ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Palladium-Catalyzed Silylation of Aryl Bromides Leading to Functionalized Aryldimethylsilanols

View Author Information
Roger Adams Laboratory, Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, Illinois 61801
Cite this: Org. Lett. 2003, 5, 19, 3483–3486
Publication Date (Web):August 19, 2003
https://doi.org/10.1021/ol035288m
Copyright © 2003 American Chemical Society

    Article Views

    3013

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (85 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A mild and general palladium-catalyzed insertion of 1,2-diethoxy-1,1,2,2-tetramethyldisilane into a variety of aryl bromides affords the aryldimethylsilyl ethers in high yields. Hydrolysis of the ethers under pH-optimized conditions results in the exclusive formation of the desired aryldimethylsilanols.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Detailed procedures for the synthesis of 5, all silylation reactions, and full characterization of 8aj. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 97 publications.

    1. Hiroki Yamagishi, Jun Shimokawa, Hideki Yorimitsu. Utilization of Silanols in Transition Metal-Catalyzed Organic Synthesis. ACS Catalysis 2023, 13 (11) , 7472-7487. https://doi.org/10.1021/acscatal.3c01504
    2. Bogdan Marciniec, Cezary Pietraszuk, Piotr Pawluć, Hieronim Maciejewski. Inorganometallics (Transition Metal–Metalloid Complexes) and Catalysis. Chemical Reviews 2022, 122 (3) , 3996-4090. https://doi.org/10.1021/acs.chemrev.1c00417
    3. Baptiste Neil, Franck Lucien, Louis Fensterbank, Clément Chauvier. Transition-Metal-Free Silylation of Unactivated C(sp2)–H Bonds with tert-Butyl-Substituted Silyldiazenes. ACS Catalysis 2021, 11 (21) , 13085-13090. https://doi.org/10.1021/acscatal.1c03824
    4. Hiroki Yamagishi, Hayate Saito, Jun Shimokawa, Hideki Yorimitsu. Design, Synthesis, and Implementation of Sodium Silylsilanolates as Silyl Transfer Reagents. ACS Catalysis 2021, 11 (16) , 10095-10103. https://doi.org/10.1021/acscatal.1c02733
    5. Yifan Li, Kaichen Shu, Ping Liu, Peipei Sun. Selective C-5 Oxidative Radical Silylation of Imidazopyridines Promoted by Lewis Acid. Organic Letters 2020, 22 (16) , 6304-6307. https://doi.org/10.1021/acs.orglett.0c02131
    6. Watchara Srimontree, Waranya Lakornwong, Magnus Rueping. Nickel-Catalyzed Synthesis of Silanes from Silyl Ketones. Organic Letters 2019, 21 (23) , 9330-9333. https://doi.org/10.1021/acs.orglett.9b03487
    7. Lin Guo, Magnus Rueping. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules. Accounts of Chemical Research 2018, 51 (5) , 1185-1195. https://doi.org/10.1021/acs.accounts.8b00023
    8. Kanako Nozawa-Kumada, Sayuri Osawa, Midori Sasaki, Isabelle Chataigner, Masanori Shigeno, and Yoshinori Kondo . Deprotonative Silylation of Aromatic C–H Bonds Mediated by a Combination of Trifluoromethyltrialkylsilane and Fluoride. The Journal of Organic Chemistry 2017, 82 (18) , 9487-9496. https://doi.org/10.1021/acs.joc.7b01525
    9. Zetong Ma, Chengyi Xiao, Chunming Liu, Dong Meng, Wei Jiang, and Zhaohui Wang . Palladium-Catalyzed Si–C Bond Formation toward Sila-Annulated Perylene Diimides. Organic Letters 2017, 19 (16) , 4331-4334. https://doi.org/10.1021/acs.orglett.7b02011
    10. Huaquan Fang, Le Guo, Yuxuan Zhang, Wubing Yao, and Zheng Huang . A Pincer Ruthenium Complex for Regioselective C–H Silylation of Heteroarenes. Organic Letters 2016, 18 (21) , 5624-5627. https://doi.org/10.1021/acs.orglett.6b02857
    11. Xinghui Pu, Jiefeng Hu, Yue Zhao, and Zhuangzhi Shi . Nickel-Catalyzed Decarbonylative Borylation and Silylation of Esters. ACS Catalysis 2016, 6 (10) , 6692-6698. https://doi.org/10.1021/acscatal.6b01956
    12. Yuanda Hua, Parham Asgari, Thirupataiah Avullala, and Junha Jeon . Catalytic Reductive ortho-C–H Silylation of Phenols with Traceless, Versatile Acetal Directing Groups and Synthetic Applications of Dioxasilines. Journal of the American Chemical Society 2016, 138 (25) , 7982-7991. https://doi.org/10.1021/jacs.6b04018
    13. Scott E. Denmark and Andrea Ambrosi . Why You Really Should Consider Using Palladium-Catalyzed Cross-Coupling of Silanols and Silanolates. Organic Process Research & Development 2015, 19 (8) , 982-994. https://doi.org/10.1021/acs.oprd.5b00201
    14. Midori Sasaki and Yoshinori Kondo . Deprotonative C–H Silylation of Functionalized Arenes and Heteroarenes Using Trifluoromethyltrialkylsilane with Fluoride. Organic Letters 2015, 17 (4) , 848-851. https://doi.org/10.1021/ol503671b
    15. Cayetana Zarate and Ruben Martin . A Mild Ni/Cu-Catalyzed Silylation via C–O Cleavage. Journal of the American Chemical Society 2014, 136 (6) , 2236-2239. https://doi.org/10.1021/ja412107b
    16. Elizabeth J. Rayment, Nick Summerhill, and Edward A. Anderson . Synthesis of Phenols via Fluoride-free Oxidation of Arylsilanes and Arylmethoxysilanes. The Journal of Organic Chemistry 2012, 77 (16) , 7052-7060. https://doi.org/10.1021/jo301363h
    17. Scott E. Denmark. The Interplay of Invention, Discovery, Development, and Application in Organic Synthetic Methodology: A Case Study. The Journal of Organic Chemistry 2009, 74 (8) , 2915-2927. https://doi.org/10.1021/jo900032x
    18. Scott E. Denmark, Russell C. Smith, Wen-Tau T. Chang and Joseck M. Muhuhi. Cross-Coupling Reactions of Aromatic and Heteroaromatic Silanolates with Aromatic and Heteroaromatic Halides. Journal of the American Chemical Society 2009, 131 (8) , 3104-3118. https://doi.org/10.1021/ja8091449
    19. Javier Montenegro, Julián Bergueiro, Carlos Saá and Susana López. Hiyama Cross-Coupling Reaction in the Stereospecific Synthesis of Retinoids. Organic Letters 2009, 11 (1) , 141-144. https://doi.org/10.1021/ol802551a
    20. Scott E. Denmark and Nathan S. Werner. Cross-Coupling of Aromatic Bromides with Allylic Silanolate Salts. Journal of the American Chemical Society 2008, 130 (48) , 16382-16393. https://doi.org/10.1021/ja805951j
    21. Mamoru Tobisu, Yusuke Kita, Yusuke Ano and Naoto Chatani. Rhodium-Catalyzed Silylation and Intramolecular Arylation of Nitriles via the Silicon-Assisted Cleavage of Carbon−Cyano Bonds. Journal of the American Chemical Society 2008, 130 (47) , 15982-15989. https://doi.org/10.1021/ja804992n
    22. Yoshinori Yamanoi and Hiroshi Nishihara. Direct and Selective Arylation of Tertiary Silanes with Rhodium Catalyst. The Journal of Organic Chemistry 2008, 73 (17) , 6671-6678. https://doi.org/10.1021/jo8008148
    23. Taigo Kashiwabara and, Masato Tanaka. Decarbonylative Coupling of Fluorobenzoyl Chlorides with Hexamethyldisilane in the Presence of a Palladium Complex Catalyst:  Extremely Facile Decarbonylation of Pentafluorobenzoyl−Pd Complex Relevant to C6F5SiMe3 Formation. Organometallics 2006, 25 (19) , 4648-4652. https://doi.org/10.1021/om060479p
    24. Jean-Pierre Corbet and, Gérard Mignani. Selected Patented Cross-Coupling Reaction Technologies. Chemical Reviews 2006, 106 (7) , 2651-2710. https://doi.org/10.1021/cr0505268
    25. Abdallah Hamze,, Olivier Provot,, Mouâd Alami, and, Jean-Daniel Brion. Platinum Oxide Catalyzed Silylation of Aryl Halides with Triethylsilane:  An Efficient Synthetic Route to Functionalized Aryltriethylsilanes. Organic Letters 2006, 8 (5) , 931-934. https://doi.org/10.1021/ol052996u
    26. Yoshinori Yamanoi. Palladium-Catalyzed Silylations of Hydrosilanes with Aryl Halides Using Bulky Alkyl Phosphine. The Journal of Organic Chemistry 2005, 70 (23) , 9607-9609. https://doi.org/10.1021/jo051131r
    27. Jun Liu, Jiajian Peng, Ying Bai, Jiayun Li, Zijie Song, Peng Liu, Ting Ouyang, Huilin Lan, Yichen Huang. Progress in the Preparation and Application of Arylsilane. Current Organic Chemistry 2023, 27 (1) , 28-37. https://doi.org/10.2174/1385272827666230217093032
    28. Shuai Liu, Frédéric Robert, Yannick Landais. Dual photoredox nickel-catalyzed silylation of aryl/heteroaryl bromides using hydrosilanes. Chemical Communications 2023, 63 https://doi.org/10.1039/D3CC03246A
    29. Omid Daneshfar, Stephen G. Newman. Esters as Viable Acyl Cross‐Coupling Electrophiles. 2022, 403-451. https://doi.org/10.1002/9783527830251.ch14
    30. Hiroki Miura, Ryuji Hirata, Toyomasu Tomoya, Tetsuya Shishido. Electrophilic C(sp 2 )−H Silylation by Supported Gold Catalysts. ChemCatChem 2021, 13 (22) , 4705-4713. https://doi.org/10.1002/cctc.202101123
    31. Changhui Dai, Yanling Zhan, Ping Liu, Peipei Sun. Organic photoredox catalyzed C–H silylation of quinoxalinones or electron-deficient heteroarenes under ambient air conditions. Green Chemistry 2021, 23 (1) , 314-319. https://doi.org/10.1039/D0GC03697H
    32. Hiroki Miura, Yosuke Masaki, Yohei Fukuta, Tetsuya Shishido. Silylation of Aryl Chlorides by Bimetallic Catalysis of Palladium and Gold on Alloy Nanoparticles. Advanced Synthesis & Catalysis 2020, 362 (13) , 2642-2650. https://doi.org/10.1002/adsc.202000045
    33. Ying‐Ying Kong, Zhong‐Xia Wang. Nickel‐Catalyzed Reaction of Aryl 2‐Pyridyl Ethers with Silylzinc Chlorides: Silylation of Aryl 2‐Pyridyl Ethers via Cleavage of the Carbon−Oxygen Bond. Advanced Synthesis & Catalysis 2019, 361 (23) , 5440-5448. https://doi.org/10.1002/adsc.201900949
    34. Kanako Nozawa-Kumada. C-H Functionalization by Transition-metal-catalyst or in Situ Generated Base. YAKUGAKU ZASSHI 2019, 139 (10) , 1243-1251. https://doi.org/10.1248/yakushi.19-00146
    35. Vetrivelan Murugesan, Venkadesh Balakrishnan, Ramesh Rasappan. Nickel-catalyzed cross-coupling reaction of carbamates with silylmagnesium reagents. Journal of Catalysis 2019, 377 , 293-298. https://doi.org/10.1016/j.jcat.2019.07.026
    36. Xiu Wang, Zhenhua Wang, Yasushi Nishihara. Nickel/copper-cocatalyzed decarbonylative silylation of acyl fluorides. Chemical Communications 2019, 55 (71) , 10507-10510. https://doi.org/10.1039/C9CC05325E
    37. Ryohei Hayami, Tetsuro Izumiya, Takashi Kokaji, Hajime Nakagawa, Satoru Tsukada, Kazuki Yamamoto, Takahiro Gunji. 2-Triethoxysilylazulene derivatives: Syntheses and optical properties, and hydrolysis—condensation of 2-triethoxysilylazulene. Journal of Sol-Gel Science and Technology 2019, 91 (2) , 399-406. https://doi.org/10.1007/s10971-019-04991-8
    38. Xiang‐Wei Liu, Cayetana Zarate, Ruben Martin. Base‐Mediated Defluorosilylation of C(sp 2 )−F and C(sp 3 )−F Bonds. Angewandte Chemie 2019, 131 (7) , 2086-2090. https://doi.org/10.1002/ange.201813294
    39. Xiang-Wei Liu, Cayetana Zarate, Ruben Martin. Base-Mediated Defluorosilylation of C(sp 2 )−F and C(sp 3 )−F Bonds. Angewandte Chemie International Edition 2019, 58 (7) , 2064-2068. https://doi.org/10.1002/anie.201813294
    40. Shubhadip Mallick, Pan Xu, Ernst‐Ulrich Würthwein, Armido Studer. Silyldefluorination of Fluoroarenes by Concerted Nucleophilic Aromatic Substitution. Angewandte Chemie 2019, 131 (1) , 289-293. https://doi.org/10.1002/ange.201808646
    41. Shubhadip Mallick, Pan Xu, Ernst‐Ulrich Würthwein, Armido Studer. Silyldefluorination of Fluoroarenes by Concerted Nucleophilic Aromatic Substitution. Angewandte Chemie International Edition 2019, 58 (1) , 283-287. https://doi.org/10.1002/anie.201808646
    42. Hayate Saito, Keisuke Nogi, Hideki Yorimitsu. Copper‐Catalyzed Ring‐Opening Silylation of Benzofurans with Disilane. Angewandte Chemie 2018, 130 (34) , 11196-11200. https://doi.org/10.1002/ange.201806237
    43. Hayate Saito, Keisuke Nogi, Hideki Yorimitsu. Copper‐Catalyzed Ring‐Opening Silylation of Benzofurans with Disilane. Angewandte Chemie International Edition 2018, 57 (34) , 11030-11034. https://doi.org/10.1002/anie.201806237
    44. Hirozumi Toyama, Hitoshi Shirakawa, Michio Komai, Yuichi Hashimoto, Shinya Fujii. Development of novel silanol-based human pregnane X receptor (PXR) agonists with improved receptor selectivity. Bioorganic & Medicinal Chemistry 2018, 26 (15) , 4493-4501. https://doi.org/10.1016/j.bmc.2018.07.038
    45. Genhua Xiao, Liang Chen, Guobo Deng, Jianbing Liu, Yun Liang. Disilylation of N-(2-Halophenyl)-2-phenylacrylamides with hexamethyldisilane via trapping the spirocyclic palladacycles. Tetrahedron Letters 2018, 59 (19) , 1836-1840. https://doi.org/10.1016/j.tetlet.2018.03.086
    46. Peihong Xiao, Yanjun Cao, Yingying Gui, Lu Gao, Zhenlei Song. Me 3 Si−SiMe 2 [ o CON( i Pr) 2 −C 6 H 4 ]: An Unsymmetrical Disilane Reagent for Regio‐ and Stereoselective Bis‐Silylation of Alkynes. Angewandte Chemie 2018, 130 (17) , 4859-4863. https://doi.org/10.1002/ange.201800513
    47. Peihong Xiao, Yanjun Cao, Yingying Gui, Lu Gao, Zhenlei Song. Me 3 Si−SiMe 2 [ o CON( i Pr) 2 −C 6 H 4 ]: An Unsymmetrical Disilane Reagent for Regio‐ and Stereoselective Bis‐Silylation of Alkynes. Angewandte Chemie International Edition 2018, 57 (17) , 4769-4773. https://doi.org/10.1002/anie.201800513
    48. Wenguang Li, Genhua Xiao, Guobo Deng, Yun Liang. Pd-Catalyzed disilylation: an efficient route to 2,2′-bis(trimethylsilyl)biphenyls via trapping transient dibenzopalladacyclopentadienes with hexamethyldisilane. Organic Chemistry Frontiers 2018, 5 (9) , 1488-1492. https://doi.org/10.1039/C8QO00189H
    49. Zhongfei Yan, Jin Xie, Chengjian Zhu. Copper-Catalyzed Radical Silylarylation of Ynones with Silanes: En Route to Silyl-Functionalized Indenones. Advanced Synthesis & Catalysis 2017, 359 (23) , 4153-4157. https://doi.org/10.1002/adsc.201700926
    50. Zheng Xu, Jin-Zhou Xu, Jin Zhang, Zhan-Jiang Zheng, Jian Cao, Yu-Ming Cui, Li-Wen Xu. Mechanistic Insights into Palladium-Catalyzed Silylation of Aryl Iodides with Hydrosilanes through a DFT Study. Chemistry - An Asian Journal 2017, 12 (14) , 1749-1757. https://doi.org/10.1002/asia.201700174
    51. Shinya Fujii, Yuichi Hashimoto. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond. Future Medicinal Chemistry 2017, 9 (5) , 485-505. https://doi.org/10.4155/fmc-2016-0193
    52. Laura Rubio-Pérez, Manuel Iglesias, Julen Munárriz, Victor Polo, Vincenzo Passarelli, Jesús J. Pérez-Torrente, Luis A. Oro. A well-defined NHC–Ir( iii ) catalyst for the silylation of aromatic C–H bonds: substrate survey and mechanistic insights. Chemical Science 2017, 8 (7) , 4811-4822. https://doi.org/10.1039/C6SC04899D
    53. Lin Guo, Adisak Chatupheeraphat, Magnus Rueping. Decarbonylative Silylation of Esters by Combined Nickel and Copper Catalysis for the Synthesis of Arylsilanes and Heteroarylsilanes. Angewandte Chemie 2016, 128 (39) , 11989-11992. https://doi.org/10.1002/ange.201604696
    54. Lin Guo, Adisak Chatupheeraphat, Magnus Rueping. Decarbonylative Silylation of Esters by Combined Nickel and Copper Catalysis for the Synthesis of Arylsilanes and Heteroarylsilanes. Angewandte Chemie International Edition 2016, 55 (39) , 11810-11813. https://doi.org/10.1002/anie.201604696
    55. Li Chen, Jiang-Bo Huang, Zheng Xu, Zhan-Jiang Zheng, Ke-Fang Yang, Yu-Ming Cui, Jian Cao, Li-Wen Xu. Palladium-catalyzed Si–C bond-forming silylation of aryl iodides with hydrosilanes: an enhanced enantioselective synthesis of silicon-stereogenic silanes by desymmetrization. RSC Advances 2016, 6 (71) , 67113-67117. https://doi.org/10.1039/C6RA12873D
    56. Hirozumi Toyama, Shoko Sato, Hitoshi Shirakawa, Michio Komai, Yuichi Hashimoto, Shinya Fujii. Altered activity profile of a tertiary silanol analog of multi-targeting nuclear receptor modulator T0901317. Bioorganic & Medicinal Chemistry Letters 2016, 26 (7) , 1817-1820. https://doi.org/10.1016/j.bmcl.2016.02.031
    57. C. Zarate, M. van Gemmeren, R.J. Somerville, R. Martin. Phenol Derivatives. 2016, 143-222. https://doi.org/10.1016/bs.adomc.2016.07.001
    58. Masaki Shimada, Yoshinori Yamanoi, Hiroshi Nishihara. Unusual Reactivity of Group 14 Hydrides toward Organic Halides: Synthetic Studies and Application to Functional Materials. Journal of Synthetic Organic Chemistry, Japan 2016, 74 (11) , 1098-1107. https://doi.org/10.5059/yukigoseikyokaishi.74.1098
    59. Zheng Xu, Li-Wen Xu. Silylations of Arenes with Hydrosilanes: From Transition-Metal-Catalyzed CX Bond Cleavage to Environmentally Benign Transition-Metal-Free CH Bond Activation. ChemSusChem 2015, 8 (13) , 2176-2179. https://doi.org/10.1002/cssc.201500467
    60. Badri Nath Jha, Abhinav Raghuvanshi, Pradeep Mathur. Homoleptic Metal Carbonyls in Organic Transformation. 2015, 353-383. https://doi.org/10.1002/9781118998939.ch10
    61. Yuanda Hua, Parham Asgari, Udaya Sree Dakarapu, Junha Jeon. Reductive arene ortho-silanolization of aromatic esters with hydridosilyl acetals. Chemical Communications 2015, 51 (18) , 3778-3781. https://doi.org/10.1039/C4CC09850A
    62. Huifang Guo, Xiao Chen, Chunliang Zhao, Wei He. Suzuki-type cross coupling between aryl halides and silylboranes for the syntheses of aryl silanes. Chemical Communications 2015, 51 (98) , 17410-17412. https://doi.org/10.1039/C5CC07071F
    63. Grzegorz Hreczycho. An Efficient Catalytic Approach for the Synthesis of Unsymmetrical Siloxanes. European Journal of Inorganic Chemistry 2015, 2015 (1) , 67-72. https://doi.org/10.1002/ejic.201402904
    64. Yutaro Yamamoto, Hiroshi Matsubara, Kei Murakami, Hideki Yorimitsu, Atsuhiro Osuka. Activator‐Free Palladium‐Catalyzed Silylation of Aryl Chlorides with Silylsilatranes. Chemistry – An Asian Journal 2015, 10 (1) , 219-224. https://doi.org/10.1002/asia.201402595
    65. Yasunori Minami, Kenta Shimizu, Chisato Tsuruoka, Takeshi Komiyama, Tamejiro Hiyama. Synthesis of HOMSi Reagents by Pd/Cu-Catalyzed Silylation of Bromoarenes with Disilanes. Chemistry Letters 2014, 43 (2) , 201-203. https://doi.org/10.1246/cl.130919
    66. Mads H. Rønnest, Felix Nissen, Palle J. Pedersen, Thomas O. Larsen, Walter Mier, Mads H. Clausen. A Mild Method for Regioselective Labeling of Aromatics with Radioactive Iodine. European Journal of Organic Chemistry 2013, 2013 (19) , 3970-3973. https://doi.org/10.1002/ejoc.201300419
    67. Tse-Lok Ho, Mary Fieser, Louis Fieser. Palladium(II) Chloride - Tertiary Phosphine. 2013, 377-381. https://doi.org/10.1002/9780471264194.fos11432.pub5
    68. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Palladium( II ) Chloride – Tertiary Phosphine. 2013, 377-381. https://doi.org/10.1002/9780471264194.fos11432.pub6
    69. Tamejiro Hiyama. Organosilicon and Relating Organotin Chemistry. 2013, 373-544. https://doi.org/10.1002/9781118484722.ch3
    70. Tatsuo Ishiyama, Takeaki Saiki, Emi Kishida, Ikuo Sasaki, Hajime Ito, Norio Miyaura. Aromatic C–H silylation of arenes with 1-hydrosilatrane catalyzed by an iridium(i)/2,9-dimethylphenanthroline (dmphen) complex. Organic & Biomolecular Chemistry 2013, 11 (47) , 8162. https://doi.org/10.1039/c3ob41623b
    71. Julián Bergueiro, Javier Montenegro, Fermín Cambeiro, Carlos Saá, Susana López. Cross-Coupling Reactions of Organosilicon Compounds in the Stereocontrolled Synthesis of Retinoids. Chemistry - A European Journal 2012, 18 (14) , 4401-4410. https://doi.org/10.1002/chem.201103360
    72. Scott E. Denmark, Jack Hung‐Chang Liu. Discussion Addendum for: Palladium Catalyzed Cross‐Coupling of ( Z )‐1‐Heptenyldimethylsilanol with 4‐Iodoanisole: ( Z )‐(1‐Heptenyl)‐4‐Methoxybenzene. 2011, 102-108. https://doi.org/10.1002/0471264229.os088.10
    73. Tse-Lok Ho, Mary Fieser, Louis Fieser. Palladium(II) Chloride-Tertiary Phosphine. 2011, 445-448. https://doi.org/10.1002/9780471264194.fos07721.pub3
    74. Wen‐Tau T. Chang, Russell C. Smith, Christopher S. Regens, Aaron D. Bailey, Nathan S. Werner, Scott E. Denmark. Cross‐Coupling with Organosilicon Compounds. 2011, 213-746. https://doi.org/10.1002/0471264180.or075.03
    75. Chunhui Huang, Natalia Chernyak, Alexander S. Dudnik, Vladimir Gevorgyan. The Pyridyldiisopropylsilyl Group: A Masked Functionality and Directing Group for Monoselective ortho-Acyloxylation and ortho-Halogenation Reactions of Arenes. Advanced Synthesis & Catalysis 2011, 353 (8) , 1285-1305. https://doi.org/10.1002/adsc.201000975
    76. Aldes Lesbani , Hitoshi Kondo, Yusuke Yabusaki, Misaki Nakai, Yoshinori Yamanoi, Hiroshi Nishihara. Integrated Palladium-Catalyzed Arylation of Heavier Group 14 Hydrides. Chemistry - A European Journal 2010, 16 (45) , 13519-13527. https://doi.org/10.1002/chem.201001437
    77. Mamoru Tobisu, Ryo Nakamura, Yusuke Kita, Naoto Chatani. Rhodium-Catalyzed Reductive Decyanation of Nitriles Using Hydrosilane as a Reducing Agent: Scope, Mechanism and Synthetic Application. Bulletin of the Korean Chemical Society 2010, 31 (3) , 582-587. https://doi.org/10.5012/bkcs.2010.31.03.582
    78. Nasser Iranpoor, Habib Firouzabadi, Roya Azadi. Diphenylphosphinite ionic liquid (IL-OPPh2): A solvent and ligand for palladium-catalyzed silylation and dehalogenation reaction of aryl halides with triethylsilane. Journal of Organometallic Chemistry 2010, 695 (6) , 887-890. https://doi.org/10.1016/j.jorganchem.2010.01.001
    79. Tse-Lok Ho, Mary Fieser, Louis Fieser. Palladium(II) Chloride -Tertiary Phosphine. 2010https://doi.org/10.1002/9780471264194.fos11432.pub2
    80. Shintaro Ishida, Masayasu Ito, Hiroaki Horiuchi, Hiroshi Hiratsuka, Soshi Shiraishi, Soichiro Kyushin. Synthesis and properties of 5,10,15,20-tetrakis[4-(alkoxysilyl)phenyl]porphyrins: an application of selective deprotection of benzaldehyde diethyl acetals in the presence of alkoxysilyl groups. Dalton Transactions 2010, 39 (39) , 9421. https://doi.org/10.1039/c0dt00427h
    81. Yusuke Kita, Mamoru Tobisu, Naoto Chatani. Rhodium-Catalyzed Carbon-Cyano Bond Cleavage Reactions Using Organosilicon Reagents. Journal of Synthetic Organic Chemistry, Japan 2010, 68 (11) , 1112-1122. https://doi.org/10.5059/yukigoseikyokaishi.68.1112
    82. Miki Murata, Yuzuru Masuda. Transition Metal-catalyzed Silylation of Organic Halides with Hydrosilanes. Journal of Synthetic Organic Chemistry, Japan 2010, 68 (8) , 845-853. https://doi.org/10.5059/yukigoseikyokaishi.68.845
    83. Tse-Lok Ho, Mary Fieser, Louis Fieser. 1-Alkyl-3-methylimidazolium salts. 2009https://doi.org/10.1002/9780471264194.fos00277.pub2
    84. Daisuke Takeda, Ryo Oyama, Shozo Yamada. A Novel Method for Preparing Silanols from Silylmethanols. Chemistry Letters 2009, 38 (6) , 532-533. https://doi.org/10.1246/cl.2009.532
    85. Scott E. Denmark, John D. Baird. Preparation of 2,3-disubstituted indoles by sequential Larock heteroannulation and silicon-based cross-coupling reactions. Tetrahedron 2009, 65 (16) , 3120-3129. https://doi.org/10.1016/j.tet.2008.10.043
    86. Yoshinori Yamanoi, Hiroshi Nishihara. Efficient Synthesis of Arylsilanes by Cross-coupling of Aromatic Compounds with Hydrosilanes as Silicon Sources. Journal of Synthetic Organic Chemistry, Japan 2009, 67 (8) , 778-786. https://doi.org/10.5059/yukigoseikyokaishi.67.778
    87. Biao Lu, John R. Falck. Efficient Iridium-Catalyzed CH Functionalization/Silylation of Heteroarenes. Angewandte Chemie 2008, 120 (39) , 7618-7620. https://doi.org/10.1002/ange.200802456
    88. Biao Lu, John R. Falck. Efficient Iridium‐Catalyzed CH Functionalization/Silylation of Heteroarenes. Angewandte Chemie International Edition 2008, 47 (39) , 7508-7510. https://doi.org/10.1002/anie.200802456
    89. Muneaki Iizuka, Yoshinori Kondo. Palladium‐Catalyzed Silylation of Electron‐Deficient Aryl Iodides Using Triorganosilane in the Presence of Pyridine and LiCl. European Journal of Organic Chemistry 2008, 2008 (7) , 1161-1163. https://doi.org/10.1002/ejoc.200701141
    90. Miki Murata, Hiyoruki Yamasaki, Tsukasa Ueta, Masayuki Nagata, Masanori Ishikura, Shinji Watanabe, Yuzuru Masuda. Synthesis of aryltriethoxysilanes via rhodium(I)-catalyzed cross-coupling of aryl electrophiles with triethoxysilane. Tetrahedron 2007, 63 (19) , 4087-4094. https://doi.org/10.1016/j.tet.2007.02.103
    91. J. Beckmann. Oligosilanes. 2007, 409-512. https://doi.org/10.1016/B0-08-045047-4/00050-9
    92. Yoshinori Yamanoi, Hiroshi Nishihara. Rhodium-catalyzed silylation of ortho-functionalized aryl halides with hydrosilanes. Tetrahedron Letters 2006, 47 (40) , 7157-7161. https://doi.org/10.1016/j.tetlet.2006.08.001
    93. Björn C.G. Söderberg. Transition metals in organic synthesis: Highlights for the year 2003. Coordination Chemistry Reviews 2006, 250 (3-4) , 300-387. https://doi.org/10.1016/j.ccr.2005.03.033
    94. B. Marciniec, C. Pietraszuk, I. Kownacki, M. Zaidlewicz. Vinyl- and Arylsilicon, germanium, and boron Compounds. 2005, 941-1023. https://doi.org/10.1016/B0-08-044655-8/00040-4
    95. Junghyun Chae, Jaesook Yun, Stephen L. Buchwald. One-Pot Sequential Cu-Catalyzed Reduction and Pd-Catalyzed Arylation of Silyl Enol Ethers. Organic Letters 2004, 6 (26) , 4809-4812. https://doi.org/10.1021/ol048313c
    96. Scott E. Denmark, Shyh-Ming Yang. Sequential ring-closing metathesis/Pd-catalyzed, Si-assisted cross-coupling reactions: general synthesis of highly substituted unsaturated alcohols and medium-sized rings containing a 1,3-cis–cis diene unit. Tetrahedron 2004, 60 (43) , 9695-9708. https://doi.org/10.1016/j.tet.2004.06.149
    97. Scott E. Denmark, Jeffrey M. Kallemeyn. Palladium-Catalyzed Silylation of Aryl Bromides Leading to Functionalized Aryldimethylsilanols.. ChemInform 2004, 35 (5) https://doi.org/10.1002/chin.200405134

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect