ACS Publications. Most Trusted. Most Cited. Most Read
Controllable Growth and Transfer of Monolayer MoS2 on Au Foils and Its Potential Application in Hydrogen Evolution Reaction
My Activity

    Article

    Controllable Growth and Transfer of Monolayer MoS2 on Au Foils and Its Potential Application in Hydrogen Evolution Reaction
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
    Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
    § Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, People’s Republic of China
    *Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2014, 8, 10, 10196–10204
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn503211t
    Published September 11, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Controllable synthesis of monolayer MoS2 is essential for fulfilling the application potentials of MoS2 in optoelectronics and valleytronics, etc. Herein, we report the scalable growth of high quality, domain size tunable (edge length from ∼200 nm to 50 μm), strictly monolayer MoS2 flakes or even complete films on commercially available Au foils, via low pressure chemical vapor deposition method. The as-grown MoS2 samples can be transferred onto arbitrary substrates like SiO2/Si and quartz with a perfect preservation of the crystal quality, thus probably facilitating its versatile applications. Of particular interest, the nanosized triangular MoS2 flakes on Au foils are proven to be excellent electrocatalysts for hydrogen evolution reaction, featured by a rather low Tafel slope (61 mV/decade) and a relative high exchange current density (38.1 μA/cm2). The excellent electron coupling between MoS2 and Au foils is considered to account for the extraordinary hydrogen evolution reaction activity. Our work reports the synthesis of monolayer MoS2 when introducing metal foils as substrates, and presents sound proof that monolayer MoS2 assembled on a well selected electrode can manifest a hydrogen evolution reaction property comparable with that of nanoparticles or few-layer MoS2 electrocatalysts.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    More Raman spectra, OM, SEM, XPS, and TEM images; and more polarization curves, Tafel plots, and nyquist plots of as-grown MoS2 on Au foils or transferred on quartz and on a carbon film supported on copper grids. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 431 publications.

    1. Xueqiu Zheng, Kunyan Zhang, Xiantuo Zhao, Jian Zhou, Hongzhi Shen, Jing Kong, Yunfan Guo. Achieving High-Yield Conversion of Janus Transition Metal Dichalcogenides on Diverse Substrates. ACS Nano 2025, 19 (22) , 20744-20752. https://doi.org/10.1021/acsnano.5c02687
    2. Zhijun Wang, Yingjing Liu, Yao Deng, Hailei Wang, Shuting Han, Yinfeng Wang, Xiaoxue Zhang, Xuexia Liu. Functionalization of 2H-MoS2 with Pt Nanoclusters for HER in Alkaline Solutions and Supercapacitors. Langmuir 2025, 41 (22) , 14265-14274. https://doi.org/10.1021/acs.langmuir.5c01328
    3. Honglin Chen, Shan Jiang, Lingli Huang, Ping Man, Qingming Deng, Jiong Zhao, Thuc Hue Ly. Large-Area Aligned Growth of Low-Symmetry 2D ReS2 on a High-Symmetry Surface. ACS Nano 2024, 18 (51) , 35029-35038. https://doi.org/10.1021/acsnano.4c14162
    4. Qingxuan Li, Qunyong Luo, Yi Zhu, Bowen Zheng, Liqi Zhou, Fei Chen, Di Wu, Ru-Wen Peng, Mu Wang. Anisotropic Etching of Monolayer MoS2 Flakes for Zigzag Edges in Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2024, 16 (48) , 66792-66801. https://doi.org/10.1021/acsami.4c19420
    5. Guodong Xue, Biao Qin, Chaojie Ma, Peng Yin, Can Liu, Kaihui Liu. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chemical Reviews 2024, 124 (17) , 9785-9865. https://doi.org/10.1021/acs.chemrev.3c00851
    6. Soumyabrata Roy, Antony Joseph, Xiang Zhang, Sohini Bhattacharyya, Anand B. Puthirath, Abhijit Biswas, Chandra Sekhar Tiwary, Robert Vajtai, Pulickel M. Ajayan. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chemical Reviews 2024, 124 (16) , 9376-9456. https://doi.org/10.1021/acs.chemrev.3c00937
    7. Qian Liu, Bojian Zhou, Jiageng Liu, Shaolong Jiang. Two-Dimensional Tetragonal FeTe Flakes on Gold Foil for Hydrogen Evolution Reaction. Crystal Growth & Design 2024, 24 (12) , 5231-5235. https://doi.org/10.1021/acs.cgd.4c00470
    8. Naduvile Purayil Dileep, Mithun C. Madhusudhanan, Lakshmi K. Puthenveettil, Vipin Yadav, Stephen N. Myakala, Sooraj Kunnikuruvan, Manikoth M. Shaijumon. Nanostructured Ternary Bismuth–Antimony Trichalcogenide/Au Heterostructure Boosts Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials 2024, 7 (9) , 3688-3699. https://doi.org/10.1021/acsaem.4c00046
    9. Mahdieh Rezaei, Alireza Nezamzadeh-Ejhieh, Ahmad Reza Massah. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Photocatalytic Solar Water Splitting: Focus on Sulfur Vacancy. Energy & Fuels 2024, 38 (9) , 7637-7664. https://doi.org/10.1021/acs.energyfuels.4c00325
    10. Youjin Lee, Soo Hyun Lee, Sun Kyung Han, Jiheon Park, Dongwook Lee, Daniel J. Preston, In Soo Kim, Mark C. Hersam, Yongwoo Kwon, Bonggeun Shong, Won-Kyu Lee. Strain-Enabled Local Phase Control in Layered MoTe2 for Enhanced Electrocatalytic Hydrogen Evolution. ACS Energy Letters 2023, 8 (11) , 4716-4725. https://doi.org/10.1021/acsenergylett.3c01941
    11. Lipipuspa Sahoo, Aarti Devi, Amitava Patra. Atomically Precise Ni Nanoclusters for Improving Hydrogen Evolution Reaction Performance. ACS Sustainable Chemistry & Engineering 2023, 11 (10) , 4187-4196. https://doi.org/10.1021/acssuschemeng.2c06999
    12. Hyeong-ku Jo, Jahee Kim, Yi Rang Lim, Sunyoung Shin, Da Som Song, Garam Bae, Yeong Min Kwon, Moonjeong Jang, Soonmin Yim, Sung Myung, Sun Sook Lee, Chang Gyoun Kim, Ki Kang Kim, Jongsun Lim, Wooseok Song. Wafer-Scale Production of Two-Dimensional Tin Monoselenide: Expandable Synthetic Platform for van der Waals Semiconductor-Based Broadband Photodetectors. ACS Nano 2023, 17 (2) , 1372-1380. https://doi.org/10.1021/acsnano.2c09854
    13. Junxian Liu, Ziyun Wang, Liangzhi Kou, Yuantong Gu. Mechanism Exploration and Catalyst Design for Hydrogen Evolution Reaction Accelerated by Density Functional Theory Simulations. ACS Sustainable Chemistry & Engineering 2023, 11 (2) , 467-481. https://doi.org/10.1021/acssuschemeng.2c05212
    14. Navid Solati, Cüneyt Karakaya, Sarp Kaya. Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS2 for the Hydrogen Evolution Reaction. ACS Catalysis 2023, 13 (1) , 342-354. https://doi.org/10.1021/acscatal.2c03719
    15. Zheng Huang, Nan Lu, Zifeng Wang, Shuoheng Xu, Jie Guan, Yaowu Hu. Large-Scale Ultrafast Strain Engineering of CVD-Grown Two-Dimensional Materials on Strain Self-Limited Deformable Nanostructures toward Enhanced Field-Effect Transistors. Nano Letters 2022, 22 (18) , 7734-7741. https://doi.org/10.1021/acs.nanolett.2c01559
    16. Abhilasha Bora, Sumana Paul, Md Tarik Hossain, P. K. Giri. Quantitative Understanding of the Photoluminescence Modulation and Doping of Monolayer WS2 by Heterostructuring with Non-van der Waals 2D Bi2O2Se Quantum Dots. The Journal of Physical Chemistry C 2022, 126 (30) , 12623-12634. https://doi.org/10.1021/acs.jpcc.2c03245
    17. Dohyun Rhuy, Youjin Lee, Ji Yoon Kim, Chansoo Kim, Yongwoo Kwon, Daniel J. Preston, In Soo Kim, Teri W. Odom, Kibum Kang, Dongwook Lee, Won-Kyu Lee. Ultraefficient Electrocatalytic Hydrogen Evolution from Strain-Engineered, Multilayer MoS2. Nano Letters 2022, 22 (14) , 5742-5750. https://doi.org/10.1021/acs.nanolett.2c00938
    18. Ling Jiang, Qian Zhou, Jing-Jing Li, Yu-Xin Xia, Huan-Xin Li, Yong-Jun Li. Engineering Isolated S Vacancies over 2D MoS2 Basal Planes for Catalytic Hydrogen Evolution. ACS Applied Nano Materials 2022, 5 (3) , 3521-3530. https://doi.org/10.1021/acsanm.1c04151
    19. Pengfei Yang, Lijie Zhu, Fan Zhou, Yanfeng Zhang. Wafer-Scale Uniform Synthesis of 2D Transition Metal Dichalcogenides Single Crystals via Chemical Vapor Deposition. Accounts of Materials Research 2022, 3 (2) , 161-174. https://doi.org/10.1021/accountsmr.1c00209
    20. Qingxuan Li, Lei Zhang, Chengyao Li, Jie He, Yifan Wei, Jinzhu Zhao, Ruili Zhang, Peng Wang, Shaojie Fu, Fei Chen, Ruwen Peng, Mu Wang. Morphological Evolution of Monolayer MoS2 Single-Crystalline Flakes. The Journal of Physical Chemistry C 2022, 126 (7) , 3549-3559. https://doi.org/10.1021/acs.jpcc.1c10342
    21. Jihoon Kim, Hyojin Seung, Dohun Kang, Joodeok Kim, Hyeonhu Bae, Hayoung Park, Sungsu Kang, Changsoon Choi, Back Kyu Choi, Ji Soo Kim, Taeghwan Hyeon, Hoonkyung Lee, Dae-Hyeong Kim, Sangdeok Shim, Jungwon Park. Wafer-Scale Production of Transition Metal Dichalcogenides and Alloy Monolayers by Nanocrystal Conversion for Large-Scale Ultrathin Flexible Electronics. Nano Letters 2021, 21 (21) , 9153-9163. https://doi.org/10.1021/acs.nanolett.1c02991
    22. Xin Chen, Lok-Wing Wong, Lingli Huang, Fangyuan Zheng, Ran Huang, Shu Ping Lau, Chun-Sing Lee, Jiong Zhao, Qingming Deng, Thuc Hue Ly. Unveiling the Critical Intermediate Stages During Chemical Vapor Deposition of Two-Dimensional Rhenium Diselenide. Chemistry of Materials 2021, 33 (17) , 7039-7046. https://doi.org/10.1021/acs.chemmater.1c02144
    23. Jin Young Koo, Jongwon Oh, Gyeongeun Hyun, Hee Cheul Choi, Intek Song, Seok Min Yoon. Anisotropic Electrical Conductivity of a Single-Crystalline Oxo-Bridged Cr4IIIMo2VI Heterometallic Complex. Inorganic Chemistry 2021, 60 (17) , 13262-13268. https://doi.org/10.1021/acs.inorgchem.1c01618
    24. Yangchao Liao, Zhaofan Li, Sarah Ghazanfari, Fatima, Andrew B. Croll, Wenjie Xia. Understanding the Role of Self-Adhesion in Crumpling Behaviors of Sheet Macromolecules. Langmuir 2021, 37 (28) , 8627-8637. https://doi.org/10.1021/acs.langmuir.1c01545
    25. Sukdev Dolai, Pradip Maiti, Arup Ghorai, Ritamay Bhunia, Pabitra Kumar Paul, Dibyendu Ghosh. Exfoliated Molybdenum Disulfide-Wrapped CdS Nanoparticles as a Nano-Heterojunction for Photo-Electrochemical Water Splitting. ACS Applied Materials & Interfaces 2021, 13 (1) , 438-448. https://doi.org/10.1021/acsami.0c16972
    26. Wei Xun, Yongjie Wang, Ronglei Fan, Qiaoqiao Mu, Sheng Ju, Yang Peng, Mingrong Shen. Activating the MoS2 Basal Plane toward Enhanced Solar Hydrogen Generation via in Situ Photoelectrochemical Control. ACS Energy Letters 2021, 6 (1) , 267-276. https://doi.org/10.1021/acsenergylett.0c02320
    27. Biao Qin, Huifang Ma, Mongur Hossain, Mianzeng Zhong, Qinglin Xia, Bo Li, Xidong Duan. Substrates in the Synthesis of Two-Dimensional Materials via Chemical Vapor Deposition. Chemistry of Materials 2020, 32 (24) , 10321-10347. https://doi.org/10.1021/acs.chemmater.0c03549
    28. Wenqian Yao, Bin Wu, Yunqi Liu. Growth and Grain Boundaries in 2D Materials. ACS Nano 2020, 14 (8) , 9320-9346. https://doi.org/10.1021/acsnano.0c03558
    29. Hao Xue, Guozheng Wu, Bojin Zhao, Di Wang, Xiaoming Wu, Zhanggui Hu. High-Temperature In Situ Investigation of Chemical Vapor Deposition to Reveal Growth Mechanisms of Monolayer Molybdenum Disulfide. ACS Applied Electronic Materials 2020, 2 (7) , 1925-1933. https://doi.org/10.1021/acsaelm.0c00231
    30. Shiping Zhang, Xiaying Li, Xingli Zhang, Xina Wang, Weipeng Wang, Richeng Yu, Yimin Cao, Di Zhang, Shuyang Wang, Lin He, Jiacai Nie, Changmin Xiong, Ruifen Dou. Enhancement of the Photoelectrocatalytic H2 Evolution on a Rutile-TiO2(001) Surface Decorated with Dendritic MoS2 Monolayer Nanoflakes. ACS Applied Energy Materials 2020, 3 (6) , 5756-5764. https://doi.org/10.1021/acsaem.0c00682
    31. Jibo Fu, Wenqi Xu, Xin Chen, Saifeng Zhang, Wenjie Zhang, Peng Suo, Xian Lin, Jun Wang, Zuanming Jin, Weimin Liu, Guohong Ma. Thickness-Dependent Ultrafast Photocarrier Dynamics in Selenizing Platinum Thin Films. The Journal of Physical Chemistry C 2020, 124 (19) , 10719-10726. https://doi.org/10.1021/acs.jpcc.0c01509
    32. Pengfei Yang, Shuqing Zhang, Shuangyuan Pan, Bin Tang, Yu Liang, Xiaoxu Zhao, Zhepeng Zhang, Jianping Shi, Yahuan Huan, Yuping Shi, Stephen John Pennycook, Zefeng Ren, Guanhua Zhang, Qing Chen, Xiaolong Zou, Zhongfan Liu, Yanfeng Zhang. Epitaxial Growth of Centimeter-Scale Single-Crystal MoS2 Monolayer on Au(111). ACS Nano 2020, 14 (4) , 5036-5045. https://doi.org/10.1021/acsnano.0c01478
    33. Xin Wang, Yuwei Zhang, Haonan Si, Qinghua Zhang, Jing Wu, Li Gao, Xiaofu Wei, Yu Sun, Qingliang Liao, Zheng Zhang, Kausar Ammarah, Lin Gu, Zhuo Kang, Yue Zhang. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS2. Journal of the American Chemical Society 2020, 142 (9) , 4298-4308. https://doi.org/10.1021/jacs.9b12113
    34. Guoqing Li, Zehua Chen, Yifan Li, Du Zhang, Weitao Yang, Yuanyue Liu, Linyou Cao. Engineering Substrate Interaction To Improve Hydrogen Evolution Catalysis of Monolayer MoS2 Films beyond Pt. ACS Nano 2020, 14 (2) , 1707-1714. https://doi.org/10.1021/acsnano.9b07324
    35. Fa Yang Ping Song Weilin Xu . The Applications of 2D Nanomaterials in Energy-Related Process. 2020, 219-251. https://doi.org/10.1021/bk-2020-1353.ch010
    36. Jiatian Fu, Min Hong, Jianping Shi, Chunyu Xie, Shaolong Jiang, Qiuyu Shang, Qinghua Zhang, Yuping Shi, Yahuan Huan, Zhaoqian Zhang, Pengfei Yang, Xing Li, Lin Gu, Qing Zhang, Chongxin Shan, Yanfeng Zhang. Intercalation-Mediated Synthesis and Interfacial Coupling Effect Exploration of Unconventional Graphene/PtSe2 Vertical Heterostructures. ACS Applied Materials & Interfaces 2019, 11 (51) , 48221-48229. https://doi.org/10.1021/acsami.9b16748
    37. Anh Duc Nguyen, Tri Khoa Nguyen, Chinh Tam Le, Sungdo Kim, Farman Ullah, Yangjin Lee, Sol Lee, Kwanpyo Kim, Dooyong Lee, Sungkyun Park, Jong-Seong Bae, Joon I. Jang, Yong Soo Kim. Nitrogen-Plasma-Treated Continuous Monolayer MoS2 for Improving Hydrogen Evolution Reaction. ACS Omega 2019, 4 (25) , 21509-21515. https://doi.org/10.1021/acsomega.9b03205
    38. Dae-Hyun Nam, Ji-Yong Kim, Sungwoo Kang, Wonhyo Joo, Seung-Yong Lee, Hongmin Seo, Hyoung Gyun Kim, In-Kyoung Ahn, Gi-Baek Lee, Minjeong Choi, Eunsoo Cho, Miyoung Kim, Ki Tae Nam, Seungwu Han, Young-Chang Joo. Anion Extraction-Induced Polymorph Control of Transition Metal Dichalcogenides. Nano Letters 2019, 19 (12) , 8644-8652. https://doi.org/10.1021/acs.nanolett.9b03240
    39. Xiangye Liu, Baichang Li, Xufan Li, Avetik R. Harutyunyan, James Hone, Daniel V. Esposito. The Critical Role of Electrolyte Gating on the Hydrogen Evolution Performance of Monolayer MoS2. Nano Letters 2019, 19 (11) , 8118-8124. https://doi.org/10.1021/acs.nanolett.9b03337
    40. Munzir H. Suliman, Alaaldin Adam, Lei Li, Ziqi Tian, Mohammad N. Siddiqui, Zain H. Yamani, Mohammad Qamar. FeP/MoS2 Enriched with Dense Catalytic Sites and High Electrical Conductivity for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (21) , 17671-17681. https://doi.org/10.1021/acssuschemeng.9b03799
    41. Lifeng Wang, Dan Liu, Bin Wu, Jiemin Wang, Liangzhu Zhang, Cheng Chen, Yuyu Su, Huaying Yin, Jianing Zhang, Yury Gogotsi, Yunqi Liu, Weiwei Lei. Ultrafast Growth of Thin Hexagonal and Pyramidal Molybdenum Nitride Crystals and Films. ACS Materials Letters 2019, 1 (4) , 383-388. https://doi.org/10.1021/acsmaterialslett.9b00147
    42. Michelle P. Browne, Filip Novotný, C. Lorena Manzanares Palenzuela, Jiří Šturala, Zdenek Sofer, Martin Pumera. 2H and 2H/1T-Transition Metal Dichalcogenide Films Prepared via Powderless Gas Deposition for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16440-16449. https://doi.org/10.1021/acssuschemeng.9b03637
    43. Peter C. Sherrell, Pawel Palczynski, Maria S. Sokolikova, Francesco Reale, Federico M. Pesci, Mauro Och, Cecilia Mattevi. Large-Area CVD MoS2/WS2 Heterojunctions as a Photoelectrocatalyst for Salt-Water Oxidation. ACS Applied Energy Materials 2019, 2 (8) , 5877-5882. https://doi.org/10.1021/acsaem.9b01008
    44. Ronen Bar-Ziv, Priyadarshi Ranjan, Anna Lavie, Akash Jain, Somenath Garai, Avraham Bar Hen, Ronit Popovitz-Biro, Reshef Tenne, Raul Arenal, Ashwin Ramasubramaniam, Luc Lajaunie, Maya Bar-Sadan. Au-MoS2 Hybrids as Hydrogen Evolution Electrocatalysts. ACS Applied Energy Materials 2019, 2 (8) , 6043-6050. https://doi.org/10.1021/acsaem.9b01147
    45. Lei Li, Zhaodan Qin, Lucie Ries, Song Hong, Thierry Michel, Jieun Yang, Chrystelle Salameh, Mikhael Bechelany, Philippe Miele, Daniel Kaplan, Manish Chhowalla, Damien Voiry. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets toward the Evolution of Hydrogen. ACS Nano 2019, 13 (6) , 6824-6834. https://doi.org/10.1021/acsnano.9b01583
    46. Wenwu Shi, Guoqing Li, Zhiguo Wang. Triggering Catalytic Active Sites for Hydrogen Evolution Reaction by Intrinsic Defects in Janus Monolayer MoSSe. The Journal of Physical Chemistry C 2019, 123 (19) , 12261-12267. https://doi.org/10.1021/acs.jpcc.9b01485
    47. Jingxia Liu, Xihua Chen, Qinqin Wang, Mengmeng Xiao, Donglai Zhong, Wei Sun, Guangyu Zhang, Zhiyong Zhang. Ultrasensitive Monolayer MoS2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Letters 2019, 19 (3) , 1437-1444. https://doi.org/10.1021/acs.nanolett.8b03818
    48. Junwei Chu, Yu Zhang, Yao Wen, Ruixi Qiao, Chunchun Wu, Peng He, Lei Yin, Ruiqing Cheng, Feng Wang, Zhenxing Wang, Jie Xiong, Yanrong Li, Jun He. Sub-millimeter-Scale Growth of One-Unit-Cell-Thick Ferrimagnetic Cr2S3 Nanosheets. Nano Letters 2019, 19 (3) , 2154-2161. https://doi.org/10.1021/acs.nanolett.9b00386
    49. Guofeng Yang, Yan Gu, Pengfei Yan, Jin Wang, Junjun Xue, Xiumei Zhang, Naiyan Lu, Guoqing Chen. Chemical Vapor Deposition Growth of Vertical MoS2 Nanosheets on p-GaN Nanorods for Photodetector Application. ACS Applied Materials & Interfaces 2019, 11 (8) , 8453-8460. https://doi.org/10.1021/acsami.8b22344
    50. Jian Yuan, Chao Wang, Yanyu Liu, Ping Wu, Wei Zhou. Tunable Photocatalytic HER Activity of Single-Layered TiO2 Nanosheets with Transition-Metal Doping and Biaxial Strain. The Journal of Physical Chemistry C 2019, 123 (1) , 526-533. https://doi.org/10.1021/acs.jpcc.8b09848
    51. Dhanasekaran Vikraman, Sajjad Hussain, Kamran Akbar, K. Karuppasamy, Seung-Hyun Chun, Jongwan Jung, Hyun-Seok Kim. Design of Basal Plane Edges in Metal-Doped Nanostripes-Structured MoSe2 Atomic Layers To Enhance Hydrogen Evolution Reaction Activity. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 458-469. https://doi.org/10.1021/acssuschemeng.8b03921
    52. Cong Li, Xuanhao Mei, Frank Leung-Yuk Lam, Xijun Hu. Amorphous Iron and Cobalt Based Phosphate Nanosheets Supported on Nickel Foam as Superior Catalysts for Hydrogen Evolution Reaction. ACS Applied Energy Materials 2018, 1 (12) , 6764-6768. https://doi.org/10.1021/acsaem.8b01766
    53. Jian Wang, Yang Gao, Francesco Ciucci. Mechanochemical Coupling of MoS2 and Perovskites for Hydrogen Generation. ACS Applied Energy Materials 2018, 1 (11) , 6409-6416. https://doi.org/10.1021/acsaem.8b01365
    54. Yuan Li, Marek B. Majewski, Saiful M. Islam, Shiqiang Hao, Akshay A. Murthy, Jennifer G. DiStefano, Eve D. Hanson, Yaobin Xu, Chris Wolverton, Mercouri G. Kanatzidis, Michael R. Wasielewski, Xinqi Chen, Vinayak P. Dravid. Morphological Engineering of Winged Au@MoS2 Heterostructures for Electrocatalytic Hydrogen Evolution. Nano Letters 2018, 18 (11) , 7104-7110. https://doi.org/10.1021/acs.nanolett.8b03109
    55. Cheng Tang, Chunmei Zhang, Sri Kasi Matta, Yalong Jiao, Ken Ostrikov, Ting Liao, Liangzhi Kou, Aijun Du. Predicting New Two-Dimensional Pd3(PS4)2 as an Efficient Photocatalyst for Water Splitting. The Journal of Physical Chemistry C 2018, 122 (38) , 21927-21932. https://doi.org/10.1021/acs.jpcc.8b06622
    56. Li Xin Chen, Zhi Wen Chen, Yu Wang, Chun Cheng Yang, Qing Jiang. Design of Dual-Modified MoS2 with Nanoporous Ni and Graphene as Efficient Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis 2018, 8 (9) , 8107-8114. https://doi.org/10.1021/acscatal.8b01164
    57. Zhengyang Cai, Bilu Liu, Xiaolong Zou, Hui-Ming Cheng. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews 2018, 118 (13) , 6091-6133. https://doi.org/10.1021/acs.chemrev.7b00536
    58. Dhanasekaran Vikraman, Sajjad Hussain, Kamran Akbar, Kathalingam Adaikalam, Seung Hu Lee, Seung-Hyun Chun, Jongwan Jung, Hyun-Seok Kim, Hui Joon Park. Facile Synthesis of Molybdenum Diselenide Layers for High-Performance Hydrogen Evolution Electrocatalysts. ACS Omega 2018, 3 (5) , 5799-5807. https://doi.org/10.1021/acsomega.8b00459
    59. Yongzheng Zhang, Jing Du, Ziqian Wang, Min Luo, Yuan Tian, Takeshi Fujita, Qikun Xue, Mingwei Chen. Three-Dimensional Nanoporous Heterojunction of Monolayer MoS2@rGO for Photoenhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials 2018, 1 (5) , 2183-2191. https://doi.org/10.1021/acsaem.8b00234
    60. Yao Zhou, Erhong Song, Jiadong Zhou, Junhao Lin, Ruguang Ma, Youwei Wang, Wujie Qiu, Ruxiang Shen, Kazutomo Suenaga, Qian Liu, Jiacheng Wang, Zheng Liu, Jianjun Liu. Auto-optimizing Hydrogen Evolution Catalytic Activity of ReS2 through Intrinsic Charge Engineering. ACS Nano 2018, 12 (5) , 4486-4493. https://doi.org/10.1021/acsnano.8b00693
    61. Xinyi Chia, Nur Ayu Afira Sutrisnoh, Martin Pumera. Tunable Pt–MoSx Hybrid Catalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces 2018, 10 (10) , 8702-8711. https://doi.org/10.1021/acsami.7b19346
    62. Shaoqiang Su, Qingwei Zhou, Zhiqiang Zeng, Die Hu, Xin Wang, Mingliang Jin, Xingsen Gao, Richard Nötzel, Guofu Zhou, Zhang Zhang, Junming Liu. Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS2 for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2018, 10 (9) , 8026-8035. https://doi.org/10.1021/acsami.7b19197
    63. Guifeng Chen, Xiaoqiang Zhang, Lixiu Guan, Hui Zhang, Xinjian Xie, Shiqiang Chen, and Junguang Tao . Phase Transition-Promoted Hydrogen Evolution Performance of MoS2/VO2 Hybrids. The Journal of Physical Chemistry C 2018, 122 (5) , 2618-2623. https://doi.org/10.1021/acs.jpcc.7b12040
    64. Wenshuo Xu, Sha Li, Si Zhou, Ja Kyung Lee, Shanshan Wang, Syed Ghazi Sarwat, Xiaochen Wang, Harish Bhaskaran, Mauro Pasta, and Jamie H. Warner . Large Dendritic Monolayer MoS2 Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. ACS Applied Materials & Interfaces 2018, 10 (5) , 4630-4639. https://doi.org/10.1021/acsami.7b14861
    65. Jingwei Wang, Xiangbin Cai, Run Shi, Zefei Wu, Weijun Wang, Gen Long, Yongjian Tang, Nianduo Cai, Wenkai Ouyang, Pai Geng, Bananakere Nanjegowda Chandrashekar, Abbas Amini, Ning Wang, and Chun Cheng . Twin Defect Derived Growth of Atomically Thin MoS2 Dendrites. ACS Nano 2018, 12 (1) , 635-643. https://doi.org/10.1021/acsnano.7b07693
    66. Ruijing Ge, Xiaohan Wu, Myungsoo Kim, Jianping Shi, Sushant Sonde, Li Tao, Yanfeng Zhang, Jack C. Lee, and Deji Akinwande . Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Letters 2018, 18 (1) , 434-441. https://doi.org/10.1021/acs.nanolett.7b04342
    67. Eric E. Benson, Hanyu Zhang, Samuel A. Schuman, Sanjini U. Nanayakkara, Noah D. Bronstein, Suzanne Ferrere, Jeffrey L. Blackburn, and Elisa M. Miller . Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization. Journal of the American Chemical Society 2018, 140 (1) , 441-450. https://doi.org/10.1021/jacs.7b11242
    68. Junfeng Gao, Yuan Cheng, Tian Tian, Xiaoling Hu, Kaiyang Zeng, Gang Zhang, and Yong-Wei Zhang . Structure, Stability, and Kinetics of Vacancy Defects in Monolayer PtSe2: A First-Principles Study. ACS Omega 2017, 2 (12) , 8640-8648. https://doi.org/10.1021/acsomega.7b01619
    69. Dinh Loc Duong, Seok Joon Yun, and Young Hee Lee . van der Waals Layered Materials: Opportunities and Challenges. ACS Nano 2017, 11 (12) , 11803-11830. https://doi.org/10.1021/acsnano.7b07436
    70. Yating Yang, Wei-Hai Fang, and Run Long . Disparity in Photoexcitation Dynamics between Vertical and Lateral MoS2/WSe2 Heterojunctions: Time-Domain Simulation Emphasizes the Importance of Donor–Acceptor Interaction and Band Alignment. The Journal of Physical Chemistry Letters 2017, 8 (23) , 5771-5778. https://doi.org/10.1021/acs.jpclett.7b02779
    71. Sriram Kumar, Prasanta Kumar Sahoo, and Ashis Kumar Satpati . Electrochemical and SECM Investigation of MoS2/GO and MoS2/rGO Nanocomposite Materials for HER Electrocatalysis. ACS Omega 2017, 2 (11) , 7532-7545. https://doi.org/10.1021/acsomega.7b00678
    72. Guangbo Liu, Yunfeng Qiu, Zhiguo Wang, Jia Zhang, Xiaoshuang Chen, Mingjin Dai, Dechang Jia, Yu Zhou, Zhonghua Li, and PingAn Hu . Efficiently Synergistic Hydrogen Evolution Realized by Trace Amount of Pt-Decorated Defect-Rich SnS2 Nanosheets. ACS Applied Materials & Interfaces 2017, 9 (43) , 37750-37759. https://doi.org/10.1021/acsami.7b11413
    73. Md Ashraful Islam, Jung Han Kim, Anthony Schropp, Hirokjyoti Kalita, Nitin Choudhary, Dylan Weitzman, Saiful I. Khondaker, Kyu Hwan Oh, Tania Roy, Hee-Suk Chung, and Yeonwoong Jung . Centimeter-Scale 2D van der Waals Vertical Heterostructures Integrated on Deformable Substrates Enabled by Gold Sacrificial Layer-Assisted Growth. Nano Letters 2017, 17 (10) , 6157-6165. https://doi.org/10.1021/acs.nanolett.7b02776
    74. Shanshan Wang, Hidetaka Sawada, Qu Chen, Grace G. D. Han, Christopher Allen, Angus I. Kirkland, and Jamie H. Warner . In Situ Atomic-Scale Studies of the Formation of Epitaxial Pt Nanocrystals on Monolayer Molybdenum Disulfide. ACS Nano 2017, 11 (9) , 9057-9067. https://doi.org/10.1021/acsnano.7b03648
    75. Wenyue Li, Zhenyu Zhang, Wenjun Zhang, and Shouzhong Zou . MoS2 Nanosheets Supported on Hollow Carbon Spheres as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction. ACS Omega 2017, 2 (8) , 5087-5094. https://doi.org/10.1021/acsomega.7b00755
    76. Chongyi Ling, Yixin Ouyang, Li Shi, Shijun Yuan, Qian Chen, and Jinlan Wang . Template-Grown MoS2 Nanowires Catalyze the Hydrogen Evolution Reaction: Ultralow Kinetic Barriers with High Active Site Density. ACS Catalysis 2017, 7 (8) , 5097-5102. https://doi.org/10.1021/acscatal.7b01595
    77. Lihua Zhi, Xiaofan Zeng, Hao Wang, Jun Hai, Xiangliang Yang, Baodui Wang, and Yanhong Zhu . Photocatalysis-Based Nanoprobes Using Noble Metal–Semiconductor Heterostructure for Visible Light-Driven in Vivo Detection of Mercury. Analytical Chemistry 2017, 89 (14) , 7649-7658. https://doi.org/10.1021/acs.analchem.7b01602
    78. Caihua Zhang, Ying Liu, Yingxue Chang, Yanan Lu, Shulin Zhao, Dongdong Xu, Zhihui Dai, Min Han, and Jianchun Bao . Component-Controlled Synthesis of Necklace-Like Hollow NiXRuy Nanoalloys as Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (20) , 17326-17336. https://doi.org/10.1021/acsami.7b01114
    79. Baodan Liu, Wenjin Yang, Jing Li, Xinglai Zhang, Pingjuan Niu, and Xin Jiang . Template Approach to Crystalline GaN Nanosheets. Nano Letters 2017, 17 (5) , 3195-3201. https://doi.org/10.1021/acs.nanolett.7b00754
    80. Li Yang, Wenfeng Zhang, Jie Li, Shuai Cheng, Zijian Xie, and Haixin Chang . Tellurization Velocity-Dependent Metallic–Semiconducting–Metallic Phase Evolution in Chemical Vapor Deposition Growth of Large-Area, Few-Layer MoTe2. ACS Nano 2017, 11 (2) , 1964-1972. https://doi.org/10.1021/acsnano.6b08109
    81. Bangjun Guo, Ke Yu, Honglin Li, Ruijuan Qi, Yuanyuan Zhang, Haili Song, Zheng Tang, Ziqiang Zhu, and Mingwei Chen . Coral-Shaped MoS2 Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (4) , 3653-3660. https://doi.org/10.1021/acsami.6b14035
    82. Guozhu Zhang, Jingwei Wang, Zefei Wu, Run Shi, Wenkai Ouyang, Abbas Amini, Bananakere Nanjegowda Chandrashekar, Ning Wang, and Chun Cheng . Shape-Dependent Defect Structures of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2017, 9 (1) , 763-770. https://doi.org/10.1021/acsami.6b13777
    83. Guoqing Li, Du Zhang, Qiao Qiao, Yifei Yu, David Peterson, Abdullah Zafar, Raj Kumar, Stefano Curtarolo, Frank Hunte, Steve Shannon, Yimei Zhu, Weitao Yang, and Linyou Cao . All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. Journal of the American Chemical Society 2016, 138 (51) , 16632-16638. https://doi.org/10.1021/jacs.6b05940
    84. Yuan Li, Jeffrey D. Cain, Eve D. Hanson, Akshay A. Murthy, Shiqiang Hao, Fengyuan Shi, Qianqian Li, Chris Wolverton, Xinqi Chen, and Vinayak P. Dravid . Au@MoS2 Core–Shell Heterostructures with Strong Light–Matter Interactions. Nano Letters 2016, 16 (12) , 7696-7702. https://doi.org/10.1021/acs.nanolett.6b03764
    85. Ziqian Wang, Shoucong Ning, Takeshi Fujita, Akihiko Hirata, and Mingwei Chen . Unveiling Three-Dimensional Stacking Sequences of 1T Phase MoS2 Monolayers by Electron Diffraction. ACS Nano 2016, 10 (11) , 10308-10316. https://doi.org/10.1021/acsnano.6b05958
    86. Aiping Liu, Li Zhao, Junma Zhang, Liangxu Lin, and Huaping Wu . Solvent-Assisted Oxygen Incorporation of Vertically Aligned MoS2 Ultrathin Nanosheets Decorated on Reduced Graphene Oxide for Improved Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2016, 8 (38) , 25210-25218. https://doi.org/10.1021/acsami.6b06031
    87. Liangxu Lin, Naihua Miao, Yan Wen, Shaowei Zhang, Philippe Ghosez, Zhimei Sun, and Dan A. Allwood . Sulfur-Depleted Monolayered Molybdenum Disulfide Nanocrystals for Superelectrochemical Hydrogen Evolution Reaction. ACS Nano 2016, 10 (9) , 8929-8937. https://doi.org/10.1021/acsnano.6b04904
    88. Lianbo Ma, Yi Hu, Guoyin Zhu, Renpeng Chen, Tao Chen, Hongling Lu, Yanrong Wang, Jia Liang, Haixia Liu, Changzeng Yan, Zuoxiu Tie, Zhong Jin, and Jie Liu . In Situ Thermal Synthesis of Inlaid Ultrathin MoS2/Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry of Materials 2016, 28 (16) , 5733-5742. https://doi.org/10.1021/acs.chemmater.6b01980
    89. Jian Gao, Lu Li, Jiawei Tan, Hao Sun, Baichang Li, Juan Carlos Idrobo, Chandra Veer Singh, Toh-Ming Lu, and Nikhil Koratkar . Vertically Oriented Arrays of ReS2 Nanosheets for Electrochemical Energy Storage and Electrocatalysis. Nano Letters 2016, 16 (6) , 3780-3787. https://doi.org/10.1021/acs.nanolett.6b01180
    90. Xiebo Zhou, Jianping Shi, Yue Qi, Mengxi Liu, Donglin Ma, Yu Zhang, Qingqing Ji, Zhepeng Zhang, Cong Li, Zhongfan Liu, and Yanfeng Zhang . Periodic Modulation of the Doping Level in Striped MoS2 Superstructures. ACS Nano 2016, 10 (3) , 3461-3468. https://doi.org/10.1021/acsnano.5b07545
    91. Gonglan Ye, Yongji Gong, Junhao Lin, Bo Li, Yongmin He, Sokrates T. Pantelides, Wu Zhou, Robert Vajtai, and Pulickel M. Ajayan . Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano Letters 2016, 16 (2) , 1097-1103. https://doi.org/10.1021/acs.nanolett.5b04331
    92. David McAteer, Zahra Gholamvand, Niall McEvoy, Andrew Harvey, Eoghan O’Malley, Georg S Duesberg, and Jonathan N Coleman . Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS2 Nanosheet and Nanosheet–Carbon Nanotube Composite Catalytic Electrodes. ACS Nano 2016, 10 (1) , 672-683. https://doi.org/10.1021/acsnano.5b05907
    93. Hau-Vei Han, Ang-Yu Lu, Li-Syuan Lu, Jing-Kai Huang, Henan Li, Chang-Lung Hsu, Yung-Chang Lin, Ming-Hui Chiu, Kazu Suenaga, Chih-Wei Chu, Hao-Chung Kuo, Wen-Hao Chang, Lain-Jong Li, and Yumeng Shi . Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. ACS Nano 2016, 10 (1) , 1454-1461. https://doi.org/10.1021/acsnano.5b06960
    94. Xiujun Fan, Zhiwei Peng, Ruquan Ye, Haiqing Zhou, and Xia Guo . M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Nano 2015, 9 (7) , 7407-7418. https://doi.org/10.1021/acsnano.5b02420
    95. Seok Joon Yun, Sang Hoon Chae, Hyun Kim, Jin Cheol Park, Ji-Hoon Park, Gang Hee Han, Joo Song Lee, Soo Min Kim, Hye Min Oh, Jinbong Seok, Mun Seok Jeong, Ki Kang Kim, and Young Hee Lee . Synthesis of Centimeter-Scale Monolayer Tungsten Disulfide Film on Gold Foils. ACS Nano 2015, 9 (5) , 5510-5519. https://doi.org/10.1021/acsnano.5b01529
    96. Jianping Shi, Xiaona Zhang, Donglin Ma, Jianbao Zhu, Yu Zhang, Zhenxi Guo, Yu Yao, Qingqing Ji, Xiuju Song, Yanshuo Zhang, Cong Li, Zhongfan Liu, Wenguang Zhu, and Yanfeng Zhang . Substrate Facet Effect on the Growth of Monolayer MoS2 on Au Foils. ACS Nano 2015, 9 (4) , 4017-4025. https://doi.org/10.1021/acsnano.5b00081
    97. Seyed Masoud Parsa, Zhijie Chen, Huu Hao Ngo, Wei Wei, Xinbo Zhang, Ying Liu, Bing-Jie Ni, Wenshan Guo. 15 Years of Progress on Transition Metal-Based Electrocatalysts for Microbial Electrochemical Hydrogen Production: From Nanoscale Design to Macroscale Application. Nano-Micro Letters 2025, 17 (1) https://doi.org/10.1007/s40820-025-01781-6
    98. Khaled M. AlAqad. Recent advances in TiO2 nanotube arrays-based electrocatalysts for electrochemical water splitting and CO2 reduction. Ionics 2025, e70097 https://doi.org/10.1007/s11581-025-06408-9
    99. Lin Jia, Jingdian Wang, Denan Kong, He Lan, Ping Wang, Yang Yang, Longyi Fu, Shoujun Zheng, Xiangwei Huang, Yao Zhou, Jiadong Zhou. Synthesis of Large‐Area 2D Transition Metal Dichalcogenides via Chemical Vapor Deposition. Advanced Functional Materials 2025, 2 https://doi.org/10.1002/adfm.202505971
    100. Wenzhi Quan, Yujin Cheng, Haoxuan Ding, Yanfeng Zhang. Unveiling the Electronic Properties and Growth Mechanisms of 2D Layered Materials on Au Foils through Scanning Tunneling Microcopy/Spectroscopy Studies. Advanced Physics Research 2025, 4 (5) https://doi.org/10.1002/apxr.202400162
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2014, 8, 10, 10196–10204
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn503211t
    Published September 11, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    15k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.