying Xu, Marzieh Geranpayehvaghei, Gregory J. Anderson, Yiye Li, Guangjun Nie. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020, 232 , 119745. https://doi.org/10.1016/j.biomaterials.2019.119745
    92. Koyeli Girigoswami, Pragya Pallavi, Agnishwar Girigoswami. Targeting Cancer Stem Cells by Nanoenabled Drug Delivery. 2020, 313-337. https://doi.org/10.1007/978-981-15-5120-8_17
    93. Huanrong Lan, Wei Zhang, Ketao Jin, Yuyao Liu, Zhen Wang. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Delivery 2020, 27 (1) , 1248-1262. https://doi.org/10.1080/10717544.2020.1809559
    94. Bin He, Xin Sui, Bing Yu, Song Wang, Youqing Shen, Hailin Cong. Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Delivery 2020, 27 (1) , 1474-1490. https://doi.org/10.1080/10717544.2020.1831106
    95. Ying Xiao, Yuewen Gao, Fajuan Li, Zhihe Deng. Combinational dual drug delivery system to enhance the care and treatment of gastric cancer patients. Drug Delivery 2020, 27 (1) , 1491-1500. https://doi.org/10.1080/10717544.2020.1822460
    96. Jianxun Ding, Jinjin Chen, Liqian Gao, Zhongyu Jiang, Yu Zhang, Mingqiang Li, Qicai Xiao, Su Seong Lee, Xuesi Chen. Engineered nanomedicines with enhanced tumor penetration. Nano Today 2019, 29 , 100800. https://doi.org/10.1016/j.nantod.2019.100800
    97. Kamalika Samanta, Saini Setua, Sonam Kumari, Meena Jaggi, Murali M. Yallapu, Subhash C. Chauhan. Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics 2019, 11 (11) , 574. https://doi.org/10.3390/pharmaceutics11110574
    98. Ke Song, Xin Wang, Xiao Liang, Mingxia Liu, Yang Zhou, Guolin Zhang, Lijiang Chen. A redox-sensitive polymer-drug conjugate for tumor therapy: synthesis, properties and performance. Materials Research Express 2019, 6 (10) , 105413. https://doi.org/10.1088/2053-1591/ab3b37
    99. Qiuhua Luo, Ling Zhang, Cong Luo, Mingyan Jiang. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy. Cancer Letters 2019, 454 , 191-203. https://doi.org/10.1016/j.canlet.2019.04.017
    100. Yanjun Li, Yuxia Tang, Sui Chen, Ying Liu, Shouju Wang, Ying Tian, Chunyan Wang, Zhaogang Teng, Guangming Lu. Sequential therapy for pancreatic cancer by losartan- and gemcitabine-loaded magnetic mesoporous spheres. RSC Advances 2019, 9 (34) , 19690-19698. https://doi.org/10.1039/C9RA02180A
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2013, 7, 11, 10048–10065
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn404083m
    Published October 21, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    4152

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.