ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Large-Scale Synthesis and Phase Transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 Core/Shell Nanowire Bundles

View Author Information
Center of Super-Diamond and Advanced Films (COSDAF), and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
School of Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
* Address correspondence to [email protected], [email protected]
Cite this: ACS Nano 2010, 4, 4, 1845–1850
Publication Date (Web):March 8, 2010
https://doi.org/10.1021/nn9013627
Copyright © 2010 American Chemical Society

    Article Views

    6409

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Facile chemical approaches for the controllable synthesis of CuSe, CuInSe2 nanowire, and CuInSe2/CuInS2 core/shell nanocable bundles were developed. Hexagonal CuSe nanowire bundles with lengths up to hundreds of micrometers, consisting of many aligned nanowires with a diameter of about 10−15 nm, were prepared by reacting cubic Cu2−xSe nanowire bundles with a sodium citrate solution at room temperature. The CuSe nanowire bundles were then used as self-sacrificial templates for making bundles of tetragonal chalcopyrite CuInSe2 nanowires by reacting with InCl3via a solvothermal process. Furthermore, bundles of CuInSe2/CuInS2 core/shell nanocables were obtained by adding sulfur to the reaction system, and the shell thickness of the polycrystalline CuInS2 in the nanocables increased with increasing S/Se molar ratios. It was found that the small radius of copper ions allows their fast outward diffusion from the interior to the surface of nanowires to react with sulfur atoms/anions and indium ions to form a CuInS2 shell. Enhanced optical absorption in the vis−NIR region of CuInSe2/CuInS2 core/shell nanocable bundles is demonstrated, which is considered beneficial for applications in optoelectronic devices and solar energy conversion.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    SEM images of the Cu2−xSe nanowire bundles, high-resolution TEM image and high-magnification SEM image of CuSe nanowires, high-resolution TEM image and high-magnification SEM image of CuInSe2 nanowires, XRD spectrum and EDX spectrum of Cu2−xSe/In nanowire bundles, SEM and TEM images of CuInSe2/CuInS2 core/shell nanocable bundles with a S/Se molar ratio of 0.31:1, high-resolution TEM images and EDX spectra of CuInSe2/CuInS2 core/shell nanocables with various S/Se molar ratios. XRD spectra of the products prepared with Cu(NO3)2, InCl3, and S in triethylene glycol. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 102 publications.

    1. Ibrahim Garba Shitu, Josephine Ying Chyi Liew, Zainal Abidin Talib, Hussein Baqiah, Mohd Mustafa Awang Kechik, Mazliana Ahmad Kamarudin, Nurul Huda Osman, Yiin Jian Low, Ismail Ibrahim Lakin. Influence of Irradiation Time on the Structural and Optical Characteristics of CuSe Nanoparticles Synthesized via Microwave-Assisted Technique. ACS Omega 2021, 6 (16) , 10698-10708. https://doi.org/10.1021/acsomega.1c00148
    2. Linzhong Wu, Huicheng Hu, Yong Xu, Shu Jiang, Min Chen, Qixuan Zhong, Di Yang, Qipeng Liu, Yun Zhao, Baoquan Sun, Qiao Zhang, and Yadong Yin . From Nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX3 Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism. Nano Letters 2017, 17 (9) , 5799-5804. https://doi.org/10.1021/acs.nanolett.7b02896
    3. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    4. Meng Li Liu, Bin Bin Chen, Rong Sheng Li, Chun Mei Li, Hong Yan Zou, and Cheng Zhi Huang . Dendritic CuSe with Hierarchical Side-Branches: Synthesis, Efficient Adsorption, and Enhanced Photocatalytic Activities under Daylight. ACS Sustainable Chemistry & Engineering 2017, 5 (5) , 4154-4160. https://doi.org/10.1021/acssuschemeng.7b00126
    5. Peter Reiss, Marie Carrière, Christophe Lincheneau, Louis Vaure, and Sudarsan Tamang . Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews 2016, 116 (18) , 10731-10819. https://doi.org/10.1021/acs.chemrev.6b00116
    6. Atanu Jana, Katie N. Lawrence, Meghan B. Teunis, Manik Mandal, Amar Kumbhar, and Rajesh Sardar . Investigating the Control by Quantum Confinement and Surface Ligand Coating of Photocatalytic Efficiency in Chalcopyrite Copper Indium Diselenide Nanocrystals. Chemistry of Materials 2016, 28 (4) , 1107-1120. https://doi.org/10.1021/acs.chemmater.5b04521
    7. Maogang Gong and Shenqiang Ren . Phase Transformation-Driven Surface Reconstruction of FeNi Nanostructures. Chemistry of Materials 2015, 27 (22) , 7795-7800. https://doi.org/10.1021/acs.chemmater.5b03736
    8. Linjia Mu, Fudong Wang, Bryce Sadtler, Richard A. Loomis, and William E. Buhro . Influence of the Nanoscale Kirkendall Effect on the Morphology of Copper Indium Disulfide Nanoplatelets Synthesized by Ion Exchange. ACS Nano 2015, 9 (7) , 7419-7428. https://doi.org/10.1021/acsnano.5b02427
    9. Jingshan Luo, S. David Tilley, Ludmilla Steier, Marcel Schreier, Matthew T. Mayer, Hong Jin Fan, and Michael Grätzel . Solution Transformation of Cu2O into CuInS2 for Solar Water Splitting. Nano Letters 2015, 15 (2) , 1395-1402. https://doi.org/10.1021/nl504746b
    10. Jun Xu, Xia Yang, Qingdan Yang, Wenjun Zhang, and Chun-Sing Lee . Phase Conversion from Hexagonal CuSySe1–y to Cubic Cu2–xSySe1–y: Composition Variation, Morphology Evolution, Optical Tuning, and Solar Cell Applications. ACS Applied Materials & Interfaces 2014, 6 (18) , 16352-16359. https://doi.org/10.1021/am5046247
    11. Yu-Ting Yen, Yi-Chung Wang, Yu-Ze Chen, Hung-Wei Tsai, Fan Hu, Shih-Ming Lin, Yi-Ju Chen, Chih-Chung Lai, Wenlong Liu, Tsang-Hsiu Wang, Hwen-Fen Hong, and Yu-Lun Chueh . Large Scale and Orientation-Controllable Nanotip Structures on CuInS2, Cu(In,Ga)S2, CuInSe2, and Cu(In,Ga)Se2 by Low Energy Ion Beam Bombardment Process: Growth and Characterization. ACS Applied Materials & Interfaces 2014, 6 (11) , 8327-8336. https://doi.org/10.1021/am501161j
    12. Rong-Yue Yao, Zheng-Ji Zhou, Ze-Liang Hou, Xia Wang, Wen-Hui Zhou, and Si-Xin Wu . Surfactant-Free CuInS2 Nanocrystals: An Alternative Counter-Electrode Material for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5 (8) , 3143-3148. https://doi.org/10.1021/am400031w
    13. Fengyu Shen, Wenxiu Que, Yucheng He, Yuan Yuan, Xingtian Yin, and Gangfeng Wang . Enhanced Photocatalytic Activity of ZnO Microspheres via Hybridization with CuInSe2 and CuInS2 Nanocrystals. ACS Applied Materials & Interfaces 2012, 4 (8) , 4087-4092. https://doi.org/10.1021/am3008533
    14. Jian-Jun Wang, Ding-Jiang Xue, Yu-Guo Guo, Jin-Song Hu, and Li-Jun Wan . Bandgap Engineering of Monodispersed Cu2–xSySe1–y Nanocrystals through Chalcogen Ratio and Crystal Structure. Journal of the American Chemical Society 2011, 133 (46) , 18558-18561. https://doi.org/10.1021/ja208043g
    15. Cheng-Lun Hsin, Wei-Fan Lee, Chi-Te Huang, Chun-Wei Huang, Wen-Wei Wu, and Lih-Juann Chen . Growth of CuInSe2 and In2Se3/CuInSe2 Nano-Heterostructures through Solid State Reactions. Nano Letters 2011, 11 (10) , 4348-4351. https://doi.org/10.1021/nl202463w
    16. Yi Liu, Qingfeng Dong, Haotong Wei, Yang Ning, Haizhu Sun, Wenjing Tian, Hao Zhang, and Bai Yang . Synthesis of Cu2–xSe Nanocrystals by Tuning the Reactivity of Se. The Journal of Physical Chemistry C 2011, 115 (20) , 9909-9916. https://doi.org/10.1021/jp2008732
    17. Chet Steinhagen, Vahid A. Akhavan, Brian W. Goodfellow, Matthew G. Panthani, Justin T. Harris, Vincent C. Holmberg, and Brian A. Korgel . Solution−Liquid−Solid Synthesis of CuInSe2 Nanowires and Their Implementation in Photovoltaic Devices. ACS Applied Materials & Interfaces 2011, 3 (5) , 1781-1785. https://doi.org/10.1021/am200334d
    18. A. Ghahremaninezhad, E. Asselin, and D. G. Dixon . Electrodeposition and Growth Mechanism of Copper Sulfide Nanowires. The Journal of Physical Chemistry C 2011, 115 (19) , 9320-9334. https://doi.org/10.1021/jp108283z
    19. Jun Xu, Chun-Yan Luan, Yong-Bing Tang, Xue Chen, Juan Antnio Zapien, Wen-Jun Zhang, Hoi-Lun Kwong, Xiang-Min Meng, Shuit-Tong Lee, and Chun-Sing Lee . Low-Temperature Synthesis of CuInSe2 Nanotube Array on Conducting Glass Substrates for Solar Cell Application. ACS Nano 2010, 4 (10) , 6064-6070. https://doi.org/10.1021/nn101467p
    20. Jian-Jun Wang, Yong-Qing Wang, Fei-Fei Cao, Yu-Guo Guo and Li-Jun Wan. Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application in High-Performance Organic−Inorganic Hybrid Photodetectors. Journal of the American Chemical Society 2010, 132 (35) , 12218-12221. https://doi.org/10.1021/ja1057955
    21. Chih-Chung Wu, Ching-Yeh Shiau, Delele Worku Ayele, Wei-Nien Su, Ming-Yao Cheng, Chiu-Yen Chiu and Bing-Joe Hwang . Rapid Microwave-Enhanced Solvothermal Process for Synthesis of CuInSe2 Particles and Its Morphologic Manipulation. Chemistry of Materials 2010, 22 (14) , 4185-4190. https://doi.org/10.1021/cm1006263
    22. Ipsita Som, Sourav Biswas, Santanu Dey, Rajnarayan Saha. A Mesoporous CuO/CuSe Heterojunction Nanocomposite with Applications in Visible‐Light Photocatalysis and as an Electrochemical Phenol Sensor. ChemistrySelect 2023, 8 (28) https://doi.org/10.1002/slct.202301253
    23. Baisong Chang, Daifeng Li, Ying Ren, Chunrong Qu, Xiaojing Shi, Ruiqi Liu, Hongguang Liu, Jie Tian, Zhenhua Hu, Taolei Sun, Zhen Cheng. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nature Biomedical Engineering 2022, 6 (5) , 629-639. https://doi.org/10.1038/s41551-021-00773-2
    24. Guifeng Chen, Qinghua Du, Hui Zhang, Ruotong Niu, Wenhao Yuan, Xinjian Xie, Tianyu Guo, Guodong Liu. Cu-related defects and optical properties in copper–indium–selenide quantum dots by a green synthesis. Journal of Applied Physics 2022, 131 (14) https://doi.org/10.1063/5.0085492
    25. Baisong Chang, Hao Zhu, Yifan Wu, Shaolong Wu, Liqin Zhang, Chunrong Qu, Ying Ren, Zhen Cheng. Aggregation‐Induced Phosphorescent Imaging in the Second Near‐Infrared Window. Advanced Optical Materials 2021, 9 (24) https://doi.org/10.1002/adom.202101382
    26. Ru Zhou, Jun Xu, Paifeng Luo, Linhua Hu, Xu Pan, Jinzhang Xu, Yang Jiang, Lianzhou Wang. Near‐Infrared Photoactive Semiconductor Quantum Dots for Solar Cells. Advanced Energy Materials 2021, 11 (40) https://doi.org/10.1002/aenm.202101923
    27. Chandradip D. Jadhav, Sachin R. Rondiya, Reshma C. Hambire, Devashri R. Baviskar, Avinash V. Deore, Russell W. Cross, Nelson Y. Dzade, Padmakar G. Chavan. Highly efficient field emission properties of vertically aligned 2D CuSe nanosheets: An experimental and theoretical investigation. Journal of Alloys and Compounds 2021, 875 , 159987. https://doi.org/10.1016/j.jallcom.2021.159987
    28. Yinsen Cheng, Jun Zhang, Xiaoshan Xiong, Chao Chen, Jinghui Zeng, Zhe Kong, Hongbo Wang, Junhua Xi, Yong-Jun Yuan, Zhenguo Ji. High photocatalytic and photoelectrochemical performances of the CuSe/MoSe2 2D/2D face-to-face heterojunction photocatalyst. Journal of Alloys and Compounds 2021, 870 , 159540. https://doi.org/10.1016/j.jallcom.2021.159540
    29. S. Altaf, A. Haider, S. Naz, A. Ul-Hamid, J. Haider, M. Imran, A. Shahzadi, M. Naz, H. Ajaz, M. Ikram. Comparative Study of Selenides and Tellurides of Transition Metals (Nb and Ta) with Respect to its Catalytic, Antimicrobial, and Molecular Docking Performance. Nanoscale Research Letters 2020, 15 (1) https://doi.org/10.1186/s11671-020-03375-0
    30. Xuhong Jiang, Mengmeng Sun, Zhuoyuan Chen, Jiangping Jing, Chang Feng. High-efficiency photoelectrochemical cathodic protection performance of the TiO2/AgInSe2/In2Se3 multijunction nanosheet array. Corrosion Science 2020, 176 , 108901. https://doi.org/10.1016/j.corsci.2020.108901
    31. Liang Ma, Da-Jie Yang, Xiang-Ping Song, Hai-Xia Li, Si-Jing Ding, Lun Xiong, Ping-Li Qin, Xiang-Bai Chen. Pt Decorated (Au Nanosphere)/(CuSe Ultrathin Nanoplate) Tangential Hybrids for Efficient Photocatalytic Hydrogen Generation via Dual‐Plasmon‐Induced Strong VIS–NIR Light Absorption and Interfacial Electric Field Coupling. Solar RRL 2020, 4 (1) https://doi.org/10.1002/solr.201900376
    32. Josephine Ying Chyi Liew, Zainal Abidin Talib, Zulkarnain Zainal, Mazliana Ahmad Kamarudin, Nurul Huda Osman, Han Kee Lee. Structural and transport mechanism studies of copper selenide nanoparticles. Semiconductor Science and Technology 2019, 34 (12) , 125017. https://doi.org/10.1088/1361-6641/ab5436
    33. Chao Wang, David Barba, Haiguang Zhao, Xin Tong, Zhiming Wang, Federico Rosei. Epitaxial growth and defect repair of heterostructured CuInSe x S 2−x /CdSeS/CdS quantum dots. Nanoscale 2019, 11 (41) , 19529-19535. https://doi.org/10.1039/C9NR06110J
    34. Xiaoyun Chen, Dong-Hau Kuo, Zong-Yan Wu, Jubin Zhang, Yuanbo Guo, Huizhi Sun, Jinguo Lin. Multi-component (Cu,Mn)(Se,S) nanosheet catalysts for redox reactions in the dark. Separation and Purification Technology 2019, 211 , 71-80. https://doi.org/10.1016/j.seppur.2018.09.066
    35. Xinqi Chen, Wei Dai, Feng Qin, Kaibing Xu, Hui Xu, Tian Wu, Jie Li, Wei Luo, Jianping Yang. Low‐Dimensional Copper Selenide Nanostructures: Controllable Morphology and its Dependence on Electrocatalytic Performance. ChemElectroChem 2019, 6 (2) , 574-580. https://doi.org/10.1002/celc.201801130
    36. Yin Lu, Yanjie Wang, Shizhong Cui, Weihua Chen, Liwei Mi. In situ sulfuration synthesis of flexible PAN-CuS “flowering branch” heterostructures as recyclable catalysts for dye degradation. RSC Advances 2018, 8 (71) , 40589-40594. https://doi.org/10.1039/C8RA08293F
    37. Sanjaysinh M. Chauhan, Sunil H. Chaki, M.P. Deshpande, Jiten P. Tailor, Ankurkumar J. Khimani, Amitsinh V. Mangrola. Synthesis, characterization and antimicrobial study of wet chemical synthesized CuInSe 2 nanoparticles. Nano-Structures & Nano-Objects 2018, 16 , 200-208. https://doi.org/10.1016/j.nanoso.2018.07.002
    38. Xin Hou, Pei Xie, Shaolin Xue, Hange Feng, Lingwei Li, Zhiyuan Liu, Rujia Zou. The study of morphology-controlled synthesis and the optical properties of CuSe nanoplates based on the hydrothermal method. Materials Science in Semiconductor Processing 2018, 79 , 92-98. https://doi.org/10.1016/j.mssp.2018.01.023
    39. Xinqi Chen, Jianping Yang, Tian Wu, Li Li, Wei Luo, Wan Jiang, Lianjun Wang. Nanostructured binary copper chalcogenides: synthesis strategies and common applications. Nanoscale 2018, 10 (32) , 15130-15163. https://doi.org/10.1039/C8NR05558K
    40. Ming Li, Renjie Zhao, Yanjie Su, Jing Hu, Zhi Yang, Yafei Zhang. Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental 2017, 203 , 715-724. https://doi.org/10.1016/j.apcatb.2016.10.051
    41. Yu-Song Cheng, Na-Fu Wang, Yu-Zen Tsai, Jia-Jun Lin, Mau-Phon Houng. Investigation of CuInSe2 nanowire arrays with core–shell structure electrodeposited at various duty cycles into anodic alumina templates. Applied Surface Science 2017, 396 , 631-636. https://doi.org/10.1016/j.apsusc.2016.10.207
    42. Yu-Song Cheng, Na-Fu Wang, Yu-Zen Tsai, Jia-Jun Lin, Mau-Phon Houng. Characteristics of Quantum Dots and Single-Phase p-CuInSe 2 Nanowire Arrays Electrodeposited as Schottky Diodes with a Silver Contact. ECS Journal of Solid State Science and Technology 2017, 6 (12) , N221-N226. https://doi.org/10.1149/2.0211712jss
    43. Yawei Yang, Wenxiu Que, Xinyu Zhang, Yonglei Xing, Xingtian Yin, Yaping Du. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation. Journal of Hazardous Materials 2016, 317 , 430-439. https://doi.org/10.1016/j.jhazmat.2016.05.080
    44. Yuting Mao, Hongyan Zou, Qiang Wang, Chengzhi Huang. Large-scale preparation of fernwort-like single-crystalline superstructures of CuSe as Fenton-like catalysts for dye decolorization. Science China Chemistry 2016, 59 (7) , 903-909. https://doi.org/10.1007/s11426-016-5600-5
    45. H. Limborco, P. M. P. Salome, D. Stroppa, R-Ribeiro Andrade, J. P. Teixeira, N. Nicoara, K. Abderrafi, J. P. Leitao, J. C. Gonzalez, S. Sadewasser. Growth of CuInSe<inf>2</inf> nanowires without external catalyst by molecular beam epitaxy. 2016, 2803-2806. https://doi.org/10.1109/PVSC.2016.7750163
    46. Xin Qi Chen, Yang Bai, Zhen Li, Lian Zhou Wang, Shi Xue Dou. Ambient Synthesis of One‐/Two‐Dimensional CuAgSe Ternary Nanotubes as Counter Electrodes of Quantum‐Dot‐Sensitized Solar Cells. ChemPlusChem 2016, 81 (4) , 414-420. https://doi.org/10.1002/cplu.201500466
    47. Ward van der Stam, Anne C. Berends, Celso de Mello Donega. Prospects of Colloidal Copper Chalcogenide Nanocrystals. ChemPhysChem 2016, 17 (5) , 559-581. https://doi.org/10.1002/cphc.201500976
    48. Xiaosheng Tang, Zhiqiang Zu, Lifeng Bian, Jihe Du, Weiwei Chen, Xiaofeng Zeng, Mengqing Wen, Zhigang Zang, Junmin Xue. Synthesis of Mn doping Ag–In–Zn–S nanoparticles and their photoluminescence properties. Materials & Design 2016, 91 , 256-261. https://doi.org/10.1016/j.matdes.2015.11.080
    49. Ji Yong Choi, Seon Joo Lee, Won Seok Seo, Hyunjoon Song. Air-stable CuInSe 2 nanoparticles formed through partial cation exchange in methanol at room temperature. CrystEngComm 2016, 18 (32) , 6069-6075. https://doi.org/10.1039/C6CE00950F
    50. H. Limborço, P. M. P. Salomé, J. P. Teixeira, D. G. Stroppa, R.-Ribeiro Andrade, N. Nicoara, K. Abderrafi, J. P. Leitão, J. C. Gonzalez, S. Sadewasser. Synthesis and formation mechanism of CuInSe 2 nanowires by one-step self-catalysed evaporation growth. CrystEngComm 2016, 18 (37) , 7147-7153. https://doi.org/10.1039/C6CE01317A
    51. Stuart R. Thomas, Chia-Wei Chen, Manisha Date, Yi-Chung Wang, Hung-Wei Tsai, Zhiming M. Wang, Yu-Lun Chueh. Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Advances 2016, 6 (65) , 60643-60656. https://doi.org/10.1039/C6RA05502H
    52. Yutie Bi, Chunhong Mu, Yuanqiang Song. Morphology and properties evolution of kesterite Cu2ZnSnS4 microfibers synthesized via electrospinning method. Journal of Porous Materials 2015, 22 (6) , 1503-1509. https://doi.org/10.1007/s10934-015-0032-8
    53. Yuan Yang, Kai Wang, Hai-Wei Liang, Guo-Qiang Liu, Mei Feng, Liang Xu, Jian-Wei Liu, Jin-Long Wang, Shu-Hong Yu. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation. Science Advances 2015, 1 (10) https://doi.org/10.1126/sciadv.1500714
    54. Chunhong Mu, Yuanqiang Song, Xiaoning Wang, Peng Wu. Kesterite Cu2ZnSnS4 compounds via electrospinning: A facile route to mesoporous fibers and dense films. Journal of Alloys and Compounds 2015, 645 , 429-435. https://doi.org/10.1016/j.jallcom.2015.05.042
    55. Xiaofeng Wu, Yaohan Huang, Qiqi Bai, Qingfei Fan, Guangli Li, Ximei Fan, Chaoliang Zhang, Hong Liu. Investigation of CuInS2 thin films deposited on FTO by one-pot solvothermal synthesis. Materials Science in Semiconductor Processing 2015, 37 , 250-258. https://doi.org/10.1016/j.mssp.2015.03.054
    56. Muhammad Aftab Akram, Sofia Javed, Jun Xu, Mohammad Mujahid, Chun-Sing Lee. Arrays of ZnO/CuInxGa1−xSe2 nanocables with tunable shell composition for efficient photovoltaics. Journal of Applied Physics 2015, 117 (20) https://doi.org/10.1063/1.4921825
    57. Yuanqiang Song, Aifang Liu, Chunhong Mu, Weirong Huo, Weiqiang Lv, Weidong He. A facile and scalable route to nano-crystallized kesterite Cu2ZnSnS4 fibers via electrospinning/sulfurization. Materials Research Bulletin 2015, 61 , 504-510. https://doi.org/10.1016/j.materresbull.2014.10.069
    58. Rajendra S. Dhayal, Jian-Hong Liao, Hsing-Nan Hou, Ria Ervilita, Ping-Kuei Liao, C. W. Liu. Copper( i ) diselenocarbamate clusters: synthesis, structures and single-source precursors for Cu and Se composite materials. Dalton Transactions 2015, 44 (12) , 5898-5908. https://doi.org/10.1039/C4DT03810J
    59. Chunhong Mu, Yuanqiang Song, Aifang Liu, Xiaoning Wang, Jiarui Hu, Hong Ji, Hongping Zhang. Electrospun Cu 2 ZnSnS 4 microfibers with strong (112) preferred orientation: fabrication and characterization. RSC Advances 2015, 5 (20) , 15749-15755. https://doi.org/10.1039/C4RA14708A
    60. Yu Zhao, Hui Li, Yan-Yan Zhu, Lei-Lei Guan, Yan-Li Li, Jian Sun, Zhi-Feng Ying, Jia-Da Wu, Ning Xu. Pulsed laser deposition of single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 core/shell nanowires. Nanoscale Research Letters 2014, 9 (1) https://doi.org/10.1186/1556-276X-9-650
    61. Suresh Sarkar, Amit K. Guria, Biplab K. Patra, Narayan Pradhan. Chemical Sealing of Nanotubes: A Case Study on Sb 2 S 3. Angewandte Chemie 2014, 126 (46) , 12774-12778. https://doi.org/10.1002/ange.201405148
    62. Suresh Sarkar, Amit K. Guria, Biplab K. Patra, Narayan Pradhan. Chemical Sealing of Nanotubes: A Case Study on Sb 2 S 3. Angewandte Chemie International Edition 2014, 53 (46) , 12566-12570. https://doi.org/10.1002/anie.201405148
    63. Mohammad Sabet, Masoud Salavati-Niasari, Davood Ghanbari, Omid Amiri, Noshin Mir, Mahnaz Dadkhah. Synthesis and characterization of CuInSe2 nanocrystals via facile microwave approach and study of their behavior in solar cell. Materials Science in Semiconductor Processing 2014, 25 , 98-105. https://doi.org/10.1016/j.mssp.2013.09.017
    64. Yu‐Chen Lin, Wang‐Lin Liu, Hsiao‐Chun Chu, Tsair‐Rong Chen, Shih‐Chieh Hsu, Ching‐Hsiang Chen. Solvothermal Preparation and Effects of Mixed Solvent on the Properties of Copper Indium Diselenide Nanoalloys. Journal of the Chinese Chemical Society 2014, 61 (2) , 274-278. https://doi.org/10.1002/jccs.201300495
    65. Rujia Zou, Zhenyu Zhang, Qian Liu, Kaibing Xu, Guanjie He, Junqing Hu. A facile approach for the synthesis of Cu2−x Se nanowires and their field emission properties. Journal of Materials Science 2014, 49 (2) , 532-537. https://doi.org/10.1007/s10853-013-7731-9
    66. Shu-Hao Chang, Bo-Cheng Chiu, Tzu-Lun Gao, Shao-Lou Jheng, Hsing-Yu Tuan. Selective synthesis of copper gallium sulfide (CuGaS 2 ) nanostructures of different sizes, crystal phases, and morphologies. CrystEngComm 2014, 16 (16) , 3323-3330. https://doi.org/10.1039/C3CE42530D
    67. Feng-Jia Fan, Liang Wu, Shu-Hong Yu. Energetic I–III–VI 2 and I 2 –II–IV–VI 4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 2014, 7 (1) , 190-208. https://doi.org/10.1039/C3EE41437J
    68. Thanh-Dinh Nguyen, Thai-Hoa Tran. Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools. RSC Adv. 2014, 4 (2) , 916-942. https://doi.org/10.1039/C3RA44056G
    69. Haiyu Fang, Yue Wu. Telluride nanowire and nanowire heterostructure-based thermoelectric energy harvesting. J. Mater. Chem. A 2014, 2 (17) , 6004-6014. https://doi.org/10.1039/C3TA14129B
    70. Zhenhua Chen, Wenqin Peng, Kun Zhang, Jing Zhang, Xudong Yang, Youhei Numata, Liyuan Han. Band alignment by ternary crystalline potential-tuning interlayer for efficient electron injection in quantum dot-sensitized solar cells. J. Mater. Chem. A 2014, 2 (19) , 7004-7014. https://doi.org/10.1039/C3TA15435A
    71. Yanjie Gu, Yanjie Su, Da Chen, Huijuan Geng, Zhongli Li, Luyin Zhang, Yafei Zhang. Hydrothermal synthesis of hexagonal CuSe nanoflakes with excellent sunlight-driven photocatalytic activity. CrystEngComm 2014, 16 (39) , 9185-9190. https://doi.org/10.1039/C4CE01470G
    72. Ki-Joong Kim, Richard P. Oleksak, Changqing Pan, Michael W. Knapp, Peter B. Kreider, Gregory S. Herman, Chih-Hung Chang. Continuous synthesis of colloidal chalcopyrite copper indium diselenide nanocrystal inks. RSC Adv. 2014, 4 (32) , 16418-16424. https://doi.org/10.1039/C4RA01582G
    73. Ara Cho, SeJin Ahn, Jae Ho Yun, Jihye Gwak, Seung Kyu Ahn, Keeshik Shin, Jinsu Yoo, Hyunjoon Song, Kyunghoon Yoon. The growth of Cu2−Se thin films using nanoparticles. Thin Solid Films 2013, 546 , 299-307. https://doi.org/10.1016/j.tsf.2013.02.037
    74. Qiang Li, Chao Zou, Lanlan Zhai, Jialin Shen, Lijie Zhang, Hongfei Yu, Yun Yang, Xi’an Chen, Shaoming Huang. Growth of wurtzite CuGaS2 nanoribbons and their photoelectrical properties. Journal of Alloys and Compounds 2013, 567 , 127-133. https://doi.org/10.1016/j.jallcom.2013.03.023
    75. Yong Xiang, Xiaokun Zhang, Shu Zhang. Insight into the mechanism of Sb promoted Cu(In,Ga)Se2 formation. Journal of Solid State Chemistry 2013, 204 , 278-282. https://doi.org/10.1016/j.jssc.2013.06.012
    76. Xin Liu, Xianliang Wang, Bin Zhou, Wing‐Cheung Law, Alexander N. Cartwright, Mark T. Swihart. Size‐Controlled Synthesis of Cu 2‐ x E (E = S, Se) Nanocrystals with Strong Tunable Near‐Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films. Advanced Functional Materials 2013, 23 (10) , 1256-1264. https://doi.org/10.1002/adfm.201202061
    77. Shuai He, Guang‐Sheng Wang, Chang Lu, Xin Luo, Bo Wen, Lin Guo, Mao‐Sheng Cao. Controllable Fabrication of CuS Hierarchical Nanostructures and Their Optical, Photocatalytic, and Wave Absorption Properties. ChemPlusChem 2013, 78 (3) , 250-258. https://doi.org/10.1002/cplu.201200287
    78. Yaw-Shyan Fu, Pei-Ying Lin. Mechanism of CuInSe2 nanorod formation: Cu2−xSe phase conversion induced by indium intercalated route. CrystEngComm 2013, 15 (7) , 1454. https://doi.org/10.1039/c2ce26831k
    79. Qiang Li, Chao Zou, Lanlan Zhai, Lijie Zhang, Yun Yang, Xi'an Chen, Shaoming Huang. Synthesis of wurtzite CuInS2 nanowires by Ag2S-catalyzed growth. CrystEngComm 2013, 15 (9) , 1806. https://doi.org/10.1039/c2ce26944a
    80. Qiang Li, Lanlan Zhai, Chao Zou, Xusheng Huang, Lijie Zhang, Yun Yang, Xi'an Chen, Shaoming Huang. Wurtzite CuInS2 and CuInxGa1−xS2 nanoribbons: synthesis, optical and photoelectrical properties. Nanoscale 2013, 5 (4) , 1638. https://doi.org/10.1039/c2nr33173j
    81. Dmitry Aldakov, Aurélie Lefrançois, Peter Reiss. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. Journal of Materials Chemistry C 2013, 1 (24) , 3756. https://doi.org/10.1039/c3tc30273c
    82. Yue Li, Shenglian Luo, Lixia Yang, Chengbin Liu, Yao Chen, DeShui Meng. Photo-assisted synthesis of rosalike CuSe hierarchical nanostructures on TiO2 nanotubes with remarkable photocatalytic performance. Electrochimica Acta 2012, 83 , 394-401. https://doi.org/10.1016/j.electacta.2012.08.013
    83. Jinbao Zhu, Qiuyang Li, Liangfei Bai, Yongfu Sun, Min Zhou, Yi Xie. Metastable Tetragonal Cu 2 Se Hyperbranched Structures: Large‐Scale Preparation and Tunable Electrical and Optical Response Regulated by Phase Conversion. Chemistry – A European Journal 2012, 18 (41) , 13213-13221. https://doi.org/10.1002/chem.201200899
    84. Emanuela Filippo, Daniela Manno, Antonio Serra. Synthesis and growth mechanism of dendritic Cu2−xSe microstructures. Journal of Alloys and Compounds 2012, 538 , 8-10. https://doi.org/10.1016/j.jallcom.2012.05.111
    85. Ji-Yeong Lee, Sk.Faruque Ahmed, Min-Ho Park, Seung-kyu Ha, Jong-Ku Park, Jae Ho Yun, Se Jin Ahn, Kwang-Ryeol Lee, Won Jun Choi, Myoung-Woon Moon, Cheol-Woong Yang. Self-assembled Cu(In,Ga)Se2 nanocrystals formed by Ar ion beam irradiation. Solar Energy Materials and Solar Cells 2012, 105 , 119-124. https://doi.org/10.1016/j.solmat.2012.05.034
    86. Yu Zou, Dongsheng Li, Deren Yang. Colloidal synthesis of monodisperse quaternary CuInSSe nanocrystals. Materials Chemistry and Physics 2012, 132 (2-3) , 865-869. https://doi.org/10.1016/j.matchemphys.2011.12.026
    87. Wentuan Bi, Min Zhou, Zhengyu Ma, Hanyang Zhang, Jiabing Yu, Yi Xie. CuInSe2 ultrathin nanoplatelets: novel self-sacrificial template-directed synthesis and application for flexible photodetectors. Chemical Communications 2012, 48 (73) , 9162. https://doi.org/10.1039/c2cc34727j
    88. Guanjun Xiao, Jiajia Ning, Zhaoyang Liu, Yongming Sui, Yingnan Wang, Qingfeng Dong, Wenjing Tian, Bingbing Liu, Guangtian Zou, Bo Zou. Solution synthesis of copper selenide nanocrystals and their electrical transport properties. CrystEngComm 2012, 14 (6) , 2139. https://doi.org/10.1039/c2ce06270d
    89. Phong D. Tran, Lydia H. Wong, James Barber, Joachim S. C. Loo. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science 2012, 5 (3) , 5902. https://doi.org/10.1039/c2ee02849b
    90. Meina Wang, Xiangyou Liu, Chuanbao Cao, Cui Shi. Synthesis of band-gap tunable Cu–In–S ternary nanocrystals in aqueous solution. RSC Advances 2012, 2 (7) , 2666. https://doi.org/10.1039/c2ra00034b
    91. Yuho Min, Geon Dae Moon, Jaeyoon Park, Minwoo Park, Unyong Jeong. Surfactant-free CuInSe 2 nanocrystals transformed from In 2 Se 3 nanoparticles and their application for a flexible UV photodetector. Nanotechnology 2011, 22 (46) , 465604. https://doi.org/10.1088/0957-4484/22/46/465604
    92. Jinrong Xiao, Ling Xu, Lei Geng, Liang Tong, Fei Yang, Jun Xu, Weining Su, Dong Liu, Yao Yu, Zhongyuan Ma, Kunji Chen. Fabrication of highly ordered CuInSe2 films with hollow nanocones for anti-reflection. Applied Surface Science 2011, 257 (24) , 10893-10897. https://doi.org/10.1016/j.apsusc.2011.07.134
    93. John O. Thompson, Michael D. Anderson, Tim Ngai, Thomas Allen, David C. Johnson. Nucleation and growth kinetics of co-deposited copper and selenium precursors to form metastable copper selenides. Journal of Alloys and Compounds 2011, 509 (40) , 9631-9637. https://doi.org/10.1016/j.jallcom.2011.07.042
    94. Z Q Li, J H Shi, Q Q Liu, Y W Chen, Z Sun, Z Yang, S M Huang. Large-scale growth of Cu 2 ZnSnSe 4 and Cu 2 ZnSnSe 4 /Cu 2 ZnSnS 4 core/shell nanowires. Nanotechnology 2011, 22 (26) , 265615. https://doi.org/10.1088/0957-4484/22/26/265615
    95. Huanhuan Kou, Xin Zhang, Yimin Jiang, Jiajia Li, Shengjiao Yu, Zhixiang Zheng, Chunming Wang. Electrochemical atomic layer deposition of a CuInSe2 thin film on flexible multi-walled carbon nanotubes/polyimide nanocomposite membrane: Structural and photoelectrical characterizations. Electrochimica Acta 2011, 56 (16) , 5575-5581. https://doi.org/10.1016/j.electacta.2011.03.128
    96. Wenwen Zhou, Zongyou Yin, Dao Hao Sim, Hua Zhang, Jan Ma, Huey Hoon Hng, Qingyu Yan. Growth of dandelion-shaped CuInSe 2 nanostructures by a two-step solvothermal process. Nanotechnology 2011, 22 (19) , 195607. https://doi.org/10.1088/0957-4484/22/19/195607
    97. Ju-Yeon Chang, Jae-Eok Han, Duk-Young Jung. Solvothermal Synthesis of Copper Indium Diselenide in Toluene. Bulletin of the Korean Chemical Society 2011, 32 (2) , 434-438. https://doi.org/10.5012/bkcs.2011.32.2.434
    98. Fei-Fei Cao, Yu-Guo Guo, Li-Jun Wan. Better lithium-ion batteries with nanocable-like electrode materials. Energy & Environmental Science 2011, 4 (5) , 1634. https://doi.org/10.1039/c0ee00583e
    99. Jia-Yaw Chang, Meng-Hsun Tsai, Keng-Liang Ou, Cheng-Hsien Yang, Jain-Cin Fan. Synthesis of CuInSe2 ternary nanostructures: a combined oriented attachment and ligand protection strategy. CrystEngComm 2011, 13 (12) , 4236. https://doi.org/10.1039/c1ce05046j
    100. Tao Zhou, Maojun Zheng, Li Ma, Zenghua He, Ming Li, Changli Li, Wenzhong Shen. Size control of CuInSe2 nanotube arrays via nanochannel-confined galvanic displacement. Journal of Materials Chemistry 2011, 21 (43) , 17091. https://doi.org/10.1039/c1jm13651h
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect