ACS Publications. Most Trusted. Most Cited. Most Read
Discobahamins A and B, New Peptides from the Bahamian Deep Water Marine Sponge Discodermia sp.
My Activity
    Communication

    Discobahamins A and B, New Peptides from the Bahamian Deep Water Marine Sponge Discodermia sp.
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of Natural Products

    Cite this: J. Nat. Prod. 1994, 57, 1, 79–83
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np50103a011
    Published January 1, 1994

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 48 publications.

    1. Ivan V. Smolyar, Andrei K. Yudin, Valentine G. Nenajdenko. Heteroaryl Rings in Peptide Macrocycles. Chemical Reviews 2019, 119 (17) , 10032-10240. https://doi.org/10.1021/acs.chemrev.8b00789
    2. Michal Issac, Maurice Aknin, Anne Gauvin-Bialecki, Nicole De Voogd, Alisson Ledoux, Michel Frederich, Yoel Kashman, and Shmuel Carmeli . Cyclotheonellazoles A–C, Potent Protease Inhibitors from the Marine Sponge Theonella aff. swinhoei. Journal of Natural Products 2017, 80 (4) , 1110-1116. https://doi.org/10.1021/acs.jnatprod.7b00028
    3. Matthew T. Jamison and Tadeusz F. Molinski . Jamaicensamide A, a Peptide Containing β-Amino-α-keto and Thiazole-Homologated η-Amino Acid Residues from the Sponge Plakina jamaicensis. Journal of Natural Products 2016, 79 (9) , 2243-2249. https://doi.org/10.1021/acs.jnatprod.6b00336
    4. Dongyup Hahn, Hiyoung Kim, Inho Yang, Jungwook Chin, Hoosang Hwang, Dong Hwan Won, Byoungchan Lee, Sang-Jip Nam, Merrick Ekins, Hyukjae Choi, and Heonjoong Kang . The Halicylindramides, Farnesoid X Receptor Antagonizing Depsipeptides from a Petrosia sp. Marine Sponge Collected in Korea. Journal of Natural Products 2016, 79 (3) , 499-506. https://doi.org/10.1021/acs.jnatprod.5b00871
    5. Hui Peng, Chunli Chen, Jenna Cantin, David M. V. Saunders, Jianxian Sun, Song Tang, Garry Codling, Markus Hecker, Steve Wiseman, Paul D. Jones, An Li, Karl J. Rockne, Neil C. Sturchio, and John. P. Giesy . Untargeted Screening and Distribution of Organo-Bromine Compounds in Sediments of Lake Michigan. Environmental Science & Technology 2016, 50 (1) , 321-330. https://doi.org/10.1021/acs.est.5b04709
    6. Miki Kimura, Toshiyuki Wakimoto, Yoko Egami, Karen Co Tan, Yuji Ise, and Ikuro Abe . Calyxamides A and B, Cytotoxic Cyclic Peptides from the Marine Sponge Discodermia calyx. Journal of Natural Products 2012, 75 (2) , 290-294. https://doi.org/10.1021/np2009187
    7. Harry H. Wasserman and, Anders K. Petersen. Synthesis of the Cyclic Peptidic Protease Inhibitor Eurystatin A Using Acyl Cyano Phosphorane Methodology. The Journal of Organic Chemistry 1997, 62 (26) , 8972-8973. https://doi.org/10.1021/jo9718253
    8. Baochao Yang, Qian Wang, Jieping Zhu. Total Synthesis of Discobahamin A and Putative Structure of Discobahamin B via an Isocyanide‐based Macrocyclization Reaction. Angewandte Chemie International Edition 2025, 64 (10) https://doi.org/10.1002/anie.202419383
    9. Baochao Yang, Qian Wang, Jieping Zhu. Total Synthesis of Discobahamin A and Putative Structure of Discobahamin B via an Isocyanide‐based Macrocyclization Reaction. Angewandte Chemie 2025, 137 (10) https://doi.org/10.1002/ange.202419383
    10. Skyler L. Owens, Shopno R. Ahmed, Rebecca M. Lang Harman, Laura E. Stewart, Shogo Mori. Natural Products That Contain Higher Homologated Amino Acids. ChemBioChem 2024, 25 (9) https://doi.org/10.1002/cbic.202300822
    11. Arumugam Ganeshkumar, Juliana Caparroz Gonçale, Rajendran Rajaram, Juliana Campos Junqueira. Anti-Candidal Marine Natural Products: A Review. Journal of Fungi 2023, 9 (8) , 800. https://doi.org/10.3390/jof9080800
    12. M.S. Aishwarya, R.S. Rachanamol, A.R. Sarika, J. Selvin, A.P. Lipton. Antimicrobial peptides from marine environment. 2023, 197-217. https://doi.org/10.1016/B978-0-323-85682-9.00008-8
    13. Aifa Fathima, Yaser Arafath, Saqib Hassan, Pallaval Veera Bramhachari, George Seghal Kiran, Joseph Selvin. Novel Insights into Environmental Niche Adaptations and Secondary Metabolite Biosynthesis Potential of Marine Sponge Microbiome. 2022, 113-137. https://doi.org/10.1007/978-981-19-3696-8_8
    14. Jinyun Chen, Sunyan Lv, Jia Liu, Yanlei Yu, Hong Wang, Huawei Zhang. An Overview of Bioactive 1,3-Oxazole-Containing Alkaloids from Marine Organisms. Pharmaceuticals 2021, 14 (12) , 1274. https://doi.org/10.3390/ph14121274
    15. Kiran Mustafa, Javaria Kanwal, Sara Musaddiq, Samia Khakwani. Bioactive Peptides and Their Natural Sources. 2020, 75-97. https://doi.org/10.1007/978-3-030-42319-3_5
    16. Eunji Kim, Yern-Hyerk Shin, Tae Ho Kim, Woong Sub Byun, Jinsheng Cui, Young Eun Du, Hyung-Ju Lim, Myoung Chong Song, An Sung Kwon, Sang Hyeon Kang, Jongheon Shin, Sang Kook Lee, Jichan Jang, Dong-Chan Oh, Yeo Joon Yoon. Characterization of the Ohmyungsamycin Biosynthetic Pathway and Generation of Derivatives with Improved Antituberculosis Activity. Biomolecules 2019, 9 (11) , 672. https://doi.org/10.3390/biom9110672
    17. Musarat Amina, Nawal M. Al Musayeib. Biological and Medicinal Importance of Sponge. 2018https://doi.org/10.5772/intechopen.73529
    18. Vedanjali Gogineni, Mark T. Hamann. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (1) , 81-196. https://doi.org/10.1016/j.bbagen.2017.08.014
    19. Tadeusz F. Molinski. Cyclic azole-homologated peptides from Marine sponges. Organic & Biomolecular Chemistry 2018, 16 (1) , 21-29. https://doi.org/10.1039/C7OB02628E
    20. Yeji Lee, Chanvorleak Phat, Soon-Cheol Hong. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017, 95 , 94-105. https://doi.org/10.1016/j.peptides.2017.06.002
    21. Haribalaganesh Ravinarayanan, Bibhash K. Paul, Angshu Chakraborty, Krishnan Sundar. Homology modeling of target proteins and identification novel antifungal compounds against Candida tropicalis through structure based virtual screening. 2015, 4419-4422. https://doi.org/10.1109/EMBC.2015.7319375
    22. Toshiyuki Wakimoto, Karen Co Tan, Hiroki Tajima, Ikuro Abe. Cytotoxic Cyclic Peptides from the Marine Sponges. 2015, 113-144. https://doi.org/10.1007/978-3-319-07145-9_6
    23. Jean‐Michel Kornprobst. Porifera (Sponges)–2. 2014, 703-792. https://doi.org/10.1002/9783527335855.marprod192
    24. Jean‐Michel Kornprobst. Porifera (Sponges)–5. 2014, 951-1086. https://doi.org/10.1002/9783527335855.marprod195
    25. Ruvini Liyanage, Barana C. Jayawardana, Suranga P. Kodithuwakku. Potential Novel Therapeutics: Some Biological Aspects of Marine‐derived Bioactive Peptides. 2013, 323-349. https://doi.org/10.1002/9781118375082.ch15
    26. Sherif S. Ebada, Peter Proksch. The Chemistry of Marine Sponges∗. 2012, 191-293. https://doi.org/10.1007/978-90-481-3834-0_4
    27. S. Ravichandran, S. Wahidullah, L. D’souza, R. M. Anbuchezhian. Antimicrobial activity of marine sponge Clathria indica (Dendy, 1889). Russian Journal of Bioorganic Chemistry 2011, 37 (4) , 428-435. https://doi.org/10.1134/S106816201104011X
    28. Sabesan Yoganathan, John C. Vederas. Nonprotein l-Amino Acids. 2010, 5-70. https://doi.org/10.1016/B978-008045382-8.00111-8
    29. M. Cassler, C. L. Peterson, A. Ledger, S. A. Pomponi, A. E. Wright, R. Winegar, P. J. McCarthy, J. V. Lopez. Use of Real-Time qPCR to Quantify Members of the Unculturable Heterotrophic Bacterial Community in a Deep Sea Marine Sponge, Vetulina sp. Microbial Ecology 2008, 55 (3) , 384-394. https://doi.org/10.1007/s00248-007-9283-5
    30. Danielle Skropeta. Deep-sea natural products. Natural Product Reports 2008, 25 (6) , 1131. https://doi.org/10.1039/b808743a
    31. Jee H. Jung, Pramod B. Shinde, Jongki Hong, Yonghong Liu, Chung Ja Sim. Secondary metabolites from a marine sponge Discodermia calyx. Biochemical Systematics and Ecology 2007, 35 (1) , 48-51. https://doi.org/10.1016/j.bse.2006.08.008
    32. Waseem Gul, Mark T. Hamann. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sciences 2005, 78 (5) , 442-453. https://doi.org/10.1016/j.lfs.2005.09.007
    33. Hye Joung Choi, Yung Hyun Choi, Su-Bog Yee, Eunok Im, Jee Hyung Jung, Nam Deuk Kim. Ircinin-1 induces cell cycle arrest and apoptosis in SK-MEL-2 human melanoma cells. Molecular Carcinogenesis 2005, 44 (3) , 162-173. https://doi.org/10.1002/mc.20084
    34. Harry H Wasserman, Anders K Petersen, Mingde Xia. Application of acyl cyanophosphorane methodology to the synthesis of protease inhibitors: poststatin, eurystatin, phebestin, probestin and bestatin. Tetrahedron 2003, 59 (35) , 6771-6784. https://doi.org/10.1016/S0040-4020(03)00860-3
    35. Francesco Pietra. The widespread distribution of natural products. 2002, 61-78. https://doi.org/10.1016/S1460-1567(02)80017-4
    36. Francesco Pietra. Terrestrial vs marine natural product diversity. 2002, 79-96. https://doi.org/10.1016/S1460-1567(02)80018-6
    37. . References. 2002, 305-345. https://doi.org/10.1016/S1460-1567(02)80027-7
    38. M. Valeria D'Auria, Angela Zampella, Franco Zollo. The chemistry of lithistid sponge: A spectacular source of new metabolites. 2002, 1175-1258. https://doi.org/10.1016/S1572-5995(02)80027-8
    39. S. Sardari, S. Nishibe, M. Daneshtalab. Coumarins, the bioactive structures with antifungal property. 2000, 335-393. https://doi.org/10.1016/S1572-5995(00)80133-7
    40. Amira Rudi, Maurice Aknin, Emile M. Gaydou, Yoel Kashman. Four new cytotoxic cyclic hexa- and heptapeptides from the marine ascidian Didemnum molle. Tetrahedron 1998, 54 (43) , 13203-13210. https://doi.org/10.1016/S0040-4020(98)00801-1
    41. Carole A. Bewley, D. John Faulkner. Steinschwämme: Stars unter den Naturstoffproduzenten oder Wirte der Stars?. Angewandte Chemie 1998, 110 (16) , 2280-2297. https://doi.org/10.1002/(SICI)1521-3757(19980817)110:16<2280::AID-ANGE2280>3.0.CO;2-A
    42. Liat Chill, Yoel Kashman, Michael Schleyer. Oriamide, a new cytotoxic cyclic peptide containing a novel amino acid from the marine sponge Theonella sp. Tetrahedron 1997, 53 (47) , 16147-16152. https://doi.org/10.1016/S0040-4020(97)10054-0
    43. Jean-Luc Morel, Hervé Drobecq, Pierre Sautiere, André Tartar, Jean Mironneau, Janti Qar, Jean-Louis Lavie, Michel Hugues. Purification of a New Dimeric Protein from Cliona vastifica Sponge, which Specifically Blocks a Non-L-Type Calcium Channel in Mouse Duodenal Myocytes. Molecular Pharmacology 1997, 51 (6) , 1042-1052. https://doi.org/10.1124/mol.51.6.1042
    44. Harry H Wasserman, Anders K Petersen. A convergent synthesis of poststatin: Application of the acyl cyanophosphorane coupling procedure in the formation of a peptidic α-keto amide. Tetrahedron Letters 1997, 38 (6) , 953-956. https://doi.org/10.1016/S0040-4039(96)02488-4
    45. J. Buckingham. D. 1997, 86-143. https://doi.org/10.1007/978-1-4899-6850-0_4
    46. Gordon W. Gribble. Pyrroles and their Benzo Derivatives: Applications. 1996, 207-257. https://doi.org/10.1016/B978-008096518-5.00043-5
    47. . Volume 2 References. 1996, 969-1102. https://doi.org/10.1016/B978-008096518-5.00248-3
    48. . Bioactive Marine Peptides. , 278-328. https://doi.org/10.1007/1-4020-3484-9_10

    Journal of Natural Products

    Cite this: J. Nat. Prod. 1994, 57, 1, 79–83
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np50103a011
    Published January 1, 1994

    Article Views

    355

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.