ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A Novel Example of Chiral Counteranion Induced Enantioselective Metal Catalysis:  The Importance of Ion-Pairing in Copper-Catalyzed Olefin Aziridination and Cyclopropanation

View Author Information
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
Cite this: Org. Lett. 2000, 2, 26, 4165–4168
Publication Date (Web):December 2, 2000
https://doi.org/10.1021/ol000303y
Copyright © 2000 American Chemical Society

    Article Views

    4229

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A new ion-pairing route to achieve asymmetric catalysis has been observed in the copper-catalyzed aziridination of styrene with a chiral counteranion. Structural studies suggest that enantioinduction occurs via ion-pairing of the cationic copper catalyst in the chiral pocket created by the anion. The degree of asymmetric induction can be tuned with features that affect ion-pairing, such as achiral and chiral ligands, temperature, and solvent polarity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Synthesis and spectroscopic and X-ray structural data on complexes Cu+ (R)-3- and 8. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 167 publications.

    1. Xiao-Bao Wu, Quan Gao, Jun-Jie Fan, Zhen-Yu Zhao, Xue-Qin Tu, Hai-Qun Cao, Jie Yu. Anionic Chiral Co(III) Complexes Mediated Asymmetric Halocyclization─Synthesis of 5-Halomethyl Pyrazolines and Isoxazolines. Organic Letters 2021, 23 (23) , 9134-9139. https://doi.org/10.1021/acs.orglett.1c03456
    2. Connor Q. Kabes, Reagan F. Lucas, Jack H. Gunn, John A. Gladysz. Chiral Cobalt(III) Tris(1,2-diamine) Catalysts That Incorporate Nitrogenous Base Containing Anions for the Bifunctional Activation of Nucleophiles and Electrophiles in Enantioselective Addition Reactions. ACS Catalysis 2021, 11 (13) , 7762-7771. https://doi.org/10.1021/acscatal.1c01883
    3. Marta Martı́nez-Alonso, Pedro Sanz, Paula Ortega, Gustavo Espino, Félix A. Jalón, Mairena Martín, Ana M. Rodrı́guez, José A. López, Cristina Tejel, Blanca R. Manzano. Analysis of Ion Pairing in Solid State and Solution in p-Cymene Ruthenium Complexes. Inorganic Chemistry 2020, 59 (19) , 14171-14183. https://doi.org/10.1021/acs.inorgchem.0c01951
    4. Connor Q. Kabes, William J. Maximuck, Subrata K. Ghosh, Anil Kumar, Nattamai Bhuvanesh, John A. Gladysz. Chiral Tricationic Tris(1,2-diphenylethylenediamine) Cobalt(III) Hydrogen Bond Donor Catalysts with Defined Carbon/Metal Configurations; Matched/Mismatched Effects upon Enantioselectivities with Enantiomeric Chiral Counter Anions. ACS Catalysis 2020, 10 (5) , 3249-3263. https://doi.org/10.1021/acscatal.9b05496
    5. Zhenhao Zhang, Vitalii Smal, Pascal Retailleau, Arnaud Voituriez, Gilles Frison, Angela Marinetti, Xavier Guinchard. Tethered Counterion-Directed Catalysis: Merging the Chiral Ion-Pairing and Bifunctional Ligand Strategies in Enantioselective Gold(I) Catalysis. Journal of the American Chemical Society 2020, 142 (8) , 3797-3805. https://doi.org/10.1021/jacs.9b11154
    6. Kun Liu, Hua-Jie Jiang, Na Li, Hui Li, Jing Wang, Zheng-Zhu Zhang, Jie Yu. Enantioselective Bromocyclization of Tryptamines Induced by Chiral Co(III)-Complex-Templated Brønsted Acids under an Air Atmosphere. The Journal of Organic Chemistry 2018, 83 (12) , 6815-6823. https://doi.org/10.1021/acs.joc.8b01196
    7. Gang Hu, Anil K. Gupta, Li Huang, Wenjun Zhao, Xiaopeng Yin, Wynter E. G. Osminski, Rui H. Huang, William D. Wulff, Joseph A. Izzo, and Mathew J. Vetticatt . Pyro-Borates, Spiro-Borates, and Boroxinates of BINOL—Assembly, Structures, and Reactivity. Journal of the American Chemical Society 2017, 139 (30) , 10267-10285. https://doi.org/10.1021/jacs.7b02317
    8. Ismael I. Loera Fernandez, Samantha L. Donaldson, Desmond E. Schipper, Sohaila Andleeb, and Kenton H. Whitmire . Anionic Bismuth-Oxido Carboxylate Clusters with Transition Metal Countercations. Inorganic Chemistry 2016, 55 (21) , 11560-11569. https://doi.org/10.1021/acs.inorgchem.6b02092
    9. Jiawei Chen, Didier A. Murillo Parra, Roger A. Lalancette, and Frieder Jäkle . Redox-Switchable Chiral Anions and Cations Based on Heteroatom-Fused Biferrocenes. Organometallics 2015, 34 (17) , 4323-4330. https://doi.org/10.1021/acs.organomet.5b00577
    10. Chao Wang, Lili Zong, and Choon-Hong Tan . Enantioselective Oxidation of Alkenes with Potassium Permanganate Catalyzed by Chiral Dicationic Bisguanidinium. Journal of the American Chemical Society 2015, 137 (33) , 10677-10682. https://doi.org/10.1021/jacs.5b05792
    11. Mylène Augé, Alexandra Feraldi-Xypolia, Marion Barbazanges, Corinne Aubert, Louis Fensterbank, Vincent Gandon, Emilie Kolodziej, and Cyril Ollivier . Double-Stereodifferentiation in Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition: Chiral Ligand/Chiral Counterion Matched Pair. Organic Letters 2015, 17 (15) , 3754-3757. https://doi.org/10.1021/acs.orglett.5b01738
    12. Yohsuke Kobiki, Shin-ichi Kawaguchi, and Akiya Ogawa . Palladium-Catalyzed Synthesis of α-Diimines from Triarylbismuthines and Isocyanides. Organic Letters 2015, 17 (14) , 3490-3493. https://doi.org/10.1021/acs.orglett.5b01566
    13. Hui Qian, Wanxiang Zhao, Zhaobin Wang, and Jianwei Sun . Organocatalytic Enantio- and Diastereoselective Synthesis of 1,2-Dihydronaphthalenes from Isobenzopyrylium Ions. Journal of the American Chemical Society 2015, 137 (2) , 560-563. https://doi.org/10.1021/ja509824j
    14. Garima Jindal and Raghavan B. Sunoj . Mechanistic Insights on Cooperative Asymmetric Multicatalysis Using Chiral Counterions. The Journal of Organic Chemistry 2014, 79 (16) , 7600-7606. https://doi.org/10.1021/jo501322v
    15. William M. Ward, Byron H. Farnum, Maxime Siegler, and Gerald J. Meyer . Chloride Ion-Pairing with Ru(II) Polypyridyl Compounds in Dichloromethane. The Journal of Physical Chemistry A 2013, 117 (36) , 8883-8894. https://doi.org/10.1021/jp404838z
    16. Konstantin Troshin and Herbert Mayr . Ion Pair Dynamics: Solvolyses of Chiral 1,3-Diarylallyl Carboxylates as a Case Study. Journal of the American Chemical Society 2013, 135 (1) , 252-265. https://doi.org/10.1021/ja308670g
    17. Nisha Mittal, Diana X. Sun, and Daniel Seidel . Kinetic Resolution of Amines via Dual Catalysis: Remarkable Dependence of Selectivity on the Achiral Cocatalyst. Organic Letters 2012, 14 (12) , 3084-3087. https://doi.org/10.1021/ol301155b
    18. Bao N. Nguyen, Luis A. Adrio, Elena M. Barreiro, John B. Brazier, Peter Haycock, King Kuok (Mimi) Hii, Maarten Nachtegaal, Mark A. Newton, and Jakub Szlachetko . Deconvolution of the Mechanism of Homogeneous Gold-Catalyzed Reactions. Organometallics 2012, 31 (6) , 2395-2402. https://doi.org/10.1021/om300030e
    19. Chandra Kanta De and Daniel Seidel . Catalytic Enantioselective Desymmetrization of meso-Diamines: A Dual Small-Molecule Catalysis Approach. Journal of the American Chemical Society 2011, 133 (37) , 14538-14541. https://doi.org/10.1021/ja2060462
    20. Eric G. Klauber, Nisha Mittal, Tejas K. Shah, and Daniel Seidel . A Dual-Catalysis/Anion-Binding Approach to the Kinetic Resolution of Allylic Amines. Organic Letters 2011, 13 (9) , 2464-2467. https://doi.org/10.1021/ol200712b
    21. Yvonne Loewer, Christine Weiss, Akkattu T. Biju, Roland Fröhlich, and Frank Glorius . Synthesis and Application of a Chiral Diborate. The Journal of Organic Chemistry 2011, 76 (7) , 2324-2327. https://doi.org/10.1021/jo102559s
    22. Eric G. Klauber, Chandra Kanta De, Tejas K. Shah, and Daniel Seidel. Merging Nucleophilic and Hydrogen Bonding Catalysis: An Anion Binding Approach to the Kinetic Resolution of Propargylic Amines. Journal of the American Chemical Society 2010, 132 (39) , 13624-13626. https://doi.org/10.1021/ja105337h
    23. Chandra Kanta De, Eric G. Klauber and Daniel Seidel. Merging Nucleophilic and Hydrogen Bonding Catalysis: An Anion Binding Approach to the Kinetic Resolution of Amines. Journal of the American Chemical Society 2009, 131 (47) , 17060-17061. https://doi.org/10.1021/ja9079435
    24. Yingdong Lu, Tim C. Johnstone and Bruce A. Arndtsen. Hydrogen-Bonding Asymmetric Metal Catalysis with α-Amino Acids: A Simple and Tunable Approach to High Enantioinduction. Journal of the American Chemical Society 2009, 131 (32) , 11284-11285. https://doi.org/10.1021/ja904185b
    25. Gregory L. Hamilton, Toshio Kanai and F. Dean Toste. Chiral Anion-Mediated Asymmetric Ring Opening of meso-Aziridinium and Episulfonium Ions. Journal of the American Chemical Society 2008, 130 (45) , 14984-14986. https://doi.org/10.1021/ja806431d
    26. David J. Gorin, Benjamin D. Sherry and F. Dean Toste. Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews 2008, 108 (8) , 3351-3378. https://doi.org/10.1021/cr068430g
    27. Tao Tu, Thierry Maris and James D. Wuest. Crystal Structures of Spiroborates Derived from [1,1′-Binaphthalene]-2,2′-diol (BINOL). Crystal Growth & Design 2008, 8 (5) , 1541-1546. https://doi.org/10.1021/cg7008013
    28. Emilie Voisin, Thierry Maris and James D. Wuest. Crystal Structures of Spiroborates Derived from 2,2′-Dihydroxybiphenyl. Crystal Growth & Design 2008, 8 (1) , 308-318. https://doi.org/10.1021/cg700803k
    29. Xufeng Lin,, Chi-Ming Che, and, David Lee Phillips. Reaction Mechanism and Stereoselectivity of Ruthenium−Porphyrin-Catalyzed Intramolecular Amidation of Sulfamate Ester:  A DFT Computational Study. The Journal of Organic Chemistry 2008, 73 (2) , 529-537. https://doi.org/10.1021/jo702011z
    30. Héctor Martínez-García, Dolores Morales, Julio Pérez, Daniel J. Coady, Christopher W. Bielawski, Dustin E. Gross, Luciano Cuesta, Manuel Marquez and Jonathan L. Sessler. Calix[4]pyrrole as a Promoter of the CuCl-Catalyzed Reaction of Styrene and Chloramine-T. Organometallics 2007, 26 (26) , 6511-6514. https://doi.org/10.1021/om700958c
    31. Michael J. Zdilla and, Mahdi M. Abu-Omar. Mechanism of Catalytic Aziridination with Manganese Corrole:  The Often Postulated High-Valent Mn(V) Imido Is Not the Group Transfer Reagent. Journal of the American Chemical Society 2006, 128 (51) , 16971-16979. https://doi.org/10.1021/ja0665489
    32. Giovanni Desimoni,, Giuseppe Faita, and, Karl Anker Jørgensen. C2-Symmetric Chiral Bis(Oxazoline) Ligands in Asymmetric Catalysis. Chemical Reviews 2006, 106 (9) , 3561-3651. https://doi.org/10.1021/cr0505324
    33. Sarana Ka-Yan Leung,, Wai-Man Tsui,, Jie-Sheng Huang,, Chi-Ming Che,, Jiang-Lin Liang, and, Nianyong Zhu. Imido Transfer from Bis(imido)ruthenium(VI) Porphyrins to Hydrocarbons:  Effect of Imido Substituents, C−H Bond Dissociation Energies, and RuVI/V Reduction Potentials. Journal of the American Chemical Society 2005, 127 (47) , 16629-16640. https://doi.org/10.1021/ja0542789
    34. Leah N. Appelhans,, Daniele Zuccaccia,, Anes Kovacevic,, Anthony R. Chianese,, John R. Miecznikowski,, Alceo Macchioni,, Eric Clot,, Odile Eisenstein, and, Robert H. Crabtree. An Anion-Dependent Switch in Selectivity Results from a Change of C−H Activation Mechanism in the Reaction of an Imidazolium Salt with IrH5(PPh3)2. Journal of the American Chemical Society 2005, 127 (46) , 16299-16311. https://doi.org/10.1021/ja055317j
    35. Alceo Macchioni. Ion Pairing in Transition-Metal Organometallic Chemistry. Chemical Reviews 2005, 105 (6) , 2039-2074. https://doi.org/10.1021/cr0300439
    36. LaTasha D. Amisial,, Xuliang Dai,, R. Adam Kinney,, Ammani Krishnaswamy, and, Timothy H. Warren. Cu(I) β-Diketiminates for Alkene Aziridination:  Reversible CuArene Binding and Catalytic Nitrene Transfer from PhINTs. Inorganic Chemistry 2004, 43 (21) , 6537-6539. https://doi.org/10.1021/ic048968+
    37. Rebecca R. Conry,, A. Alex Tipton,, William S. Striejewske,, Edurne Erkizia,, Mark A. Malwitz,, Angela Caffaratti, and, Jonathan A. Natkin. Copper Complexes with N-Alkylated NS2-Macrocyclic Ligands:  Synthesis, Characterization, and Capabilities as Aziridination Precatalysts. Organometallics 2004, 23 (22) , 5210-5218. https://doi.org/10.1021/om040098g
    38. David B. Llewellyn and, Bruce A. Arndtsen. Design, Synthesis, and Characterization of a New Class of Amino Acid-Based Chiral Borate Counteranions. Organometallics 2004, 23 (12) , 2838-2840. https://doi.org/10.1021/om040017g
    39. Chong Han,, Ruichao Shen,, Shun Su, and, John A. Porco, Jr.. Copper-Mediated Synthesis of N-Acyl Vinylogous Carbamic Acids and Derivatives:  Synthesis of the Antibiotic CJ-15,801. Organic Letters 2004, 6 (1) , 27-30. https://doi.org/10.1021/ol0360041
    40. Paul Müller and, Corinne Fruit. Enantioselective Catalytic Aziridinations and Asymmetric Nitrene Insertions into CH Bonds. Chemical Reviews 2003, 103 (8) , 2905-2920. https://doi.org/10.1021/cr020043t
    41. Viktor V. Zhdankin, , Peter J. Stang. Recent Developments in the Chemistry of Polyvalent Iodine Compounds. Chemical Reviews 2002, 102 (7) , 2523-2584. https://doi.org/10.1021/cr010003+
    42. Michela Gasperini,, Fabio Ragaini, and, Sergio Cenini. Synthesis of Ar-BIAN Ligands (Ar-BIAN = Bis(aryl)acenaphthenequinonediimine) Having Strong Electron-Withdrawing Substituents on the Aryl Rings and Their Relative Coordination Strength toward Palladium(0) and -(II) Complexes. Organometallics 2002, 21 (14) , 2950-2957. https://doi.org/10.1021/om020147u
    43. José M. Fraile,, José I. García,, Víctor Martínez-Merino,, José A. Mayoral, and, Luis Salvatella. Theoretical (DFT) Insights into the Mechanism of Copper-Catalyzed Cyclopropanation Reactions. Implications for Enantioselective Catalysis. Journal of the American Chemical Society 2001, 123 (31) , 7616-7625. https://doi.org/10.1021/ja003695c
    44. Anthony Labelle, Bruce A. Arndtsen. Chiral BINOL-based borate counterions: from cautionary tale on anion stability to enantioselective Cu-catalyzed cyclopropanation. Chemical Communications 2023, 59 (6) , 728-731. https://doi.org/10.1039/D2CC05924J
    45. Jan Otevrel, Mario Waser. Asymmetric Phase‐Transfer Catalysis – From Classical Applications to New Concepts. 2023, 71-120. https://doi.org/10.1002/9783527832217.ch3
    46. Mikhail V. Moskalev, Danila A. Razborov, Alexandra A. Skatova, Andrey A. Bazanov, Igor L. Fedushkin. Alkali Metal Reduction of 1,2‐Bis[(2,6‐dibenzhydryl‐4‐methylphenyl)imino]acenaphthene (Ar BIG ‐bian) to Radical‐Anion. European Journal of Inorganic Chemistry 2021, 2021 (5) , 458-463. https://doi.org/10.1002/ejic.202000909
    47. Thierry Achard, Léo Egger, Cecilia Tortoreto, Laure Guénée, Jérôme Lacour. Preparation and Structural Characterization of [CpRu(1,10‐phenanthroline)(CH 3 CN)][X] and Precursor Complexes (X=PF 6 , BAr F , TRISPHAT‐N). Helvetica Chimica Acta 2020, 103 (12) https://doi.org/10.1002/hlca.202000190
    48. Xue Zhang, Kun Zhao, Na Li, Jie Yu, Liu‐Zhu Gong, Zhenhua Gu. Atroposelective Ring Opening of Cyclic Diaryliodonium Salts with Bulky Anilines Controlled by a Chiral Cobalt(III) Anion. Angewandte Chemie 2020, 132 (45) , 20071-20076. https://doi.org/10.1002/ange.202008431
    49. Xue Zhang, Kun Zhao, Na Li, Jie Yu, Liu‐Zhu Gong, Zhenhua Gu. Atroposelective Ring Opening of Cyclic Diaryliodonium Salts with Bulky Anilines Controlled by a Chiral Cobalt(III) Anion. Angewandte Chemie International Edition 2020, 59 (45) , 19899-19904. https://doi.org/10.1002/anie.202008431
    50. E. A. Chebanenko, I. I. Seifullina, E. E. Martsinko, V. V. D’yakonenko, S. V. Shishkina. Directed Structure Formation in Tetranuclear Xylaratogermanates(IV) with Complex Phenanthrolinecopper(II) Cations. Russian Journal of Inorganic Chemistry 2020, 65 (11) , 1703-1711. https://doi.org/10.1134/S0036023620110029
    51. Daisuke Uraguchi, Fumito Ueoka, Naoya Tanaka, Tomohito Kizu, Wakana Takahashi, Takashi Ooi. A Structurally Robust Chiral Borate Ion: Molecular Design, Synthesis, and Asymmetric Catalysis. Angewandte Chemie 2020, 132 (28) , 11553-11558. https://doi.org/10.1002/ange.202001637
    52. Daisuke Uraguchi, Fumito Ueoka, Naoya Tanaka, Tomohito Kizu, Wakana Takahashi, Takashi Ooi. A Structurally Robust Chiral Borate Ion: Molecular Design, Synthesis, and Asymmetric Catalysis. Angewandte Chemie International Edition 2020, 59 (28) , 11456-11461. https://doi.org/10.1002/anie.202001637
    53. Emna Azek, Cédric Spitz, Matthias Ernzerhof, Hélène Lebel. A Mechanistic Study of the Stereochemical Outcomes of Rhodium‐Catalysed Styrene Aziridinations. Advanced Synthesis & Catalysis 2020, 362 (2) , 384-397. https://doi.org/10.1002/adsc.201901184
    54. Anindita Mukherjee, Nirnita C. Ghosal, Grigory V. Zyryanov, Adinath Majee, Sougata Santra. An Updated Library on the Synthesis of Aziridines. Current Green Chemistry 2019, 6 (3) , 226-241. https://doi.org/10.2174/2213346106666191024123452
    55. Nikolai F. Romashev, Artem L. Gushchin, Iakov S. Fomenko, Pavel A. Abramov, Irina V. Mirzaeva, Nikolay B. Kompan'kov, Danila B. Kal'nyi, Maxim N. Sokolov. A new organometallic rhodium(I) complex with dpp-bian ligand: Synthesis, structure and redox behaviour. Polyhedron 2019, 173 , 114110. https://doi.org/10.1016/j.poly.2019.114110
    56. Kayhaneh Berijani, Ali Morsali, Joseph T. Hupp. An effective strategy for creating asymmetric MOFs for chirality induction: a chiral Zr-based MOF for enantioselective epoxidation. Catalysis Science & Technology 2019, 9 (13) , 3388-3397. https://doi.org/10.1039/C9CY00565J
    57. Shu-yun Xu, Xue-meng Chen, Li-cheng Huang, Feng Li, Wei Gao. Vanadium chlorides supported by BIAN (BIAN = bis(arylimo)-acenaphthene) ligands: Synthesis, characterization, and catalysis on ethylene polymerization. Polyhedron 2019, 164 , 146-151. https://doi.org/10.1016/j.poly.2019.01.041
    58. Jing Zhang, Chunhui Shan, Tao Zhang, Jinshuai Song, Tao Liu, Yu Lan. Computational advances aiding mechanistic understanding of silver-catalyzed carbene/nitrene/silylene transfer reactions. Coordination Chemistry Reviews 2019, 382 , 69-84. https://doi.org/10.1016/j.ccr.2018.12.009
    59. Guichun Fang, Xihe Bi. Silver Complexes in Organic Transformations. 2019, 661-722. https://doi.org/10.1002/9783527342822.ch11
    60. Gergely L. Tolnai, Zsombor Gonda, Zoltán Novák. Transition Metal‐Catalyzed Reactions with Iodine( III ) Reagents. 2018, 1-67. https://doi.org/10.1002/9780470682531.pat0961
    61. Yong Guan, Jonathan W. Attard, Michael D. Visco, Thomas J. Fisher, Anita E. Mattson. Enantioselective Catalyst Systems from Copper(II) Triflate and BINOL–Silanediol. Chemistry – A European Journal 2018, 24 (28) , 7123-7127. https://doi.org/10.1002/chem.201801304
    62. Iakov S. Fomenko, Artem L. Gushchin, Lidia S. Shul’pina, Nikolay S. Ikonnikov, Pavel A. Abramov, Nikolay F. Romashev, Artem S. Poryvaev, Alena M. Sheveleva, Artem S. Bogomyakov, Nikita Y. Shmelev, Matvey V. Fedin, Georgiy B. Shul’pin, Maxim N. Sokolov. New oxidovanadium( iv ) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity. New Journal of Chemistry 2018, 42 (19) , 16200-16210. https://doi.org/10.1039/C8NJ03358G
    63. Li Fu, Kefeng Xie, Huaiwei Zhang, Yuhong Zheng, Weitao Su, Zhong Liu. Multi-Walled Carbon Nanotube-Assisted Electrodeposition of Silver Dendrite Coating as a Catalytic Film. Coatings 2017, 7 (12) , 232. https://doi.org/10.3390/coatings7120232
    64. Hua‐Jie Jiang, Kun Liu, Jie Yu, Ling Zhang, Liu‐Zhu Gong. Switchable Stereoselectivity in Bromoaminocyclization of Olefins: Using Brønsted Acids of Anionic Chiral Cobalt(III) Complexes. Angewandte Chemie 2017, 129 (39) , 12093-12097. https://doi.org/10.1002/ange.201705066
    65. Hua‐Jie Jiang, Kun Liu, Jie Yu, Ling Zhang, Liu‐Zhu Gong. Switchable Stereoselectivity in Bromoaminocyclization of Olefins: Using Brønsted Acids of Anionic Chiral Cobalt(III) Complexes. Angewandte Chemie International Edition 2017, 56 (39) , 11931-11935. https://doi.org/10.1002/anie.201705066
    66. Matteo Villa, Dominique Miesel, Alexander Hildebrandt, Fabio Ragaini, Dieter Schaarschmidt, Axel Jacobi von Wangelin. Synthesis and Catalysis of Redox‐Active Bis(imino)acenaphthene (BIAN) Iron Complexes. ChemCatChem 2017, 9 (16) , 3203-3209. https://doi.org/10.1002/cctc.201700144
    67. Minsoo Ju, Cale D. Weatherly, Ilia A. Guzei, Jennifer M. Schomaker. Chemo‐ and Enantioselective Intramolecular Silver‐Catalyzed Aziridinations. Angewandte Chemie 2017, 129 (33) , 10076-10080. https://doi.org/10.1002/ange.201704786
    68. Minsoo Ju, Cale D. Weatherly, Ilia A. Guzei, Jennifer M. Schomaker. Chemo‐ and Enantioselective Intramolecular Silver‐Catalyzed Aziridinations. Angewandte Chemie International Edition 2017, 56 (33) , 9944-9948. https://doi.org/10.1002/anie.201704786
    69. Mitsuhiro Ueda, Yoshitaka Yagyu, Ilhyong Ryu. Ammonium chiral borate salt catalyzed asymmetric Friedel-Crafts alkylation of indoles with α,β-disubstituted enals. Tetrahedron: Asymmetry 2017, 28 (8) , 1070-1077. https://doi.org/10.1016/j.tetasy.2017.06.003
    70. Phillip Pommerening, Jens Mohr, Jonas Friebel, Martin Oestreich. Synthesis of a Chiral Borate Counteranion, Its Trityl Salt, and Application Thereof in Lewis‐Acid Catalysis. European Journal of Organic Chemistry 2017, 2017 (16) , 2312-2316. https://doi.org/10.1002/ejoc.201700239
    71. Hua-Jie Jiang, Kun Liu, Jing Wang, Na Li, Jie Yu. Brønsted acids of anionic chiral Co( iii ) complexes as catalysts for the stereoselective synthesis of cis-4-aminofuranobenzopyrans. Organic & Biomolecular Chemistry 2017, 15 (43) , 9077-9080. https://doi.org/10.1039/C7OB02452E
    72. Aniruddha P. Patwardhan, William D. Wulff, Xiaopeng Yin. 2,2′-Diphenyl-[3,3′-biphenanthrene]-4,4′-diol (VAPOL) and 3,3′-Diphenyl-[2,2′-binaphthrene]-1,1′-diol (VANOL). 2016, 1-13. https://doi.org/10.1002/047084289X.rn00117.pub2
    73. Marion Barbazanges, Elsa Caytan, Denis Lesage, Corinne Aubert, Louis Fensterbank, Vincent Gandon, Cyril Ollivier. Chiral Phosphate in Rhodium‐Catalyzed Asymmetric [2+2+2] Cycloaddition: Ligand, Counterion, or Both?. Chemistry – A European Journal 2016, 22 (25) , 8553-8558. https://doi.org/10.1002/chem.201601188
    74. Shengjun Ni, Veluru Ramesh Naidu, Johan Franzén. Chiral Anion Directed Asymmetric Carbocation‐Catalyzed Diels–Alder Reactions. European Journal of Organic Chemistry 2016, 2016 (9) , 1708-1713. https://doi.org/10.1002/ejoc.201501621
    75. Xin-Qi Hao, Ya-Nan Dong, Biao Gao, Ke Li, Xue-Mei Zhao, Yan Xu, Mao-Ping Song. Biimidazoline ligands for palladium-catalyzed asymmetric allylic alkylation. Tetrahedron: Asymmetry 2015, 26 (23) , 1360-1368. https://doi.org/10.1016/j.tetasy.2015.10.007
    76. Jie Yu, Hua‐Jie Jiang, Ya Zhou, Shi‐Wei Luo, Liu‐Zhu Gong. Sodium Salts of Anionic Chiral Cobalt(III) Complexes as Catalysts of the Enantioselective Povarov Reaction. Angewandte Chemie 2015, 127 (38) , 11361-11365. https://doi.org/10.1002/ange.201504790
    77. Jie Yu, Hua‐Jie Jiang, Ya Zhou, Shi‐Wei Luo, Liu‐Zhu Gong. Sodium Salts of Anionic Chiral Cobalt(III) Complexes as Catalysts of the Enantioselective Povarov Reaction. Angewandte Chemie International Edition 2015, 54 (38) , 11209-11213. https://doi.org/10.1002/anie.201504790
    78. Tuo Jiang, Teresa Bartholomeyzik, Javier Mazuela, Jochen Willersinn, Jan‐E. Bäckvall. Palladium(II)/Brønsted Acid‐Catalyzed Enantioselective Oxidative Carbocyclization–Borylation of Enallenes. Angewandte Chemie 2015, 127 (20) , 6122-6125. https://doi.org/10.1002/ange.201501048
    79. Tuo Jiang, Teresa Bartholomeyzik, Javier Mazuela, Jochen Willersinn, Jan‐E. Bäckvall. Palladium(II)/Brønsted Acid‐Catalyzed Enantioselective Oxidative Carbocyclization–Borylation of Enallenes. Angewandte Chemie International Edition 2015, 54 (20) , 6024-6027. https://doi.org/10.1002/anie.201501048
    80. Qi Li, Tingting Xia, Licheng Yao, Haiteng Deng, Xuebin Liao. Enantioselective and diastereoselective azo-coupling/iminium-cyclizations: a unified strategy for the total syntheses of (−)-psychotriasine and (+)-pestalazine B. Chemical Science 2015, 6 (6) , 3599-3605. https://doi.org/10.1039/C5SC00338E
    81. Marta Viganò, Francesco Ferretti, Alessandro Caselli, Fabio Ragaini, Manuela Rossi, Patrizia Mussini, Piero Macchi. Easy Entry into Reduced Ar‐BIANH 2 Compounds: A New Class of Quinone/Hydroquinone‐Type Redox‐Active Couples with an Easily Tunable Potential. Chemistry – A European Journal 2014, 20 (44) , 14451-14464. https://doi.org/10.1002/chem.201403594
    82. Zhong‐Yan Cao, Feng Zhu, Jian Zhou. Multicatalyst System. 2014, 37-157. https://doi.org/10.1002/9781118846919.ch2
    83. André B. Charette, Hélène Lebel, Marie‐Noelle Roy. Asymmetric Cyclopropanation and Aziridination Reactions. 2014, 203-238. https://doi.org/10.1002/9783527664573.ch8
    84. J.I. García, L. Salvatella, E. Pires, J.M. Fraile, J.A. Mayoral. 4.20 Addition of Ketocarbenes to Alkenes, Alkynes, and Aromatic Systems. 2014, 1081-1280. https://doi.org/10.1016/B978-0-08-097742-3.00426-2
    85. Matthieu Raynal, Pablo Ballester, Anton Vidal-Ferran, Piet W. N. M. van Leeuwen. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem. Soc. Rev. 2014, 43 (5) , 1660-1733. https://doi.org/10.1039/C3CS60027K
    86. Xing Li, Gong Li, Honghong Chang, Yan Zhang, Wenlong Wei. Tetrabutylammonium bromide-mediated ring opening reactions of N-tosylaziridines with carboxylic acids in DMF. RSC Advances 2014, 4 (13) , 6490. https://doi.org/10.1039/c3ra46932h
    87. . Hypervalent Iodine Reagents in Organic Synthesis. 2013, 145-336. https://doi.org/10.1002/9781118341155.ch3
    88. Panagiotis A. Papanikolaou, Maria Gdaniec, Barbara Wicher, Pericles D. Akrivos, Nikolai V. Tkachenko. Bis(aryl)acenaphthenequinonediimine Substituent Effect on the Properties and Coordination Environment of Ligands and Their Bis‐Chelate Ag I Complexes. European Journal of Inorganic Chemistry 2013, 2013 (29) , 5196-5205. https://doi.org/10.1002/ejic.201300828
    89. Fedor Romanov‐Michailidis, Laure Guénée, Alexandre Alexakis. Enantioselective Organocatalytic Fluorination‐Induced Wagner–Meerwein Rearrangement. Angewandte Chemie 2013, 125 (35) , 9436-9440. https://doi.org/10.1002/ange.201303527
    90. Fedor Romanov‐Michailidis, Laure Guénée, Alexandre Alexakis. Enantioselective Organocatalytic Fluorination‐Induced Wagner–Meerwein Rearrangement. Angewandte Chemie International Edition 2013, 52 (35) , 9266-9270. https://doi.org/10.1002/anie.201303527
    91. Panagiotis Papanikolaou, Pericles D. Akrivos, Agnieszka Czapik, Barbara Wicher, Maria Gdaniec, Nikolai Tkachenko. Homoleptic Bis(aryl)acenaphthenequinonediimine–Cu I Complexes – Synthesis and Characterization of a Family of Compounds with Improved Light‐Gathering Characteristics. European Journal of Inorganic Chemistry 2013, 2013 (13) , 2418-2431. https://doi.org/10.1002/ejic.201201507
    92. Andreas Pfaltz, Angelika S. Magnus, Pher G. Andersson, Merritt B. Andrus. ( S , S )-2,2′-(Dimethylmethylene)bis(4- tert -butyl-2-oxazoline). 2013https://doi.org/10.1002/047084289X.rd346m.pub3
    93. Victor I. Maleev, Tat’yana V. Skrupskaya, Lidia V. Yashkina, Anna F. Mkrtchyan, Ashot S. Saghyan, Michayl M. Il’in, Denis A. Chusov. Aza-Diels–Alder reaction catalyzed by novel chiral metalocomplex Brønsted acids. Tetrahedron: Asymmetry 2013, 24 (4) , 178-183. https://doi.org/10.1016/j.tetasy.2013.01.011
    94. Katrien Brak, Eric N. Jacobsen. Asymmetrische Ionenpaarkatalyse. Angewandte Chemie 2013, 125 (2) , 558-588. https://doi.org/10.1002/ange.201205449
    95. Katrien Brak, Eric N. Jacobsen. Asymmetric Ion‐Pairing Catalysis. Angewandte Chemie International Edition 2013, 52 (2) , 534-561. https://doi.org/10.1002/anie.201205449
    96. Mylène Augé, Marion Barbazanges, Anh Tuan Tran, Antoine Simonneau, Paulin Elley, Hani Amouri, Corinne Aubert, Louis Fensterbank, Vincent Gandon, Max Malacria, Jamal Moussa, Cyril Ollivier. Atroposelective [2+2+2] cycloadditions catalyzed by a rhodium(i)–chiral phosphate system. Chemical Communications 2013, 49 (71) , 7833. https://doi.org/10.1039/c3cc43188f
    97. Panagiotis A. Papanikolaou, Nikolai V. Tkachenko. Probing the excited state dynamics of a new family of Cu(i)-complexes with an enhanced light absorption capacity: excitation-wavelength dependent population of states through branching. Physical Chemistry Chemical Physics 2013, 15 (31) , 13128. https://doi.org/10.1039/c3cp50838b
    98. Jevgenij A. Raskatov, Amber L. Thompson, Andrew R. Cowley, Timothy D. W. Claridge, John M. Brown. Chiral recognition in contact ion-pairs; observation, characterization and analysis. Chemical Science 2013, 4 (8) , 3140. https://doi.org/10.1039/c3sc51096d
    99. Manuel Mahlau, Benjamin List. Asymmetric Counteranion‐Directed Catalysis (ACDC). 2012, 79-85. https://doi.org/10.1002/9783527652235.ch11
    100. Eloah P. Ávila, Giovanni W. Amarante. Recent Advances in Asymmetric Counteranion‐directed Catalysis (ACDC). ChemCatChem 2012, 4 (11) , 1713-1721. https://doi.org/10.1002/cctc.201200422
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect