ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Micrometer-Scale Translation and Monitoring of Individual Nanocars on Glass

View Author Information
Department of Chemistry and the Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, Texas 77005
* Address correspondence to [email protected]; [email protected]
Cite this: ACS Nano 2009, 3, 2, 351–356
Publication Date (Web):January 9, 2009
https://doi.org/10.1021/nn800798a
Copyright © 2009 American Chemical Society

    Article Views

    2359

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Nanomachines designed to exhibit controlled mechanical motions on the molecular scale present new possibilities of building novel functional materials. Single molecule fluorescence imaging of dye-labeled nanocars on a glass surface at room temperature showed a coupled translational and rotational motion of these nanoscale machines with an activation energy of 42 ± 5 kJ/mol. The 3 nm-long dye-labeled carborane-wheeled nanocars moved by as much as 2.5 μm with an average speed of 4.1 nm/s. Translation of the nanocars due a wheel-like rolling mechanism is proposed and this is consistent with the absence of movement for a three-wheeled nanocar analogue and the stationary behavior of unbound dye molecules. These findings are an important first step toward the rational design and ultimate control of surface-operational molecular machines.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis and characterization of dye-labeled nanocars including 1H NMR spectra and single molecule analysis of the nanocar directionality (Figure S1), polarization distribution of the “moving” nanocars (Figure S2), and polarization distribution of trimer nanocars (Figure S3). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 67 publications.

    1. Geun Wan Kim, Ji Won Ha. Direct Observation of In-Focus Plasmonic Cargos via Breaking Angular Degeneracy in Differential Interference Contrast Microscopy. JACS Au 2023, 3 (12) , 3436-3445. https://doi.org/10.1021/jacsau.3c00594
    2. Hangcheng Ni, Zhenpin Lu, Zuowei Xie. Transition-Metal-Free Cross-Coupling Reaction of Iodocarboranes with Terminal Alkynes Enabled by UV Light: Synthesis of 1-Alkynyl-o-Carboranes and Carborane-Fused Cyclics. Journal of the American Chemical Society 2020, 142 (43) , 18661-18667. https://doi.org/10.1021/jacs.0c08652
    3. Alireza Nemati, Hossein Nejat Pishkenari, Ali Meghdari, Shuzhi Sam Ge. Influence of Vacancies and Grain Boundaries on the Diffusive Motion of Surface Rolling Molecules. The Journal of Physical Chemistry C 2020, 124 (30) , 16629-16643. https://doi.org/10.1021/acs.jpcc.0c03697
    4. Víctor García-López, Dongdong Liu, James M. Tour. Light-Activated Organic Molecular Motors and Their Applications. Chemical Reviews 2020, 120 (1) , 79-124. https://doi.org/10.1021/acs.chemrev.9b00221
    5. Alireza Nemati, Hossein Nejat Pishkenari, Ali Meghdari, Shuzhi Sam Ge. Controlling the Diffusive Motion of Fullerene-Wheeled Nanocars Utilizing a Hybrid Substrate. The Journal of Physical Chemistry C 2019, 123 (42) , 26018-26030. https://doi.org/10.1021/acs.jpcc.9b08335
    6. Seyed Mohammad Hosseini Lavasani, Hossein Nejat Pishkenari, Ali Meghdari. How Chassis Structure and Substrate Crystalline Direction Affect the Mobility of Thermally Driven p-Carborane-Wheeled Nanocars. The Journal of Physical Chemistry C 2019, 123 (8) , 4805-4824. https://doi.org/10.1021/acs.jpcc.8b10779
    7. Andrew R. Cook, Michal Valášek, Alison M. Funston, Pavel Poliakov, Josef Michl, and John R. Miller . p-Carborane Conjugation in Radical Anions of Cage–Cage and Cage–Phenyl Compounds. The Journal of Physical Chemistry A 2018, 122 (3) , 798-810. https://doi.org/10.1021/acs.jpca.7b10885
    8. Rosario Núñez, Màrius Tarrés, Albert Ferrer-Ugalde, Fabrizia Fabrizi de Biani, and Francesc Teixidor . Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews 2016, 116 (23) , 14307-14378. https://doi.org/10.1021/acs.chemrev.6b00198
    9. Seyed Mohammad Hosseini Lavasani, Hossein Nejat Pishkenari, and Ali Meghdari . Mechanism of 1,12-Dicarba-closo-dodecaborane Mobility on Gold Substrate as a Nanocar Wheel. The Journal of Physical Chemistry C 2016, 120 (26) , 14048-14058. https://doi.org/10.1021/acs.jpcc.6b02201
    10. Fang Chen, Víctor García-López, Tao Jin, Bhanu Neupane, Pin-Lei E. Chu, James Tour, and Gufeng Wang . Moving Kinetics of Nanocars with Hydrophobic Wheels on Solid Surfaces at Ambient Conditions. The Journal of Physical Chemistry C 2016, 120 (20) , 10887-10894. https://doi.org/10.1021/acs.jpcc.6b01249
    11. Víctor García-López, Pinn-Tsong Chiang, Fang Chen, Gedeng Ruan, Angel A. Martí, Anatoly B. Kolomeisky, Gufeng Wang, and James M. Tour . Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring. Nano Letters 2015, 15 (12) , 8229-8239. https://doi.org/10.1021/acs.nanolett.5b03764
    12. Sundus Erbas-Cakmak, David A. Leigh, Charlie T. McTernan, and Alina L. Nussbaumer . Artificial Molecular Machines. Chemical Reviews 2015, 115 (18) , 10081-10206. https://doi.org/10.1021/acs.chemrev.5b00146
    13. Dapeng Wang, Chunlin He, Mark P. Stoykovich, and Daniel K. Schwartz . Nanoscale Topography Influences Polymer Surface Diffusion. ACS Nano 2015, 9 (2) , 1656-1664. https://doi.org/10.1021/nn506376n
    14. Peng Liu, Christophe Chipot, Wensheng Cai, and Xueguang Shao . Unveiling the Underlying Mechanism for Compression and Decompression Strokes of a Molecular Engine. The Journal of Physical Chemistry C 2014, 118 (23) , 12562-12567. https://doi.org/10.1021/jp503241p
    15. Cristina García-Iriepa, Marco Marazzi, Felipe Zapata, Alessio Valentini, Diego Sampedro, and Luis Manuel Frutos . Chiral Hydrogen Bond Environment Providing Unidirectional Rotation in Photoactive Molecular Motors. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1389-1396. https://doi.org/10.1021/jz302152v
    16. Kyle Marchuk, Ji Won Ha, and Ning Fang . Three-Dimensional High-Resolution Rotational Tracking with Superlocalization Reveals Conformations of Surface-Bound Anisotropic Nanoparticles. Nano Letters 2013, 13 (3) , 1245-1250. https://doi.org/10.1021/nl304764w
    17. Pin-Lei E. Chu, Lin-Yung Wang, Saumyakanti Khatua, Anatoly B. Kolomeisky, Stephan Link, and James M. Tour . Synthesis and Single-Molecule Imaging of Highly Mobile Adamantane-Wheeled Nanocars. ACS Nano 2013, 7 (1) , 35-41. https://doi.org/10.1021/nn304584a
    18. Bo Shuang, Chad P. Byers, Lydia Kisley, Lin-Yung Wang, Julia Zhao, Hiroyuki Morimura, Stephan Link, and Christy F. Landes . Improved Analysis for Determining Diffusion Coefficients from Short, Single-Molecule Trajectories with Photoblinking. Langmuir 2013, 29 (1) , 228-234. https://doi.org/10.1021/la304063j
    19. Edgar Escalante-Sánchez, Braulio Rodríguez-Molina, and Miguel A. Garcia-Garibay . Toward Crystalline Molecular Rotors with Linearly Conjugated Diethynyl-Phenylene Rotators and Pentiptycene Stators. The Journal of Organic Chemistry 2012, 77 (17) , 7428-7434. https://doi.org/10.1021/jo301223q
    20. Ji Won Ha, Kyle Marchuk, and Ning Fang . Focused Orientation and Position Imaging (FOPI) of Single Anisotropic Plasmonic Nanoparticles by Total Internal Reflection Scattering Microscopy. Nano Letters 2012, 12 (8) , 4282-4288. https://doi.org/10.1021/nl301972t
    21. Alexey V. Akimov, Caitlin Williams, and Anatoly B. Kolomeisky . Charge Transfer and Chemisorption of Fullerene Molecules on Metal Surfaces: Application to Dynamics of Nanocars. The Journal of Physical Chemistry C 2012, 116 (25) , 13816-13826. https://doi.org/10.1021/jp303549u
    22. Lina Zhao, Yuliang Zhao, and Ruhong Zhou . Novel Design of a Nanoflowmeter Based on Carbon Nanotubes. The Journal of Physical Chemistry C 2012, 116 (24) , 13429-13434. https://doi.org/10.1021/jp302895a
    23. Pinn-Tsong Chiang, Johannes Mielke, Jazmin Godoy, Jason M. Guerrero, Lawrence B. Alemany, Carlos J. Villagómez, Alex Saywell, Leonhard Grill, and James M. Tour . Toward a Light-Driven Motorized Nanocar: Synthesis and Initial Imaging of Single Molecules. ACS Nano 2012, 6 (1) , 592-597. https://doi.org/10.1021/nn203969b
    24. Ilya V. Kupchenko, Alexander A. Moskovsky, Alexander V. Nemukhin, and Anatoly B. Kolomeisky . On the Mechanism of Carborane Diffusion on a Hydrated Silica Surface. The Journal of Physical Chemistry C 2011, 115 (1) , 108-111. https://doi.org/10.1021/jp1077592
    25. Alexey Akimov and Anatoly B. Kolomeisky. Dynamics of Single-Molecule Rotations on Surfaces that Depend on Symmetry, Interactions, and Molecular Sizes. The Journal of Physical Chemistry C 2011, 115 (1) , 125-131. https://doi.org/10.1021/jp108062p
    26. Carlos J. Villagómez, Takashi Sasaki, James M. Tour, and Leonhard Grill . Bottom-up Assembly of Molecular Wagons on a Surface. Journal of the American Chemical Society 2010, 132 (47) , 16848-16854. https://doi.org/10.1021/ja105542j
    27. Saumyakanti Khatua, Jazmin Godoy, James M. Tour, and Stephan Link . Influence of the Substrate on the Mobility of Individual Nanocars. The Journal of Physical Chemistry Letters 2010, 1 (22) , 3288-3291. https://doi.org/10.1021/jz101375q
    28. Guillaume Vives, Jason M. Guerrero, Jazmin Godoy, Saumyakanti Khatua, Yu-Pu Wang, J. L. Kiappes, Stephan Link, and James M. Tour. Synthesis of Fluorescent Dye-Tagged Nanomachines for Single-Molecule Fluorescence Spectroscopy. The Journal of Organic Chemistry 2010, 75 (19) , 6631-6643. https://doi.org/10.1021/jo101468u
    29. Sergei S. Konyukhov, Ilya V. Kupchenko, Alexander A. Moskovsky, Alexander V. Nemukhin, Alexey V. Akimov, and Anatoly B. Kolomeisky. Rigid-Body Molecular Dynamics of Fullerene-Based Nanocars on Metallic Surfaces. Journal of Chemical Theory and Computation 2010, 6 (9) , 2581-2590. https://doi.org/10.1021/ct100101y
    30. Jazmin Godoy, Guillaume Vives and James M. Tour. Synthesis of Highly Fluorescent BODIPY-Based Nanocars. Organic Letters 2010, 12 (7) , 1464-1467. https://doi.org/10.1021/ol100108r
    31. Guillaume Vives, JungHo Kang, Kevin F. Kelly and James M. Tour . Molecular Machinery: Synthesis of a “Nanodragster”. Organic Letters 2009, 11 (24) , 5602-5605. https://doi.org/10.1021/ol902312m
    32. Josef Michl and E. Charles H. Sykes . Molecular Rotors and Motors: Recent Advances and Future Challenges. ACS Nano 2009, 3 (5) , 1042-1048. https://doi.org/10.1021/nn900411n
    33. Guillaume Vives and James M. Tour. Synthesis of Single-Molecule Nanocars. Accounts of Chemical Research 2009, 42 (3) , 473-487. https://doi.org/10.1021/ar8002317
    34. Aanjaneya Kumar, Yuval Scher, Shlomi Reuveni, M. S. Santhanam. Inference from gated first-passage times. Physical Review Research 2023, 5 (3) https://doi.org/10.1103/PhysRevResearch.5.L032043
    35. Mehran Vaezi, Hossein Nejat Pishkenari, Mohammad Reza Ejtehadi. Nanocar swarm movement on graphene surfaces. Physical Chemistry Chemical Physics 2022, 24 (45) , 27759-27771. https://doi.org/10.1039/D2CP03856K
    36. Mehran Vaezi, Hossein Nejat Pishkenari, Alireza Nemati. Mechanism of the motion of nanovehicles on hexagonal boron-nitride: A molecular dynamics study. Computational Materials Science 2022, 207 , 111317. https://doi.org/10.1016/j.commatsci.2022.111317
    37. Kriti Pathak, Koushik Saha, Sundargopal Ghosh. Nanovehicles and boron clusters. 2022, 291-319. https://doi.org/10.1016/B978-0-12-822127-3.00007-7
    38. Haonan Li, Wei Wang, Linquan Yao. Analysis of the Vibration Behaviors of Rotating Composite Nano-Annular Plates Based on Nonlocal Theory and Different Plate Theories. Applied Sciences 2022, 12 (1) , 230. https://doi.org/10.3390/app12010230
    39. Alireza Nemati, Hossein Nejat Pishkenari, Ali Meghdari, Shuzhi Sam Ge. Directional control of surface rolling molecules exploiting non-uniform heat-induced substrates. Physical Chemistry Chemical Physics 2020, 22 (46) , 26887-26900. https://doi.org/10.1039/D0CP04960C
    40. Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova. Less-Common Carbon Nanostructures. 2019, 111-302. https://doi.org/10.1007/978-3-030-03505-1_4
    41. Dmitry A. Gruzdev, Alla S. Nuraeva, Pavel A. Slepukhin, Galina L. Levit, Pavel S. Zelenovskiy, Vladimir Ya. Shur, Victor P. Krasnov. Piezoactive amino acid derivatives containing fragments of planar-chiral ortho -carboranes. Journal of Materials Chemistry C 2018, 6 (32) , 8638-8645. https://doi.org/10.1039/C8TC02266F
    42. Farzad Ebrahimi, Navvab Shafiei, Mohammad Kazemi, Seyed Mostafa Mousavi Abdollahi. Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method. Mechanics of Advanced Materials and Structures 2017, 24 (15) , 1257-1273. https://doi.org/10.1080/15376494.2016.1227499
    43. Majid Ghadiri, Navvab Shafiei. Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method. Journal of Vibration and Control 2017, 23 (19) , 3247-3265. https://doi.org/10.1177/1077546315627723
    44. Navvab Shafiei, Majid Ghadiri, Hesam Makvandi, Seyyed Amirhosein Hosseini. Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method. Applied Mathematical Modelling 2017, 43 , 191-206. https://doi.org/10.1016/j.apm.2016.10.061
    45. O. Üzengi Aktürk, E. Aktürk, H. H. Gürel, S. Ciraci. Tunable dynamics of a flake on graphene: Libration frequency. Physical Review B 2017, 95 (12) https://doi.org/10.1103/PhysRevB.95.125413
    46. Y. Zhu, B. Zhiyu, V. Kalavakunda, N.S. Hosmane. Endofullerenes and Carboranes. 2017, 479-487. https://doi.org/10.1016/B978-0-12-409547-2.12524-7
    47. Yasuhiro Shirai, Kosuke Minami, Waka Nakanishi, Yusuke Yonamine, Christian Joachim, Katsuhiko Ariga. Driving nanocars and nanomachines at interfaces: From concept of nanoarchitectonics to actual use in world wide race and hand operation. Japanese Journal of Applied Physics 2016, 55 (11) , 1102A2. https://doi.org/10.7567/JJAP.55.1102A2
    48. Majid Ghadiri, Navvab Shafiei, Amir Akbarshahi. Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam. Applied Physics A 2016, 122 (7) https://doi.org/10.1007/s00339-016-0196-3
    49. Seyed Mohammad Hosseini Lavasani, Hossein Nejat Pishkenari, Ali Meghdari. A closer look at the motion of p-carborane on gold surface. 2016, 1-6. https://doi.org/10.1109/MARSS.2016.7561702
    50. Lena Böhling, Andreas Brockhinke, Jan Kahlert, Lothar Weber, Rachel A. Harder, Dmitry S. Yufit, Judith A. K. Howard, J. A. Hugh MacBride, Mark A. Fox. Substituent Effects on the Fluorescence Properties of ortho ‐Carbor­anes: Unusual Emission Behaviour in C ‐(2′‐Pyridyl)‐ ortho ‐carboranes. European Journal of Inorganic Chemistry 2016, 2016 (3) , 403-412. https://doi.org/10.1002/ejic.201501284
    51. Russell N. Grimes. Carboranes in Other Applications. 2016, 985-1019. https://doi.org/10.1016/B978-0-12-801894-1.00017-2
    52. Jeongheon Choe, Yangjin Lee, Lei Fang, Gun-Do Lee, Zhenan Bao, Kwanpyo Kim. Direct imaging of rotating molecules anchored on graphene. Nanoscale 2016, 8 (27) , 13174-13180. https://doi.org/10.1039/C6NR04251A
    53. Yangjian Quan, Cen Tang, Zuowei Xie. Palladium catalyzed regioselective B–C(sp) coupling via direct cage B–H activation: synthesis of B(4)-alkynylated o-carboranes. Chemical Science 2016, 7 (9) , 5838-5845. https://doi.org/10.1039/C6SC00901H
    54. Irena Bylińska, Małgorzata Wierzbicka, Cezary Czaplewski, Wiesław Wiczk. Photophysical properties of symmetrically substituted diarylacetylenes and diarylbuta-1,3-diynes. Photochemical & Photobiological Sciences 2016, 15 (1) , 45-56. https://doi.org/10.1039/c5pp00197h
    55. Víctor García‐López, Pin‐Lei E. Chu, Pinn‐Tsong Chiang, Jiuzhi Sun, Angel A. Martí, James M. Tour. Synthesis of a Light‐Driven Motorized Nanocar. Asian Journal of Organic Chemistry 2015, 4 (11) , 1308-1314. https://doi.org/10.1002/ajoc.201500325
    56. Russell N. Grimes. Carboranes in the chemist's toolbox. Dalton Transactions 2015, 44 (13) , 5939-5956. https://doi.org/10.1039/C5DT00231A
    57. Jingyuan Li, Xiaofeng Wang, Lina Zhao, Xingfa Gao, Yuliang Zhao, Ruhong Zhou. Rotation Motion of Designed Nano-Turbine. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05846
    58. Lydia Kisley, Wei-Shun Chang, David Cooper, Andrea P Mansur, Christy F Landes. Extending single molecule fluorescence observation time by amplitude-modulated excitation. Methods and Applications in Fluorescence 2013, 1 (3) , 037001. https://doi.org/10.1088/2050-6120/1/3/037001
    59. . “Nanotechnical” Structures and Devices. 2012, 383-429. https://doi.org/10.1201/b11801-13
    60. Mingming Zhang, Kelong Zhu, Feihe Huang. Molecular Devices: Molecular Machinery. 2012https://doi.org/10.1002/9780470661345.smc092
    61. Dennis Lensen, Johannes A. A. W. Elemans. Artificial molecular rotors and motors on surfaces: STM reveals and triggers. Soft Matter 2012, 8 (35) , 9053. https://doi.org/10.1039/c2sm26235e
    62. Russell N. Grimes. Carboranes in other applications. 2011, 1083-1105. https://doi.org/10.1016/B978-0-12-374170-7.00001-X
    63. Ningzhang Zhou, Li Wang, David W. Thompson, Yuming Zhao. OPE/OPV H-mers: synthesis, electronic properties, and spectroscopic responses to binding with transition metal ions. Tetrahedron 2011, 67 (1) , 125-143. https://doi.org/10.1016/j.tet.2010.11.012
    64. Ji Won Ha, Wei Sun, Gufeng Wang, Ning Fang. Differential interference contrast polarization anisotropy for tracking rotational dynamics of gold nanorods. Chemical Communications 2011, 47 (27) , 7743. https://doi.org/10.1039/c1cc11679g
    65. Gregory T. Carroll, Michael M. Pollard, Richard van Delden, Ben L. Feringa. Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chemical Science 2010, 1 (1) , 97. https://doi.org/10.1039/c0sc00162g
    66. Kevin Claytor, Saumyakanti Khatua, Jason M. Guerrero, Alexei Tcherniak, James M. Tour, Stephan Link. Accurately determining single molecule trajectories of molecular motion on surfaces. The Journal of Chemical Physics 2009, 130 (16) https://doi.org/10.1063/1.3118982
    67. Josep M. Oliva, Luis Serrano-Andrés, Douglas J. Klein, Paul von Ragué Schleyer, Josef Michl. Design of Carborane Molecular Architectures via Electronic Structure Computations. International Journal of Photoenergy 2009, 2009 , 1-9. https://doi.org/10.1155/2009/292393

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect